
Efficient Distributed In-Memory
Processing of RDF Datasets

Dissertation
zur

Erlangung des Doktorgrades (Dr. rer. nat.)
der

Mathematisch-Naturwissenschaftlichen Fakultät
der

Rheinischen Friedrich-Wilhelms-Universität Bonn

von
Gezim Sejdiu

aus
Smire, Kosovo

Bonn, 06.05.2020

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen
Friedrich-Wilhelms-Universität Bonn

1. Gutachter: Prof. Dr. Jens Lehmann
2. Gutachter: Prof. Dr. Sören Auer

Tag der Promotion: 29.09.2020
Erscheinungsjahr: 2020

Abstract

Over the past decade, vast amounts of machine-readable structured information have become available
through the automation of research processes as well as the increasing popularity of knowledge
graphs and semantic technologies. Today, we count more than 10,000 datasets made available online
following Semantic Web standards. A major and yet unsolved challenge that research faces today
is to perform scalable analysis of large-scale knowledge graphs in order to facilitate applications in
various domains including life sciences, publishing, and the internet of things. The main objective of
this thesis is to lay foundations for efficient algorithms performing analytics, i.e. exploration, quality
assessment, and querying over semantic knowledge graphs at a scale that has not been possible before.
First, we propose a novel approach for statistical calculations of large RDF datasets, which scales
out to clusters of machines. In particular, we describe the first distributed in-memory approach for
computing 32 different statistical criteria for RDF datasets using Apache Spark. Many applications
such as data integration, search, and interlinking, may take full advantage of the data when having a
priori statistical information about its internal structure and coverage. However, such applications
may suffer from low quality and not being able to leverage the full advantage of the data when the
size of data goes beyond the capacity of the resources available. Thus, we introduce a distributed
approach of quality assessment of large RDF datasets. It is the first distributed, in-memory approach
for computing different quality metrics for large RDF datasets using Apache Spark. We also provide a
quality assessment pattern that can be used to generate new scalable metrics that can be applied to big
data. Based on the knowledge of the internal statistics of a dataset and its quality, users typically want
to query and retrieve large amounts of information. As a result, it has become difficult to efficiently
process these large RDF datasets. Indeed, these processes require, both efficient storage strategies and
query-processing engines, to be able to scale in terms of data size. Therefore, we propose a scalable
approach to evaluate SPARQL queries over distributed RDF datasets by translating SPARQL queries
into Spark executable code. We conducted several empirical evaluations to assess the scalability,
effectiveness, and efficiency of our proposed approaches. More importantly, various use cases i.e.
Ethereum analysis, Mining Big Data Logs, and Scalable Integration of POIs, have been developed and
leverages by our approach. The empirical evaluations and concrete applications provide evidence that
our methodology and techniques proposed during this thesis help to effectively analyze and process
large-scale RDF datasets. All the proposed approaches during this thesis are integrated into the larger
SANSA framework.

iii

Acknowledgements

This work would not have been possible without the support and guidance of many people. First and
foremost, I would like to express my sincere thanks to my supervisor Prof. Dr. Jens Lehmann for
his constant guidance and support throughout the PhD studies. At the same time, I am also greatly
appreciated by his kindness, patience, and encouragement that let me feel more confident and grow
gradually as an independent researcher. I was fortunate to have Prof. Lehmann as an advisor during
the development of this thesis. I am also thankful to Prof. Dr. Sören Auer for his support during this
thesis. His insightful guidance helped me to see new ideas when tackling the research problem. They
are both inspiring mentors and continue to lead by example. They always challenge me to push ideas
and work further, and share their advice and experience on life and research. Being able to learn from
both of them has been my great fortune.
I would like to thank all the staff members of the Smart Data Analytics (SDA) group at the

University of Bonn, for the great time I had. I really enjoyed the atmosphere and also their friendship.
Special thanks go to Monish Dubey, Harsh Thakkar, Dr. Diego Esteves, Mehdi Ali, Ass. Prof. Maria
Maleshkova, Denis Lukovnikov, Dr. Günter Kniesel, Dr. Sahar Vahdati, Dr. Giulio Napolitano, Hamid
Zafar, Debanjan Chaudhuri, Rostislav Nedelchev, Nilesh Chakraborty, Gaurav Maheshwari, Priyansh
Trivedi, Mohamed Nadjib Mami, and Debayan Banerjee. Within our research group, I had the
opportunity to be involved and responsible with regard to managing and maintaining some parts of the
SANSA project as well as teaching and supervising master students. I want to thank all my colleagues
in the SDA group and am glad to have the opportunity to be part of this group.

Draft versions of the thesis were read by Dr. Hajira Jabeen, Dr. Damien Graux, and Dr. Anisa Rula
and I thank them for their valuable feedback and support, which helped to improve the overall quality
of the thesis. I am also grateful for previous collaborations and discussions we had, as a result, it
helped me to acquire and improve my academic skills.

As most of the research ideas described in this thesis were implemented, evaluated and integrated
into the open-source SANSA project. I thank everyone working on this project. In particular, Ivan
Emirlov for his DevOps help when it was needed, Lorenz Bühmann for his constructive feedback and
help while working in SANSA, Claus Stadler, Simon Bin, Patrick Westphal and many more.

I would like to sincerely thank Shendrit Bytyqi and Ali Salihu for their support when we arrived in
Germany. Finally, I would like to express my gratitude to my family and friends, for their persistent
support and love and enriching my life beyond my scientific endeavors. In particular, I thank my
lovely wife - Mimoza Sejdiu, for her constant support, sacrifices and understanding in the past years.
Also, I would like to thank my beloved sons - Jon Sejdiu and Nil Sejdiu, for their love and motivation
throughout the years of my PhD work. Thank you all.

Love you.
and my beloved sons, Jon Sejdiu and Nil Sejdiu.
to my lovely wife, Mimoza Sejdiu
This PhD thesis is dedicated

Contents

1 Introduction 1
1.1 Problem Definition and Challenges . 2

1.1.1 Challenge 1: Scalable Computation of RDF Dataset Statistics 2
1.1.2 Challenge 2: Quality Assessment of RDF Dataset at Scale 3
1.1.3 Challenge 3: Efficient and Scalable SPARQL Query Evaluation 3

1.2 Research Questions . 3
1.3 Thesis Overview . 4

1.3.1 Contributions . 4
1.3.2 List of Publications . 7

1.4 Thesis Outline . 9

2 Preliminaries 11
2.1 Semantic Technologies . 11

2.1.1 RDF Data . 12
2.1.2 SPARQL . 16

2.2 Hadoop Ecosystem . 17
2.2.1 Apache Hadoop and MapReduce . 18
2.2.2 Apache Spark . 19

3 Related Work 23
3.1 RDF Dataset Statistics Systems . 23
3.2 RDF Quality Assessment Frameworks . 25
3.3 SPARQL Query Evaluators . 27

4 Large-Scale RDF Dataset Statistics 31
4.1 A Scalable Distributed Approach for Computation of RDF Dataset Statistics 32

4.1.1 Main Dataset Data Structure . 33
4.1.2 Distributed LODStats Architecture . 34
4.1.3 Algorithm . 34
4.1.4 Complexity Analysis . 35
4.1.5 Implementation . 38
4.1.6 Evaluation . 39

4.2 STATisfy: A REST Interface for DistLODStats . 45
4.2.1 System Design Overview . 46

4.3 Summary . 47

vii

5 Quality Assessment of RDF Datasets at Scale 49
5.1 A Scalable Framework for Quality Assessment of RDF Datasets 50

5.1.1 Quality Assessment Pattern . 50
5.1.2 System Overview . 52
5.1.3 Implementation . 53

5.2 Evaluation . 55
5.2.1 Experimental Setup . 55
5.2.2 Results . 56

5.3 Summary . 61

6 Scalable RDF Querying 63
6.1 Sparklify: A Scalable Software for SPARQL Evaluation of Large RDF Data 64

6.1.1 System Architecture Overview . 65
6.1.2 Evaluation . 66

6.2 A Scalable Semantic-Based Distributed Approach for SPARQL Query Evaluation . . 71
6.2.1 System Architecture Overview . 71
6.2.2 Distributed Algorithm Description . 73
6.2.3 Evaluation . 75

6.3 Summary . 80

7 Implementation and Use Cases 83
7.1 The SANSA framework . 84

7.1.1 Architecture Overview . 84
7.1.2 SANSA-Notebooks: Developer friendly access to SANSA 86

7.2 Leveraging Blockchain RDF Data Using the SANSA Framework 88
7.2.1 The Hubs and Authorities Transaction Network Analysis 89
7.2.2 Profiting From Kitties on Ethereum . 92

7.3 Mining Big Data Applications Logs Using the SANSA Framework 93
7.4 Scalable Integration of Big POI Data Using the SANSA Framework 95

7.4.1 Proposed Solution: Architecture Overview 96
7.5 Summary . 98

8 Conclusion and Future Directions 99
8.1 Review of the Contributions . 99
8.2 Limitations and Future Directions . 102
8.3 Closing Remarks . 104

Bibliography 105

A SANSA Framework Release History 115

B SPARQL Benchmark Queries 117
B.1 LUBM SPARQL Queries . 117
B.2 WatDiv SPARQL Queries . 119

C List of Publications 123

viii

List of Figures 127

List of Tables 131

ix

CHAPTER 1

Introduction

One of the key features of Big Data is its complexity. We can define complexity in different ways. It
could be that data is coming from different sources, it could be the same data source representing
different aspects of a resource, it could be different data sources representing the same property;
this difference in representation, structure, or association makes it difficult to introduce common
methodologies or algorithms to learn and predict from different types of data. The state of the art to
handle this ambiguity and complexity of data is its representation or modeling using Semantic Web
Technologies.

Semantic Web Technologies follows a set of standards for the integration of data and information in
addition to searching and querying it. To create such data, the information represented in unstructured
form or referring to other structured or semi-structured representation is mapped to the Resource
Description Framework (RDF) data model. RDF has a very flexible data model comprised of triples
(subject, predicate, object), that can be interpreted as a labelled directed graph (s, p, o) with s and
o being arbitrary resources (vertices) and p being the property (edge from s to o) among these two
resources. Thus, a set of RDF triples forms an inter-linkable graph whose flexibility allows to represent
a large variety of highly to loosely structured datasets.
RDF, which was standardized by World Wide Web Consortium (W3C), is increasingly being

adapted to model data in a variety of scenarios, partly due to the popularity of projects like linked
open data and schema.org. This linked or semantically annotated data has grown steadily towards a
massive scale1.

Nevertheless, most existing solutions are limited to standalone environments only. In order to deal
with the massive data being produced at scale, the existing big data frameworks like Apache Spark2

and Apache Flink3 offer fault-tolerant, high available and scalable approaches to process this data
efficiently. These frameworks have matured over recent years and offer a proven and reliable method
for processing of large scale unstructured data.

In the past few years, MapReduce based, and related frameworks for Big Data processing have been
explored for distributed processing of RDF data as well. Some examples include the Spark-based
S2RDF [1] which rewrites SPARQL Protocol And RDF Query Language (SPARQL) queries to
SQL by using prior research by the RDB2RDF community and augments this approach by using

1
http://lodstats.aksw.org/

2
http://spark.apache.org/

3
https://flink.apache.org/

1

http://lodstats.aksw.org/
http://spark.apache.org/
https://flink.apache.org/

Chapter 1 Introduction

precomputed semi-join tables. Approaches like SparkRDF [2], H2RDF [3] and H2RDF+ [4] use triple
dataset statistics to find best merge-join orders for efficient querying. But, they are rather focused on
one key element of the semantic stack, i.e. querying. Therefore, there is a need for a comprehensive
framework that offers capabilities of exploring, validating and querying a large amount of RDF data
at scale. The main motivations behind using distributed computing are being able to handle data
that does not fit on a single machine and achieve a speed-up and scalability. Systems like Apache
Spark employ the Bulk Synchronous Parallel (BSP) synchronization approach, i.e. each parallel
iteration/task has to wait for a synchronization step - all sub-tasksmust finish. This ensures correctness
and fault tolerance. However many applications, i.e. ranking resources (as PageRank is for web pages)
are usually iteratively convergent in nature and this synchronization barrier at the end of each iteration
overshadows the speed-up gained by distributed computation. In this thesis, we aim to exploit the
existing communication, synchronization and distribution techniques to optimize the performance of
Distributed Processing of RDF Datasets when dealing with large amounts of data.

1.1 Problem Definition and Challenges

Processing large-scale RDF datasets is considered as one of the most challenging tasks in the Semantic
Web [5]. The increase of the RDF data in a rapid manner brings multiple challenges when exploring
and getting more insight from the data. More specifically, we face (i) a knowledge exploration problem,
i.e. knowing the internal characteristics of the dataset. (ii) a data quality problem, i.e. which dataset is
considered fit for use. (iii) a processing challenge, i.e. can we retrieve and manage RDF data when the
size of the dataset increases.
In the following sections, we define the challenges that need to be addressed while designing a

scalable and efficient processing framework for RDF datasets.

1.1.1 Challenge 1: Scalable Computation of RDF Dataset Statistics

The first challenge to overcome when dealing with large-scale RDF datasets is to have a priori statistical
information about its internal structure and coverage. A significant fraction of RDF data available
online4 today are stored as Linked Open Data (LOD). Large RDF datasets, i.e. DBpeida [6] are often
collaborative and contain data that has been extracted semi-automatically or has been ingested from
different sources. Hence, such large-scale RDF datasets do not have an apriori view of the data or a
strict unified view for structuring the instances. As a result, these processes derive noisily and, in
a wrong case incomplete data [7]. In particular, for many applications such as data integration [8],
semantic search [9], interlinking [10], or RDF data partitioning do not take full advantage of the data
without knowing the internal structure of the data. In fact, there are already a number of tools, which
offer such statistics, providing basic information about RDF vocabularies [11] and datasets [12, 13].
However, those efforts showed severe deficiencies in terms of performance when the dataset size goes
beyond the main memory size of a single machine. Therefore, to produce type information about
large-scale RDF datasets, we need a scalable computation of RDF dataset statistics that is able to deal
with massive RDF datasets.

4
https://lod-cloud.net/

2

https://lod-cloud.net/

1.2 Research Questions

1.1.2 Challenge 2: Quality Assessment of RDF Dataset at Scale

Apart from knowing the internals of a given dataset, deciding how quality and what information is
considered "fit for use" is a challenge when the size of a dataset goes beyond the capacity of a single
machine. Assessing the quality of RDF datasets is a crucial step to enhance the quality of the data
being processed and published. The process of assessing the quality of the data should be efficient and
made available in order to facilitate the difference when it comes to finding the right information that
is fit for use. Some efforts have been made to provide a mechanism to assess the quality of the RDF
datasets [14–17]. However, these methods can either be used on a small portion of large datasets [15]
or narrow down to specific problems e.g., syntactic accuracy of literal values [16], or accessibility of
resources [18]. Existing efforts show severe deficiencies in terms of performance when data grows
beyond the capabilities of a single machine. This limits the applicability of existing solutions to
medium-sized datasets only, in turn, paralyzing the role of applications in embracing the increasing
volumes of the available datasets.

1.1.3 Challenge 3: Efficient and Scalable SPARQL Query Evaluation

More and more structured data is generated by an increasing number of organizations that are using
RDF as a model for data representation. Therefore, analytics over such large-scale RDF datasets
lead us to a completely new level of computational complexity. As a consequence, it becomes
difficult to process such datasets using conventional approaches. Many standalone SPARQL query
evaluators have been introduced in the past, nevertheless, as the volume of RDF data increases, these
single-machine solutions encounter performance bottlenecks in terms of data processing, loading,
and querying. For that reason, there is a need for a scalable and efficient framework that can handle
large-scale RDF datasets. With that in mind, several approaches for distributed RDF data processing
have been proposed, e.g [1, 19]. We want to investigate and study implementations of current SPARQL
query evaluators through system-level characterizations and consequently propose our distributed
approaches for RDF data processing.

1.2 Research Questions

As stated in the motivation section above and identified challenges, we define the main research
question:

Is it possible to process large-scale RDF datasets efficiently and effectively?

This research question then breaks down into three specific research questions.
Each challenge is mapped to specific research questions and altogether contribute to the overall

research problem definition tackled throughout this thesis.

RQ1: How can we efficiently explore the structure of large-scale RDF datasets?

To address this question, we evaluate existing solutions that deal with statistical information of RDF
datasets. In particular, we investigate the definitions proposed on [20] and consider these 32 statistical
criteria as a base for our system. As our main goal is to offer a scalable and efficient approach for the

3

Chapter 1 Introduction

statistical computation of large RDF datasets, as an underlying engine, we consider one of the most
prominent distributed frameworks, Apache Spark. Finally, we study the use of novel distributed data
structure representations – known as Resilient Distributed Dataset (RDD) [21]. Within the scope of
the thesis, we introduce a novel scalable approach for RDF dataset statistics computation. The results
of the research question RQ1 allow us to address the defined challenge (cf. Section 1.1.1).

RQ2: Can we scale RDF dataset quality assessment horizontally?

In order to answer this question, we investigate state-of-the-art quality assessment approaches with
their metric definitions which can be used as a building block for quality measurements of RDF
datasets. With the focus on the scalability, we derive quality metrics defined in [7] and propose a
scalable and efficient quality assessment framework that compute different quality metrics for large
RDF datasets. Results obtained during the research question RQ2 allow us to address the defined
challenge (cf. Section 1.1.2).

RQ3: Can distributed RDF datasets be queried efficiently and effectively?

With the objective of answering this research question, we investigate different data storage
representation and SPARQL query evaluation and propose two different approaches for scalable and
efficient RDF data processing. First, we introduce Sparklify: a scalable software component for
efficient evaluation of SPARQL queries over distributed RDF datasets. It uses SPARQL-to-SQL
rewriter techniques for translating SPARQL queries into Spark executable code. The second approach
we investigated and developed with the scope of this thesis is a scalable approach to evaluate SPARQL
queries over distributed RDF datasets using a semantic-based partitioning. It groups the facts based
on the subject and its associated triples. Results obtained during the research question RQ3 allow us
to address the defined challenge (cf. Section 1.1.3).

1.3 Thesis Overview

This section gives an overview of our main contributions conducted during this thesis and the research
areas investigated. References to scientific publications covering this study and an overview of the
thesis outline are also covered.

1.3.1 Contributions

Our contributions cover a spectrum of research areas in the scope of distributed RDF processing from
the Scalable RDF Datasets, RDF Quality Assessment at Scale, and Scalable and Efficient SPARQL
evaluators, as depicted in Figure 1.1.

1. A Scalable Distributed Approach for Computation of RDF Dataset Statistics.
For a better view and type of information when dealing with large-scale RDF dataset we
introduce DistLODStats, a software component for statistical calculations of large RDF datasets,
which scales out to clusters of machines. More specifically, we describe the first distributed
in-memory approach for computing 32 different statistical criteria for RDF datasets using
Apache Spark. The preliminary results show that our distributed approach improves upon a

4

1.3 Thesis Overview

SANSA Framework

Real use cases exploiting large-scale RDF datasets
Contrib. 4 (Ch. 7)

CryptoKitties analysis Mining BDE logs Big POI analysis ...Hub & Authorities

Scalable RDF Dataset
Statistics

Contrib. 1 (Ch. 4)
DistLODStats

STATisfy

Quality Assessment of
RDF Dataset at Scale

Contrib. 2 (Ch. 5)

DistQualityAssessment

Efficient and Scalable
SPARQL query evaluation

Contrib. 3 (Ch. 6)
Sparklify

Semantic-based

direct
indirect

Figure 1.1: Thesis Contributions. Four are the main contributions of this thesis: (1) a scalable distributed
approach for evaluation of RDF dataset statistics; (2) a scalable framework for quality assessment of RDF
datasets; (3) a scalable framework for SPARQL evaluation of large RDF data; (4) a comprehensive, open-source
RDF processing and analytics stack for distributed in-memory computing with the real use cases where the
thesis results are applicable.

previous centralized approach we compare against and provides approximately linear horizontal
scale-up. The criteria are extensible beyond the 32 default criteria, is integrated into the larger
SANSA framework and employed in at least four major usage scenarios beyond the SANSA
community. More details on this contribution are provided in Chapter 4, and publications [22,
23], which answer RQ1.

2. A Scalable Framework for Quality Assessment of RDF Datasets.

Quality of the data is one of the key components when designing and performing RDF processing
tasks. However, when dealing with large amounts of RDF data, it becomes a challenge processing
and exploring such quantitative and qualitative information. There exist a few approaches for
the quality assessment of RDF datasets, but their performance degrades with the increase in
data size and quickly grows beyond the capabilities of a single machine. To address this, we
present DistQualityAssessment – an open-source implementation of quality assessment of large
RDF datasets that can scale out to a cluster of machines. This is the first distributed, in-memory
approach for computing different quality metrics for large RDF datasets using Apache Spark. We
also provide a quality assessment pattern that can be used to generate new scalable metrics that
can be applied to big data. The work presented here is integrated with the SANSA framework
and has been applied to at least three use cases beyond the SANSA community. The results show
that our approach is more generic, efficient, and scalable as compared to previously proposed
approaches. See Chapter 5 for more information about this contribution, and publication [24].
The DistQualityAssessment approach contributes to answering the research question RQ2.

5

Chapter 1 Introduction

3. A Scalable Framework for SPARQL Evaluation of Large RDF Data.

Over the last two decades, the amount of data that has been created, published and managed
using Semantic Web standards and especially via RDF has been increasing. As a result,
the efficient processing of such big RDF datasets has become challenging. Indeed, these
processes require, both efficient storage strategies and query-processing engines, to be able
to scale in terms of data size. In order to overcome this, we propose two different techniques
that scale up to the cluster of machines. First, Sparklify: a scalable software component for
efficient evaluation of SPARQL queries over distributed RDF datasets. It uses Sparqlify5 as a
SPARQL-to-SQL rewriter for translating SPARQL queries into Spark executable code. Our
preliminary results demonstrate that Sparklify is more extensible, efficient, and scalable as
compared to state-of-the-art approaches. Sparklify is integrated into a larger SANSA framework
and it serves as a default query engine and has been used by at least three external use scenarios.
The second approach we investigated and developed with the scope of this thesis is a scalable
approach to evaluate SPARQL queries over distributed RDF datasets using a semantic-based
partition and is implemented inside the state-of-the-art RDF processing framework: SANSA.
An evaluation of the performance of a semantic-based approach in processing large-scale RDF
datasets is also presented. The preliminary results of the conducted experiments show that it
can scale horizontally and perform well as compared with the previous Hadoop-based system.
It is also comparable with the in-memory SPARQL query evaluators when there is less shuffling
involved. The Sparklify and semantic-based approaches contribute to answering the research
question RQ3. A more detailed information on these contributions is given in Chapter 6, and
publications [25–27].

4. A comprehensive, open-source RDF processing and analytics stack for distributed in-memory
computing.

We collaborated with many different stockholders and research projects during the development
of this thesis in order to solve the real-world scalable knowledge analysis and RDF processing
use cases. First, we mention here, Hub & Authorities and CryptoKitties analysis use cases.
Alethio6, is an advanced analytics platform making Ethereum more accessible and digestible for
everyone. Their extensive data set contains large-scale blockchain transaction data modelled
in RDF (currently encompassing more than 20B triples7) according to the structure of the
Ethereum ontology [28]. As the blockchain is evolving, many users want to know more about
the important players of the chain. With Hub & Authorities’ use case, we investigate and analyze
the Ethereum blockchain network in order to identify the major entities across the transaction
network. By leveraging the rich data available through Alethio’s platform in the form of RDF
triples we learn about the Hubs and Authorities of the Ethereum transaction network. Alethio
uses our approach for efficient reading and processing of such large-scale RDF data (transactions
on Ethereum blockchain) in order to perform analytics e.g. finding top accounts, or typical
behavior patterns of exchanges’ deposit wallets and more. In another use case where Alethio
is involved is the CryptoKitties analysis use case. CryptoKitties8 is one of the first games to

5
https://github.com/SmartDataAnalytics/Sparqlify

6
https://aleth.io/

7
https://linkeddata.aleth.io/

8
https://www.cryptokitties.co/

6

https://github.com/SmartDataAnalytics/Sparqlify
https://aleth.io/
https://linkeddata.aleth.io/
https://www.cryptokitties.co/

1.3 Thesis Overview

be built on blockchain technology. Our solution empowers Alethio to read and query the data
at scale for further analysis: game performance and customer behaviors. Within our solution,
Alethio is able to get more insight from the CryptoKitties analyses, i.e the number of active
users and the amount of spent Ether or correlation between indicators (e.g. to determine whether
richer owners have the tendency to collect special/rare kitties which are more expensive). The
second use case we were involved in was about mining BigDataEurope project logs. Big Data
Europe (BDE)9 [29] is an open-source big data processing platform allowing users to deploy
Big Data processing tools and frameworks. Those tools and frameworks usually generate large
amounts of log data. DistLODStats is used for computing statistics over those logs within
the BDE platform. BDE uses the Mu Swarm Logger service10 for detecting docker events
and convert their representation to RDF. In order to generate visualisations of log statistics,
BDE then calls DistLODStats from SANSA-Notebooks [30]. Finally, Big Points Of Interests
(POI) analysis use case is developed. Among the various domains using large RDF graphs,
applications often rely on geographical information which is often represented via POIs. In
particular, one challenge is to extract patterns from POI sets to discover Areas of Interest
(AOI)s. To tackle this challenge, a typical method is to aggregate various points according to
specific distances (e.g. geographical) via clustering algorithms. In this study, we present a
flexible architecture to design pipelines able to aggregate POIs from contextual to geographical
dimensions in a single run. This solution allows any kind of clustering algorithm combinations
to compute AOIs and is built on top of a Semantic Web stack which allows multiple-source
querying and filtering through SPARQL. The architecture is embedded inside a state-of-the-art
Semantic Web stack, SANSA, and then benefits from the advantages of it. The best practices,
guidelines, easy to deploy and use in a lightweight allows us to quickly adapt the SANSA
framework from the semantic web community and other fields of data science. Some of the use
cases are described in Chapter 7, and publications [29–34].

1.3.2 List of Publications

In this thesis, part of the work is based on the following publications [22–27, 29–35]:

• Conference Papers (peer reviewed)
1. Gezim Sejdiu; Anisa Rula; Jens Lehmann; and Hajira Jabeen, “A Scalable Framework for

Quality Assessment of RDF Datasets,” in Proceedings of 18th International Semantic Web
Conference (ISWC), 2019. URL: http://jens-lehmann.org/files/2019/iswc_
dist_quality_assessment.pdf

2. Claus Stadler; Gezim Sejdiu; Damien Graux; and Jens Lehmann, “Sparklify: A Scalable
Software Component for Efficient evaluation of SPARQL queries over distributed RDF
datasets,” in Proceedings of 18th International Semantic Web Conference (ISWC), 2019.
URL: http://jens-lehmann.org/files/2019/iswc_sparklify.pdf This article
is a joint work with Claus Stadler, a PhD student at the University of Leipzig. In this article,
I devised the implementation of the conceptual architecture, helped on the implementation
of the proposed approach, reviewed related work, and prepared of the experiments and
analysis of the obtained results.

9
https://github.com/big-data-europe

10
https://github.com/big-data-europe/mu-swarm-logger-service

7

http://jens-lehmann.org/files/2019/iswc_dist_quality_assessment.pdf
http://jens-lehmann.org/files/2019/iswc_dist_quality_assessment.pdf
http://jens-lehmann.org/files/2019/iswc_dist_quality_assessment.pdf
http://jens-lehmann.org/files/2019/iswc_dist_quality_assessment.pdf
http://jens-lehmann.org/files/2019/iswc_sparklify.pdf
http://jens-lehmann.org/files/2019/iswc_sparklify.pdf
http://jens-lehmann.org/files/2019/iswc_sparklify.pdf
http://jens-lehmann.org/files/2019/iswc_sparklify.pdf
https://github.com/big-data-europe
https://github.com/big-data-europe/mu-swarm-logger-service

Chapter 1 Introduction

3. Gezim Sejdiu; Damien Graux; Imran Khan; Ioanna Lytra; Hajira Jabeen; and Jens
Lehmann, “Towards A Scalable Semantic-based Distributed Approach for SPARQL query
evaluation,” 15th International Conference on Semantic Systems (SEMANTiCS), Research
& Innovation , 2019. URL:https://gezimsejdiu.github.io/publications/semantic_
based_query_paper_SEMANTICS2019.pdf

4. GezimSejdiu; Ivan Ermilov; Jens Lehmann; andMohamedNadjib-Mami, “DistLODStats:
Distributed Computation of RDF Dataset Statistics,” in Proceedings of 17th International
Semantic Web Conference (ISWC), 2018. URL: http://jens-lehmann.org/files/
2018/iswc_distlodstats.pdf

5. Jens Lehmann; Gezim Sejdiu; Lorenz Bühmann; Patrick Westphal; Claus Stadler;
Ivan Ermilov; Simon Bin; Nilesh Chakraborty; Muhammad Saleem; Axel-Cyrille
Ngomo Ngonga; and Hajira Jabeen, “Distributed Semantic Analytics using the SANSA
Stack,”; in Proceedings of 16th International Semantic Web Conference - Resources
Track (ISWC’2017), 2017. URL: http://svn.aksw.org/papers/2017/ISWC_SANSA_
SoftwareFramework/public.pdf

6. Ivan Ermilov; Axel-Cyrille Ngonga Ngomo; Aad Versteden; Hajira Jabeen; Gezim
Sejdiu; Giorgos Argyriou; Luigi Selmi; Jürgen Jakobitsch; and Jens Lehmann, “Managing
Lifecycle of Big Data Applications,”; in KESW, 2017. URL: https://svn.aksw.org/
papers/2017/KESW_BDE_Workflow/public.pdf This article is a joint work with Ivan
Ermilov, a PhD student at the University of Leipzig. In this article, I helped with the
implementation of the proposed approach and SC4 (Transport) use case, reviewed related
work, and preparation of the experiments and analysis of the obtained results.

7. Sören Auer; Simon Scerri; Aad Versteden; Erika Pauwels; Angelos Charalambidis;
Stasinos Konstantopoulos; Jens Lehmann; Hajira Jabeen; Ivan Ermilov; Gezim Sejdiu;
Andreas Ikonomopoulos; Spyros Andronopoulos; Mandy Vlachogiannis; Charalambos
Pappas; Athanasios Davettas; Iraklis A. Klampanos; Efstathios Grigoropoulos; Vangelis
Karkaletsis; Victor Boer; Ronald Siebes; Mohamed Nadjib Mami; Sergio Albani; Michele
Lazzarini; Paulo Nunes; Emanuele Angiuli; Nikiforos Pittaras; George Giannakopoulos;
Giorgos Argyriou; George Stamoulis; George Papadakis; Manolis Koubarakis; Pythagoras
Karampiperis; Axel-CyrilleNgongaNgomo; andMaria-EstherVidal, “TheBigDataEurope
Platform–Supporting theVarietyDimension ofBigData,” in 17th International Conference
on Web Engineering (ICWE2017), 2017. URL: http://jens-lehmann.org/files/
2017/icwe_bde.pdf This article is a joint work with the BDE consortium. In this article,
I contributed within the semantic layer, more specifically; bringing the Big Data Analytics
for RDF into the BDE platform and co-contributing into dockerizing BDE components.

• Demo & Poster Papers (peer reviewed)

8. Claus Stadler; Gezim Sejdiu; Damien Graux; and Jens Lehmann. "Querying large-scale
RDF datasets using the SANSA framework". In Proceedings of 18th International Semantic
Web Conference (ISWC), Poster & Demos, 2019. URL: https://gezimsejdiu.github.
io/publications/sansa-sparklify-ISWC-demo.pdf This demonstration article is
a joint work with Claus Stadler, a PhD student at the University of Leipzig. In this article,
I helped in describing the architecture and implementation of the running example.

8

https://gezimsejdiu.github.io/publications/semantic_based_query_paper_SEMANTICS2019.pdf
https://gezimsejdiu.github.io/publications/semantic_based_query_paper_SEMANTICS2019.pdf
https://gezimsejdiu.github.io/publications/semantic_based_query_paper_SEMANTICS2019.pdf
https://gezimsejdiu.github.io/publications/semantic_based_query_paper_SEMANTICS2019.pdf
http://jens-lehmann.org/files/2018/iswc_distlodstats.pdf
http://jens-lehmann.org/files/2018/iswc_distlodstats.pdf
http://jens-lehmann.org/files/2018/iswc_distlodstats.pdf
http://jens-lehmann.org/files/2018/iswc_distlodstats.pdf
http://svn.aksw.org/papers/2017/ISWC_SANSA_SoftwareFramework/public.pdf
http://svn.aksw.org/papers/2017/ISWC_SANSA_SoftwareFramework/public.pdf
http://svn.aksw.org/papers/2017/ISWC_SANSA_SoftwareFramework/public.pdf
http://svn.aksw.org/papers/2017/ISWC_SANSA_SoftwareFramework/public.pdf
https://svn.aksw.org/papers/2017/KESW_BDE_Workflow/public.pdf
https://svn.aksw.org/papers/2017/KESW_BDE_Workflow/public.pdf
https://svn.aksw.org/papers/2017/KESW_BDE_Workflow/public.pdf
https://svn.aksw.org/papers/2017/KESW_BDE_Workflow/public.pdf
http://jens-lehmann.org/files/2017/icwe_bde.pdf
http://jens-lehmann.org/files/2017/icwe_bde.pdf
http://jens-lehmann.org/files/2017/icwe_bde.pdf
http://jens-lehmann.org/files/2017/icwe_bde.pdf
https://gezimsejdiu.github.io/publications/sansa-sparklify-ISWC-demo.pdf
https://gezimsejdiu.github.io/publications/sansa-sparklify-ISWC-demo.pdf
https://gezimsejdiu.github.io/publications/sansa-sparklify-ISWC-demo.pdf
https://gezimsejdiu.github.io/publications/sansa-sparklify-ISWC-demo.pdf

1.4 Thesis Outline

9. Danning Sui; Gezim Sejdiu; Damien Graux; and Jens Lehmann. "The Hubs and
Authorities Transaction NetworkAnalysis using the SANSA framework". In 15th In-
ternational Conference on Semantic Systems (SEMANTiCS), Poster & Demos, 2019.
URL: http://tiny.cc/4ukxcz

10. Rajjat Dadwal; Damien Graux; Gezim Sejdiu; Hajira Jabeen; and Jens Lehmann.
"Clustering Pipelines of large RDF POI Data" in Proceedings of 16th Extended Semantic
WebConference (ESWC), Poster&Demos, 2019. URL:https://gezimsejdiu.github.
io/publications/piping-clustering-eswc19-poster.pdf

11. Gezim Sejdiu; Ivan Ermilov; Jens Lehmann; and Mohamed-Nadjib Mami, “STATisfy
Me: What are my Stats?,” in Proceedings of 17th International Semantic Web Conference
(ISWC), Poster & Demos, 2018. URL: http://jens-lehmann.org/files/2018/
iswc_statisfy_pd.pdf

12. Damien Graux; Gezim Sejdiu; Hajira Jabeen; Jens Lehmann; Danning Sui; Dominik
Muhs; and Johannes Pfeffer, “Profiting from Kitties on Ethereum: Leveraging Blockchain
RDF with SANSA,” in 14th International Conference on Semantic Systems, Poster & De-
mos, 2018. URL: http://jens-lehmann.org/files/2018/semantics_ethereum_
pd.pdf

13. Ivan Ermilov; Jens Lehmann; Gezim Sejdiu; Lorenz Bühmann; Patrick Westphal; Claus
Stadler; Simon Bin; Nilesh Chakraborty; Henning Petzka; Muhammad Saleem; Axel-
Cyrille Ngomo Ngonga; and Hajira Jabeen, “The Tale of Sansa Spark,” in Proceedings
of 16th International Semantic Web Conference, Poster & Demos, 2017 (Best Demo
Award). URL: http://jens-lehmann.org/files/2017/iswc_pd_sansa.pdf This
demonstration article is joint work with Ivan Ermilov, a PhD student at the University of
Leipzig. In this article, I helped in describing the architecture, implementation of the
examples and demonstration of the prototype.

Appendix C contains the complete list of publications finished during the PhD studies.

1.4 Thesis Outline

The thesis consists of eight chapters. Chapter 1 introduces the thesis starting with the main research
problem and challenges, motivation, research questions, scientific contributions addressing research
questions, and a list of published scientific papers describing these contributions. Chapter 2 presents
basic concepts and background about Semantic Web technologies and the Hadoop Ecosystem for
a comprehensive overview of the research problem. Chapter 3 describes state-of-the-art efforts in
the field of processing RDF datasets w.r.t research problem. We provide an overview of existing
RDF dataset statistics systems, quality assessment systems, and SPARQL query evaluators in order to
provide a thorough knowledge of their limitations, and the identified gaps we cover in this thesis. In
Chapter 4 we introduce a scalable approach for the statistical calculation of large RDF datasets, which
scales out to a cluster of machines. More specifically, we describe the first distributed in-memory
approach for computing 32 different statistical criteria for RDF dataset using the Apache Spark
framework. Chapter 5 introduces a scalable approach for quality assessment of RDF datasets. The
presented approach offers generic features to solve common data quality checks. As a consequence,

9

https://gezimsejdiu.github.io/publications/sansa-hubs-and-authorities-transaction-semantics19-poster.pdf
https://gezimsejdiu.github.io/publications/sansa-hubs-and-authorities-transaction-semantics19-poster.pdf
http://tiny.cc/4ukxcz
https://gezimsejdiu.github.io/publications/piping-clustering-eswc19-poster.pdf
https://gezimsejdiu.github.io/publications/piping-clustering-eswc19-poster.pdf
https://gezimsejdiu.github.io/publications/piping-clustering-eswc19-poster.pdf
http://jens-lehmann.org/files/2018/iswc_statisfy_pd.pdf
http://jens-lehmann.org/files/2018/iswc_statisfy_pd.pdf
http://jens-lehmann.org/files/2018/iswc_statisfy_pd.pdf
http://jens-lehmann.org/files/2018/iswc_statisfy_pd.pdf
http://jens-lehmann.org/files/2018/semantics_ethereum_pd.pdf
http://jens-lehmann.org/files/2018/semantics_ethereum_pd.pdf
http://jens-lehmann.org/files/2018/semantics_ethereum_pd.pdf
http://jens-lehmann.org/files/2018/semantics_ethereum_pd.pdf
http://jens-lehmann.org/files/2017/iswc_pd_sansa.pdf
http://jens-lehmann.org/files/2017/iswc_pd_sansa.pdf

Chapter 1 Introduction

this can enable further applications to build trusted data utilities. We have demonstrated empirically
that our approach improves upon the previous centralized approach that we have compared against.
We also provide a quality assessment pattern that can be used to generate new scalable metrics that can
be applied to big data. Chapter 6 proposes two storage strategies and query engine implementations
for efficient and scalable querying and processing RDF datasets. First, Sparklify: a scalable software
component for efficient evaluation of SPARQL queries over distributed RDF datasets. It uses a
SPARQL-to-SQL rewriter technique for translating SPARQL queries into Spark executable code. The
second approach we investigated and developed with the scope of this thesis is a scalable approach to
evaluate SPARQL queries over distributed RDF datasets using a semantic-based partition. Moreover,
in this chapter, we present the evaluations of our implementations as compared with state of the art
SPARQL query evaluators. Chapter 7 presents real world use-cases powered by our solutions. More
specifically, we show the usage of SANSA in general and the solutions proposed during this work ,
and, consequently, validate the solutions proposed for the problems RQ1, RQ2, and RQ3. Chapter 8
conclude the thesis with an overall overview of the contributions made during this research work and
a discussion on the future work based on the limitations of the actual solutions.

10

CHAPTER 2

Preliminaries

This chapter covers the foundation technologies used throughout the thesis. First, Section 2.1 gives an
overview of Semantic Technologies, i.e RDF model as a standard model for representing the data and
its accompanying query language SPARQL. It also covers different RDF serialization formats. Later,
Section 2.2 gives an introduction to Hadoop, its core technologies Hadoop Distributed File-System
(HDFS), MapReduce and Apache Spark with its libraries that have been used in the course of this
thesis.

2.1 Semantic Technologies

Originally web was considered to be a hub for sharing web pages or documents that could be understood
by humans. In addition, interlinking with other web pages or records could also be generated anywhere
on the web. Most of this data was intended solely for human consumption. Machines could process
and show such information but did not understand it.
Semantic Web [36], introduced by Tim Berners-Lee is an attempt to describe and link the web

content into more meaningful to the machines. The main idea is to extend the existing web considered
as "Web of Documents" towards "Web of Things" a.k.a Semantic Web where things are connected
and able to be exchanged with each other in an understandable way. Semantic Web tries to give
meaning to the data and thus turn the current web of documents into a more global and decentralized
knowledge which is understandable and suitable for machines besides exclusively designed for human
consummation. Therefore, Semantic Web can be seen as an extension of the classical World Wide
Web (WWW). The Semantic Web vision is to build community-driven technologies and tools (known
as standards) which allows data to be shared and reused. As a consequence, the W3C consortium was
built and is mainly in charge of leading such standards.

Figure 2.1 depict various layers of Semantic Web related technologies. Here we focus only on Data
interchange: RDF and Query: SPARQL layers, which are relevant to the work presented in this thesis
and are therefore discussed in this chapter.
Semantic Web’s core technology is the so-called Resource Description Framework (RDF) which

serves as the main data representation. It represents information about resources. A resource is
identified with a globally unique identifier (Unique Resource Identifiers (URI)s). The RDF data model
can be interpreted as a directed labeled graph where resources identified by URI are nodes in the
graph and edges represent the relationships between resources labeled with the type of relationship

11

Chapter 2 Preliminaries

Figure 2.1: Semantic Web Stack2. The Semantic Web Stack, also known as Semantic Web Cake or Semantic
Web Layer Cake, illustrates the architecture of the Semantic Web, according to W3C.

known as predicates, also identified by URIs.
SPARQL is the W3C standard for querying RDF data. It uses a graph pattern mechanism to be

matched against an RDF graph and its syntax is similar to SQL.
More details about RDF (cf. Section 2.1.1) and SPARQL (cf. Section 2.1.2) is given in the following

sections.

2.1.1 RDF Data

The Resource Description Framework (RDF) [37] is a W3C standard for describing resources. A
resource is a fact or a thing that can be described and identified. A person, a home page, this thesis is
a resource. An RDF resource is identified by a URI reference, while literals are used to represent a
respective data values. Literals consist of either a string and its language tag or value and its data type.

An RDF graph is a set of RDF triples (s, p, o) where s is called the subject, p is the predicate and o
is the object, each of which can be an URI, subjects and objects can alternatively be blank nodes and
objects can also represent literal data values. It can be also seen as a directed graph containing of
vertices and edges. A vertex represents subjects and objects and an edge represents predicates.
2 https://www.w3.org/2007/03/layerCake.png

12

https://www.w3.org/2007/03/layerCake.png

2.1 Semantic Technologies

http://sda.tech/Person/GezimSejdiu

“Gezim Sejdiu”@en

http://xmlns.com/foaf/0.1/name

http://sda.tech/Project/SANSAStack

http://xmlns.com/foaf/0.1/currentProject

http://sansa-stack.net/

http://xmlns.com/foaf/0.1/Person

"Semantic Analytics Stack (SANSA)"@en

http://www.w3.org/2000/01/rdf-schema#labelhttp://xmlns.com/foaf/0.1/homepage

Resource Label

http://www.w3.org/1999/02/22-rdf-syntax-ns#typehttp://xmlns.com/foaf/0.1/homepage

https://gezimsejdiu.github.io/

Figure 2.2: Sample RDF Graph representation. Small knowledge base about ’Gezim Sejdiu’ represented as
a graph.

Figure 2.2 represent an RDF graph sample about "Gezim Sejdiu" as a resource. One of the RDF
statements (triples) from the Figure 2.2 is:

<http://sda.tech/Person/GezimSejdiu> <http://xmlns.com/foaf/0.1/currentProject>
<http://sda.tech/Project/SANSAStack> .

which simply states "The subject identified by <http://sda.tech/Person/GezimSejdiu> has
a property identified by <http://xmlns.com/foaf/0.1/currentProject> whose value is equal
to <http://sda.tech/Project/SANSAStack>". In a more natural statement representation, it
means that a person "Gezim Sejdiu" has a "current-project" which is "SANSA-Stack".

Below we give some necessary notions about RDF.

Definition 2.1.1 (RDF Term) LetU, be a set of URIs, B set of blank nodes and L set of literals, an
RDF term (T) is a set ofU ∪ B ∪ L.

Definition 2.1.2 (RDF Triple) LetU, be a set of URIs, B set of blank nodes and L set of literals, an
RDF triple is a ternary tuple in the form of (s, p, o) ∈ (U ∪ B) × U × (U ∪ B ∪ L), where the subject
s ∈ (U ∪ B) is a resource, the predicate p ∈ U is a property, and the object o ∈ (U ∪ B ∪L) is either
another resource (U ∪ B) or a literal (L).

Definition 2.1.3 (RDF Graph) An RDF Graph (G = {t1, t2, . . . , tn}) is defined as a finite set of RDF
triples ti.

Definition 2.1.4 (RDF Dataset) An RDF dataset is a collection of RDF graphs

D = {G0, 〈u1,G1〉, . . . , 〈un,Gn〉}

13

Chapter 2 Preliminaries

where u1, . . . , un ∈ U. G0 is considered as a default graph that does not have a name and can be
empty, whereas 〈ui,Gi〉 are called named graphs.

RDF Serialization Formats

As described in Section 2.1.1, RDF is modeled as a graph where the triple notation is used mostly for
such representation. In this section, we will cover some of the most common RDF serialization/syntax
formats. We focus primarily on those used during this work.

N-Triples The N-Triples [38] RDF serialization format is a plain-text, line-based syntax for an
RDF graph. Each triple is written into a single line. As a consequence, each element of the triple
(subject, predicate, and object) is represented without any abbreviation i.e. prefixes. These elements
then are separated with white space (spaces or tabs) and this sequence ends with a dot ’.’ and a new
line (optional at the end of a file).

<http://sda.tech/Person/GezimSejdiu> <http://www.w3.org/1999/02/22-rdf-syntax-
ns#type> <http://xmlns.com/foaf/0.1/Person> .

<http://sda.tech/Person/GezimSejdiu> <http://xmlns.com/foaf/0.1/name> "Gezim
Sejdiu"@en .

<http://sda.tech/Person/GezimSejdiu> <http://xmlns.com/foaf/0.1/homepage> <
https://gezimsejdiu.github.io/> .

<http://sda.tech/Person/GezimSejdiu> <http://xmlns.com/foaf/0.1/currentProject>
<http://sda.tech/Project/SANSAStack> .

<http://sda.tech/Project/SANSAStack> <http://www.w3.org/1999/02/22-rdf-syntax-
ns#type> <http://xmlns.com/foaf/0.1/Project> .

<http://sda.tech/Project/SANSAStack> <http://www.w3.org/2000/01/rdf-schema#
label> "Semantic Analytics Stack (SANSA)"@en .

<http://sda.tech/Project/SANSAStack> <http://xmlns.com/foaf/0.1/homepage> <http
://sansa-stack.net> .

Listing 2.1: N-Triples syntax example. Representation of the example in Figure 2.2 using the N-Triples syntax.

Listing 2.1 is an N-Triples representation of the example depicted in Figure 2.2.
As we see from the N-Triples basic example above, URIs are written between angle brackets i.e. ’<’

and ’>’. Literals are enclosed by double-quotes. Sometimes, literals include language tags using a ’@’
symbol and if typed, with ’^^’. Blank nodes are identified by ’_:’.
Turtle The Turtle [39] syntax is basically a textual syntax for an RDF. It is a more compact and

natural form to write an RDF graph as compared i.e. N-Triples syntax. Turtle can be seen as an
extension of the N-Triples representation, with abbreviations for common usage patterns and datatypes.
Triples written in Turtle are a sequence of subject, predicate and object separated by a white space
(spaces or tabs) this sequence ends with a dot ’.’ like in N-Triples.

With the Turtle syntax, RDF statements can be written in a more compact way as compared to
N-Triples. Often, triples are grouped (1) if several predicates share the common subject, and (2) if the
same tuple (subject, predicate) have multiple object values. The following example depicts an RDF
graph represented in Turtle syntax.

@base <http://sda.tech/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

14

2.1 Semantic Technologies

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix sdaperson: <http://sda.tech/Person/> .
@prefix sdaproject: <http://sda.tech/Project/> .

sdaperson:GezimSejdiu a foaf:Person ;
foaf:name "Gezim Sejdiu"@en ;
foaf:homepage <https://gezimsejdiu.github.io/> ;
foaf:currentProject sdaproject:SANSAStack .

sdaproject:SANSAStack a foaf:Project ;
rdfs:label "Semantic Analytics Stack (SANSA)"@en ;
foaf:homepage <http://sansa-stack.net> .

Listing 2.2: Turtle syntax example. Representation of the example in Figure 2.2 using the Turtle syntax.

Listing 2.2 represent the example depicted in Figure 2.2 in the Turtle syntax. This example
introduces some of the features of the Turtle language: prefixes defined by the ’@’ symbol, predicated
lists separated by ’;’, and literals. The object lists are separated by ’,’ in case they share the same
tuple (subject, predicate).
RDF/XML The RDF/XML [40] is an Extensible Markup Language (XML) representation

of an RDF graph. It is considered a normative syntax and the RDF graph is encoded using
XML terms – element names, attribute names, element contents and attribute values. It exploits a
hierarchical structure for the representation of an RDF graph. An RDF graph using the RDF/XML
representation is considered as a collection of paths (in the hierarchical structure) of the form
node −→ predicate arc −→ node −→ predicate arc −→ node −→ predicate arc, · · · −→ node
which cover the entire graph. These paths then become a sequence of elements within elements that
alternate node elements with arcs predicates.

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:sdaperson="http://sda.tech/Person/"
xmlns:sdaproject="http://sda.tech/Project/">

<rdf:Description rdf:about="http://sda.tech/Person/GezimSejdiu">
<rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
<foaf:name xml:lang="en">Gezim Sejdiu</foaf:name>
<foaf:homepage rdf:resource="https://gezimsejdiu.github.io/"/>
<foaf:currentProject rdf:resource="http://sda.tech/Project/SANSAStack
"/>

</rdf:Description>

<rdf:Description rdf:about="http://sda.tech/Project/SANSAStack">
<rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Project"/>

15

Chapter 2 Preliminaries

<rdfs:label xml:lang="en">Semantic Analytics Stack (SANSA)</rdfs:label>
<foaf:homepage rdf:resource="http://sansa-stack.net"/>

</rdf:Description>

</rdf:RDF>

Listing 2.3: RDF/XML syntax example. Representation of the example in Figure 2.2 using the RDF/XML
syntax.

Listing 2.3 represent an RDF/XML syntax of the example in Figure 2.2. The rdf:RDF node is
considered as a root node of an RDF/XML document. RDF triples are grouped according to their
subject and encoded using the XML elements. The rdf:Description is the node element and is
used to describe subjects and objects of the RDF graph. The rdf:about attribute is used for the
unique identifier of a resource representation, whereas the literal values are encoded using the separate
tags (e.g. rdfs:label, foaf:name). The property elements (predicates) can either be encoded using
the XML attributes or as a separate resources i.e using the rdf:resource element.

2.1.2 SPARQL

An RDF graph is considered being a directed, labeled graph data format that represents information
on the Web. SPARQL [41] is a W3C standard query language for retrieving and manipulating RDF
data. Its core component is the graph pattern mechanism which allows users to write queries in the
form of triple patterns, conjunctions, disjunctions and/or a set of optional patterns (e.g. FILTER)
which are matched against an RDF graph. This is done by replacing the variables in the triple pattern
with elements of the RDF graph such that the resulting graph is contained in the original RDF graph,
known as pattern matching. The results of SPARQL queries are a set of binding or an RDF graph.

In the following, we cover the foundation of SPARQL and its syntax as an analog to the definitions
in [42]. More details can also be found in the W3C specification of SPARQL [41].

Definition 2.1.5 (Triple Pattern) LetV be a set of variables such thatV ∩ T = ∅. A triple pattern
tp is member of the set (T ∪V) × (U ∩V) × (T ∪V).

Definition 2.1.6 (Query Variable) A query variable is a member of the setV whereV is considered
infinite and disjoint from T .

Definition 2.1.7 (Basic Graph Pattern (BGP)) Let tp = {tp1, tp2, tp3, . . . , tpn} be a set of triple
patterns. A Basic Graph Pattern BGP is a conjunction of triple patterns, i.e BGP = tp1 ∧ tp2 ∧

tp3∧, . . . ,∧tpn.

Definition 2.1.8 (Solution Modifiers) A solution modifier is a mapping from a set ofV to a set of T .
More formally, SM = {(v,modi f ier(v))|v ∈ V, where modi f er is one of the project, distinct,
order, limit, and offset modifiers.

Definition 2.1.9 (Result Set) Given Q = (BGP,D, SM, SE LECT V), then a result set QS is a
solution formed by matching dataset D with graph pattern BGP.

Definition 2.1.10 (SPARQL Query) A SPARQL query is a tuple (BGP,D, SM,QS).

16

2.2 Hadoop Ecosystem

Let us consider an example for a better understanding of SPARQL. Assume that we want to know
"What is the project (and its homepage) that Gezim Sejdiu is currently working on?" from our small
knowledge base (as depicted in Figure 2.2). Listing 2.4 depicts a simple SPARQL query to retrieve
information about the project and its homepage of Gezim Sejdiu’s current project.

1 PREFIX sda: <http://sda.tech/>
2 PREFIX sdaperson: <http://sda.tech/Person/>
3 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
4
5 SELECT ?project ?homepage
6 WHERE {
7 sdaperson:GezimSejdiu foaf:currentProject ?project.
8 ?project foaf:homepage ?homepage.
9 }

Listing 2.4: A SPARQL query example. A SPARQL query to retrieve the project name and its homepage
of Gezim Sejdiu’s current project (as depicted in Figure 2.2).

We see that (from Listing 2.4) SPARQL query has a similar SQL-like syntax. Mainly a SPARQL
query contains four parts. First, prefixes as optional headers are given. It helps the reader to make the
rest of the query more readable. Second, the query form is defined. In our case, we use SELECT query
form. Then, the WHERE clause is used which is the main definition of the SPARQL query. It involves a
set of conditions/patterns as a composition of the result set. Finally, optional solution modifiers are set
in order to adjust the selection before retrieving the results.
More specifically, in Listing 2.4, lines 1-3 define prefixes as a shortness version of URIs. The

upcoming statement (line 5) is the SELECT clause which declares the variables that should be retrieved
as an output when executing the query. There are two variables ?project and ?homepage. We see that
variables are defined with a ? symbol. The following statements (lines 7-8) include two Basic Graph
Pattern (BGP)s. The first one (line 7) states that the statement with subject sdaperson:GezimSejdiu
and property foaf:currentProject, we assign the value of its object to a variable called ?project.
When evaluated, this variable will contain the value of sdaproject:SANSAStack. Afterwords (line
8), the same variable ?projectwith an associated value will be the subject of the next statement. That
is, the statement will be sdaproject:SANSAStack foaf:homepage ?homepage. The remaining
variable ?homepage then will take the value http://sansa-stack.net. As an output, both values
of the variables ?project and ?homepage will be rendered.

2.2 Hadoop Ecosystem

Apache Hadoop [43] is a collection of distributed processing and storage frameworks of large-scale
datasets across a cluster of computers. Its ecosystem contains build-in mechanisms in order to
guarantee fault tolerance and high availability on top of commodity hardware. Therefore, specific
hardware involvement is not needed, making it highly scalable and cost-effective.
As of today, the Hadoop ecosystem has been enriched with extensive tools and libraries that are

either built on top of Hadoop or use it for different application fields, including but not limited to:
data mining, querying, data analysis, processing, and data warehousing. It has become the de-facto

17

Chapter 2 Preliminaries

industry standard in Big Data management all thanks to its high degree of parallelism, fault-tolerant,
reliability, and scalability.

In this section, we provide a brief overview of the Hadoop ecosystem projects used in the course of
this thesis. We focus mostly on the aspects needed to understand the content of the following chapters
without going into the technical details.

2.2.1 Apache Hadoop and MapReduce

HDFS

The Hadoop Distributed File System (HDFS) [44] is one of the main components of the Hadoop. It
is a popular file system capable of handling the distribution of the data across multiple nodes in the
cluster. HDFS serve as a common, distributed and fault-tolerant data pool for all applications on top
of the Hadoop in order to minimize the data movement and duplication. Furthermore, it also leverages
the distributed processing of large-scale datasets by adopting advanced and automatically partitioning
techniques across all the nodes in the cluster. HDFS was originally built as infrastructure for the
Apache Nutch3 web search engine project and was inspired by the Google File System (GFS) [45].
HDFS is an integral component of the Apache Hadoop ecosystem.

HDFS is designed in a way that it doesn’t require highly reliable and costly hardware but instead, it
can be run on a cluster of computers with commodity hardware. HDFS splits data (files) into blocks
that can be replicated across the cluster in order to ensure fault-tolerance and efficiency.

The HDFS architecture follows the master/slave model. The namenode (master) is responsible for
managing a file system namespace or a directory structure, coordinating the replication process, keep
track and maintain metadata about the replicated blocks. The datanodes (slaves) are the machines
where these blocks are physically stored. A datanode instance allows access for storing and retrieving
the data. To increase the availability, the namenode maintains multiple copies of the metadata of the
replicated blocks. In the earlier version of HDFS, the namenode was considered being a single point
of failure. The latest versions support deploying two instances configured being namenode with the
mechanism active/passive for high availability. An active namenode is the namenode which is running
in the cluster, and a passive namenode is kept synchronized and stand by. In case of a failure, the
passive namenode can replace the active namenode. Hence, the cluster can be recovered faster and it
never fails.

MapReduce

Besides its distributed file system, Hadoop contains computing system so-called MapReduce [46].
MapReduce is a distributed framework that allows for the distributed processing of large data sets
across a cluster of computers. It enables scalable, fault-tolerant and massively parallel computations
over a cluster of machines. The core of MapReduce is a distributed file system GFS which split larger
size of files into equal-sized blocks of records across the cluster.

The workflow of a MapReduce job is a sequence of map and reduce phases performed in an iterative
way. These phases contains a shuffle and sort operations (as depicted in Figure 2.3) as an intermediate
phase. Usually, the input data is split into distributed blocks across the cluster for parallel execution.
Topically, a program should contain the map and reduce operations which are then evaluated in a

3
https://nutch.apache.org/

18

https://nutch.apache.org/

2.2 Hadoop Ecosystem

SANSA
STACK

SANSA

STACK

Input ---> Split

S,1
A,1
N,1
S,1
A,1

S,1
T,1
A,1
C,1
K,1

A,1
A,1
A,1

C,1

K,1

S,1
S,1
S,1

N,1

T,1

A,3

C,1

K,1

N,1

S,3

T,1

Map Shuffle & Sort Reduce

Figure 2.3:MapReduce dataflow. A MapReduce dataflow illustrated with the "Character Count" example.

parallel setting on a partition of the data. During the map phase, every record of the input dataset as
key/value pairs are read and another set of intermediate key/value pairs is generated. Later, during the
reduce phase these key/value pairs are ingested and evaluated in order to return a single set of results.
While performing such map/reduce phases, intermediate results are generated and need to be shuffled
and/or sorted across the cluster.

The user has to implement the map and reduce functions with a signature as follows:

map: <k1, v1> --> Map() --> list(<k2, v2>)
reduce: <k2, list(v2)> --> Reduce() --> list(<k3, v3>)

Figure 2.3 illustrates an example of the MapReduce dataflow. With such an example, the user wants
to count the number of occurrences for all characters in the dataset. First, the input is split into small
subsets of the dataset, e.g. a line of text. The map function splits the input into a set of characters and
outputs the key/value pairs, i.e. (character, 1) for every character occurrence. Later, the shuffle & sort
phase is used to combine and partition all the pairs with the same key (character) to the same reducer
and thus the reduce function is executed with a list of values for a single character. Finally, the sum of
all these values is returned.

2.2.2 Apache Spark

Apache Spark4 is a fast and generic-purpose cluster computing engine that is built over the Hadoop
ecosystem. It started as a research project in 2009 within the AMPLab5 at the University of California,

4
http://spark.apache.org/

5
https://amplab.cs.berkeley.edu/

19

http://spark.apache.org/
https://amplab.cs.berkeley.edu/

Chapter 2 Preliminaries

Driver Program
Application

Spark
Session

Cluster
Manager/Spark

Master

Spark Worker Node

Executer
Cache

Partition
Partition

Task
Task

HDFS

Storage

Data
Data

Spark Worker Node

Executer
Cache

Partition
Partition

Task
Task

HDFS

Storage

Data
Data

Figure 2.4: Spark Architecture Diagram. A Spark Cluster Mode Overview.

Berkeley. The main goal of the project was to keep the benefits of MapReduce’s scalable, distributed,
and fault-tolerant processing framework while making it more efficient and much easier to use.

Apache Spark follows a master/slave architecture, i.e. one central coordinator and many distributed
workers. A Spark cluster contains a single master, a cluster manager and any number of workers
(slaves). Figure 2.4 depict a cluster mode overview architecture of Spark. Spark applications can
run as an independent set of processes on the cluster, coordinated by the so-called SparkSession in
the driver program. More specifically, a Spark session connects to a cluster manager (e.g. Spark’s
own standalone cluster manager), which allocates resources across applications when running on the
cluster. Once connected to the cluster manager, it acquires executors on the worker nodes, which are
processes that run computations and store data for the submitted application. Afterword, it sends the
application code to the executors. Hence, the tasks are triggered to run on those executors, one task
per partition. Such a task applies its workload to a dataset in its partition and outputs a new partition
dataset. Some of the tasks performed on Spark may involve iterative operations where operations are
run repeatedly to data, they benefit from caching datasets across iterations. Finally, the results are sent
back to the driver application. They can be kept in-memory for further processing or pushed back and
saved to disk.

The main data structures that Spark operates with are so-called RDD [21] which are fault-tolerant
and immutable collections of records that can be operated in a parallel setting. RDDs are considered
being resilient – fault-tolerant and capable of rebuilding data on failure, distributed – able to distribute
the data among the multiple nodes in the cluster, and dataset – collection of partitioned data with
their values. An RDD splits the data into chunks based on a key. They are considered being highly
resilient i.e being able to recover quickly from any failure as the same data chunks are replicated across
multiple executor nodes in the cluster. Thus, even a node failure occurs, the other nodes will still
process the data. Moreover, an RDD, once created becomes immutable – not able to be modified after

20

2.2 Hadoop Ecosystem

it is created. RDD follow the concept of transformation and are considered being lazy evaluation.
In a distributed setting, each dataset in RDD is split into logical partitions which are computed on

different nodes in the cluster. This allows us to perform any transformation or action on the whole
dataset in a parallel manner. The distribution of the workload is taken care of by Spark. Such an RDD
can be created using an existing collection of the data or by loading a dataset from an external storage
system, such as HDFS, or even a file system. With RDDs, we can perform two types of operations: (i)
Transformations – operations which are applied when creating an RDD or transforming it to another
one, and (ii) Actions – operations applied on an RDD and retrieve the result.

Apache Spark provides a rich set of Application Programming Interface (API)s for faster, in-memory
processing of RDDs. It also provides a rich functional programming model and comes with higher
level libraries, e.g. for structured querying (Spark SQL), machine learning (MLlib), streaming (Spark
Streaming), and graph parallel processing (GraphX).

In the following sections, we will cover those libraries we make use of.

GraphX

GraphX [47] is a Spark library for graphs and parallel graph computation. It extends the RDD
abstraction and thus introduces Resilient Distributed Graph (RDG), which relates records with vertices
(VertexRDD) and edges (EdgeRDD) in a graph and provides an expressive set of computational
primitives. In addition, GraphX simplifies the conventional Extract, Transform, Load (ETL) processes
and analysis significantly by providing new operations for viewing, filtering, and transforming graphs.

The GraphX RDG leverages advances in distributed graph representation by combining the best of
both worlds; benefits of graph-parallel and data-parallel systems. It exploits the graph structure in
order to minimize network communication and storage overhead.

It uses the so-called efficient vertex-cut partitioning strategy (as described in [48]) and data-parallel
partitioning heuristics by assigning edges to machines and allowing vertices to span multiple machines
in order to minimize the vertex span per machine. By adding abstraction to the core of Spark (RDDs)
it eases the usage of graph data. GraphX contains a set of common graph operations, i.e filter, map,
reduceByKey, join, etc. By using such graph-parallel and data-parallel operations, GraphX performs
its computation. Usually, these operators take graphs and collections as input and produce new graphs
and collections as an output.

SparkSQL

Spark SQL [49] is a Spark library for SQL and structured data processing which allows querying
structured data inside Spark programs. Essentially, the main abstraction in Spark SQL’s API is a
DataFrame which are distributed collections of rows with a homogeneous schema. A DataFrame is an
RDD with a schema. They can be seen as tables in a relational database and can also be manipulated in
a similar way to RDDs. They are represented using a columnar storage format (while kept in-memory
caching) which allows access to only those columns required, therefore it reduces the memory footprint
by applying columnar compression schemas, i.e dictionary encoding, and run-length encoding. The
main purpose of using DataFrames as compared to RDDs is that it offers a built-in optimizer for Spark
SQL operators, the Catalyst. It leverages advanced programming language features (e.g. Scala pattern
matching) in order to build an extensible query optimizer by scanning the data schema and its query
semantics.

21

Chapter 2 Preliminaries

Spark DataFrames are considered being lazy, as a consequence, each DataFrame object represents a
logical plan to compute a dataset, but no real execution occurs until an action is called, i.e. count. By
this, Spark enables rich optimization across all operations which has been used in order to build a
DataFrame.

22

CHAPTER 3

Related Work

This chapter reviews the related work to our research, according to the research problem and research
questions defined in Chapter 1. We first discuss and compare the state-of-the-art RDF dataset statistics
systems. Then, we give an overview and discuss previous work related to RDF quality assessment
frameworks. Finally, we cover existing SPARQL query evaluators and position our proposed solutions.

This chapter is based on the related work sections from following publications [22, 24–26]:

• Gezim Sejdiu; Ivan Ermilov; Jens Lehmann; and Mohamed Nadjib-Mami, “DistLODStats:
Distributed Computation of RDF Dataset Statistics," in Proceedings of 17th International
Semantic Web Conference (ISWC), 2018.

• Gezim Sejdiu; Anisa Rula; Jens Lehmann; and Hajira Jabeen, “A Scalable Framework for
Quality Assessment of RDF Datasets," in Proceedings of 18th International Semantic Web
Conference (ISWC), 2019.

• Gezim Sejdiu; Damien Graux; Imran Khan; Ioanna Lytra; Hajira Jabeen; and Jens Lehmann,
“Towards A Scalable Semantic-based Distributed Approach for SPARQL query evaluation,”
15th International Conference on Semantic Systems (SEMANTiCS), Research & Innovation ,
2019.

• Claus Stadler; Gezim Sejdiu; Damien Graux; and Jens Lehmann, “Sparklify: A Scalable
Software Component for Efficient evaluation of SPARQL queries over distributed RDF datasets,”
in Proceedings of 18th International Semantic Web Conference (ISWC), 2019. This article is
a joint work with Claus Stadler, a PhD student at the University of Leipzig. In this article, I
devised the implementation of the conceptual architecture, helped on the implementation of the
proposed approach, reviewed related work, and preparation of the experiments and analysis of
the obtained results.

3.1 RDF Dataset Statistics Systems

In this section, we provide an overview of related work regarding RDF dataset statistics calculation.
To the best of our knowledge, all but one existing approaches use small to medium scale datasets

and do not horizontally scale.

23

http://jens-lehmann.org/files/2018/iswc_distlodstats.pdf
http://jens-lehmann.org/files/2018/iswc_distlodstats.pdf
http://jens-lehmann.org/files/2019/iswc_dist_quality_assessment.pdf
http://jens-lehmann.org/files/2019/iswc_dist_quality_assessment.pdf
https://gezimsejdiu.github.io/publications/semantic_based_query_paper_SEMANTICS2019.pdf
http://jens-lehmann.org/files/2019/iswc_sparklify.pdf
http://jens-lehmann.org/files/2019/iswc_sparklify.pdf

Chapter 3 Related Work

A dataset is large-scale w.r.t. a particular task in the scope of this thesis if the main memory on
commodity hardware is insufficient to perform the task (without swapping to disk). We mention
here, for example RDFStats [12], which is a framework for generating statistics from RDF data that
can be used for SPARQL query optimization while processing RDF data over SPARQL endpoints.
Such statistics include histograms about subjects (URIs, and blank nodes), properties, and their
corresponding ranges. The tool can be integrated into user interfaces and other applications that utilize
the Jena toolkit in order to provide such statistics for better performance when processing RDF data.
But, the main purpose of the tool is to collect statistics for query optimization rather than generating
VoID [50].

RDFPro [51] offers a suite of stream-oriented, highly optimized processors for common tasks,
such as data filtering, Resource Description Framework Schema (RDFS) inference, smushing, as
well as statistics extraction. The main component of the tool is a so-called RDF processor, a Java
component that consumes an input stream of RDF quads containing RDF triples with an optional
fourth named graph component in one or more passes. It does by downloading and filtering the
desired RDF quads and place them into a separate graph in order to track the provenance. A metadata
file is added as a link between each graph generated during the process, to the URI of the associated
sources (e.g. DBpedia). Afterward, it extracts the TBox information from such filtered data and then
sorts them. The consequence step drop unnecessary top-level classes and vocabulary alignments.
The process follows the smushing step – using of canonical URIs for each owl:sameAs equivalence
class, producing intermediate results (file) containing smushed data. The inference of smushed data
is computed and saved. These intermediate results contain duplicate data, e.g. the same subject,
predicate, and object. RDFPro does a deduplication process, by removing such duplicates. Finally,
RDF dataset statistics are extracted and merged with the TBox data.

ExpLOD [52] explores summaries of RDF usage and interlinking among datasets. These summaries
include information about the structure of the RDF graph, such as the instantiated RDF classes of
a resource or property usage. The tool also provides statistics about the number of corresponding
entities connected using the owl:sameAs predicate to describe the interlinking between datasets. The
tool can also produce SPARQL queries from a summary.

ProLOD [53] is a web-based profiling tool, with a possibility to analyze RDF data and thus provide
a deeper understanding of the underlying structure and semantics. It analyzes the object values of
RDF triples and generates statistics upon them such as data type and pattern distribution. ProLOD
uses regular expression rules for type detection and such patterns are normalized on the later stage for
better visualization of a large number of different patterns. It also generates a statistical description of
the literal values and external links. ProLOD++ [54] is an interactive web-based tool that offers a
set of methods with the aim of computing different profiling, mining or cleansing tasks. The tool is
divided into two primary views, a cluster view, and a detailed view. The cluster view enables users
to explore and navigate through the cluster tree with more information for statistics for the selected
cluster. ProLOD++ is an extension of ProLOD. In addition to the mining and the cleansing tasks,
ProLOD++ generates profiling features like finding frequencies and distribution of distinct subjects,
predicates, and objects, range of the predicates, string pattern analysis, link analysis, and data type
analysis.

Loupe [55] is a configurable RESTful web service for generating Linked Data profiles in RDF using
the Loupe ontology1. A tool provides summarized information about explicit vocabulary, class and

1
https://github.com/nandana/loupe-ontology

24

https://github.com/nandana/loupe-ontology

3.2 RDF Quality Assessment Frameworks

property usage. Besides that, it also facilitates the analysis of implicit data patterns by providing a set
of metrics including the ratio of instances of a given class, and property distribution.
Another related approach we are aware of is Aether [56], which is an application for generating,

viewing and comparing extended VoID statistical descriptions of RDF datasets. The tool is useful,
for example, in getting to know a newly encountered dataset, in comparing the different versions of
a dataset, and in detecting outliers and errors. By giving a SPARQL endpoint, the Aether tool can
generate an extended VoID description containing a wide variety of characteristics describing the
dataset. Later, these statistics can then be viewed in order to get a better overview of the dataset. The
viewer component of the Aether can be also useful on comparing dataset descriptions to each other so
that the changes between two different versions of the dataset can be captured.
However, only one work we came across that provided a distributed framework for RDF statistics

computation: LODOP [57]. LODOP adopts a MapReduce approach for computing, optimizing,
and benchmarking data profiling techniques. It uses Apache Pig as the underlying computation
engine (Hadoop-based). LODOP implements 15 data profiling tasks comparing to 32 in our work.
Because of the usage of MapReduce, the framework has a significant drawback: the materialization
of intermediate results between Map and Reduce and between two subsequent jobs is done on disk.
DistLODStats does not use the disk-based MapReduce framework (Hadoop), but rather bases its
computation mainly in-memory, so runtime performance is presumably better [58]. Unfortunately, we
were unable to run LODOP for comparison. This is due to technical problems encountered, despite
the very significant effort we devoted to deploy and run it.
To the best of our knowledge, DistLODStats is the first software component for in-memory

distributed computation of RDF dataset statistics.

3.2 RDF Quality Assessment Frameworks

Even though quality assessment of big datasets is an important research area, it is still largely
under-explored. There have been a few works discussing the challenges and issues of big data
quality [59–61]. Only recently, a few of them have started to address the problem from a practical
point of view [17], which is the focus of our work w.r.t the quality assessment of RDF datasets. In the
following, we divide the section between conceptual and practical approaches proposed in the state of
the art for big data quality assessment.
In [62] the authors propose a big data processing pipeline and a big data quality pipeline. For

each of the phases of the processing pipeline, they discuss the corresponding phase of the big data
quality pipeline. Relevant quality dimensions such as accuracy, consistency, and completeness are
discussed for the quality assessment of RDF datasets as part of an integration scenario. Given that the
quality dimensions and metrics have somehow evolved from relational to RDF data, it is relevant to
understand the evolution of quality dimensions according to the differences between the structural
characteristics of the two data models [63]. This allows managing the huge variability of methods
and techniques needed to manage data quality and understand which are the quality dimensions that
prevail when assessing large-scale RDF datasets.

Most of the existing approaches can be applied to small/medium scale datasets and do not horizontally
scale [17, 64]. The work in [64] presents a methodology for assessing the quality of RDF data based
on a test case generation analogy used for software testing. The idea of this approach is to generate
templates of the SPARQL queries (i.e., quality test case patterns) and then instantiate them by using

25

Chapter 3 Related Work

the vocabulary or schema information, thus producing quality test case queries.
Luzzu [17] is similar in spirit with our approach in that its objective is to provide a framework for

quality assessment. Its Quality Metric Language (LQML), is a Domain Specific Language (DSL)
that enables knowledge engineers to declaratively define quality metrics whose definitions can be
understood more easily. LQML offers notations, abstractions and expressive power, focusing on the
representation of quality metrics. In contrast to our approach, where data is distributed and also the
evaluation of metrics is distributed, Luzzu does not provide any large-scale processing of the data. It
only uses Spark streaming for loading the data which is not part of the core framework.

Another approach proposed for assessing the quality of large-scale medical data implements Hadoop
Map/Reduce [65]. It takes advantage of query optimization and joins strategies that are tailored to
the structure of the data and the SPARQL queries for that particular dataset. In addition, this work,
differently from our approach, does not assess any data quality metric defined in [7]. The work
in [66] proposes a reasoning approach to derive inconsistency rules and implements a Spark-based
implementation of the inference algorithm for capturing and cleaning inconsistencies in RDF datasets.
The inference generally incurs higher complexity. Our approach is designed for scalability, and we
also use Spark-based implementation for capturing inconsistencies in the data. While the approach
in [66] needs manual definitions of the inconsistency rules, our approach runs automatically, not only
for consistency metrics but also for other quality metrics. In addition, we test the performance of our
approach to large-scale RDF datasets while their approach is not experimentally evaluated.

LD-Sniffer [18], is a tool for assessing the accessibility of Linked Data resources according to the
metrics defined in the Linked Data Quality Model. The limitation of this tool, besides that it is a
centralized version, is that it does not provide most of the quality assessment metrics defined in [7]. In
addition to the above, there is a lack of unified structure to propose and develop new quality metrics
that are scalable and less computationally expensive.

LiQuate [67] is another tool that combines Bayesian Networks and rule-based systems for analyzing
the quality of the data and links in the LOD cloud. It uses the probabilistic methods for exploring the
assessed datasets for completeness, redundancies, and inconsistencies. It has a two-fold approach.
First, it detects the ambiguities and then, links to solve these ambiguities are inferred and suggested to
the user for resolving the identified quality problems. The domain expert is required for identifying
such rules for the Bayesian Network.
WIQA [68] is another quality assessment framework that provides a mechanism for creating and

applying a number of policies driven by the provenance and background context related to the data
providers. WIQA provides a SPARQL- like a language (WIQA-PL) for applying any assessment
metric over the defined quality metric. It does not report any quality metadata or quality problem
reports but rather an assessment result that includes the set of matching triples with a description of
why such triple attain the policy.

LINK-QA [69] is a quality assessment framework that allows for the assessment of Linked Data
mappings using network metrics i.e. degree, clustering coefficient, centrality, Web Ontology Language
(OWL) sameAs chains, and descriptive richness through OWL sameAs. These metrics have been
proposed using the framework on a set of known good and bad links generated by a common mapping
system, and show the behavior of those metrics. The system generates HTML reports for the results of
the quality assessment.

RDFUnit [70] is another quality assessment system for Linked Data via test-driven quality checks.
It follows the test-driven software development concept by providing a set of test-cases, which help
to ensure a basic level of quality. The proposed methodology assesses the quality of the RDF data

26

3.3 SPARQL Query Evaluators

resources, based on a formalization of bad smells and data quality issues. Such a formalization
employs SPARQL queries templates into concrete quality test queries. The main focus of RDFUnit is
to perform an integrity check via SPARQL patterns. The quality of the data is assessed by executing
custom SPARQL queries against different datasets using SPARQL endpoints. Test case results
including quality values and quality problems reported from RDFUnit are represented in a form of
RDF visualized as HTML.
Based on the identified limitations of these aforementioned approaches, we have introduced

DistQualityAssessment which bases its computation and evaluations mainly in-memory. As a result
the computation of the quality metrics show a high performance for large-scale datasets (cf. Chapter 5).

3.3 SPARQL Query Evaluators

Partitioning of RDF Data In recent years, significant effort has been made on the development and
designing of efficient solutions for managing and processing RDF data. Centralized RDF stores use
relational (e.g., Sesame [71]), property (e.g., Jena [72]), or binary tables (e.g., SW-Store [73]) for
storing RDF triples or maintain the graph structure of the RDF data (e.g., gStore [74]). These tools
have achieved high performance on processing RDF data over a single computation (centralized) node,
neither by designing novel data representation of the underlying data or applying different rational
optimization techniques w.r.t to the data storage or processing. For dealing with big RDF datasets,
vertical partitioning and exhaustive indexing are commonly employed techniques. For instance, Abadi
et al. [75] introduce a vertical partitioning approach in which each predicate is mapped to a two-column
table containing the subject and object. This approach has been extended in Hexastore [76] to include
all six permutations of subject, predicate, and object (s, p, o). To improve the efficiency of SPARQL
queries RDF-3X [77] has adopted exhaustive indices not only for all (s, p, o) permutations but also
for their binary and unary projections. While some of these techniques can be used in distributed
configurations as well, storing and querying RDF datasets in distributed environments pose new
challenges such as scalability. In our approach, we tackle partitioning and querying of big RDF
datasets in a distributed manner.
Partitioning-based approaches for distributed RDF systems propose to partition an RDF graph in

fragments that are hosted in centralized RDF stores at different sites. Such approaches use either
standard partitioning algorithms like METIS [78] or introduce their own partitioning strategies.
For instance, Lee et al. [79] define a partition unit as a vertex with its closest neighbors based on
heuristic rules while DiploCloud [80] and AdPart [81] use physiological RDF partitioning based on
RDF molecules. In our proposal, we use both, vertical partitioning and semantic-based partitioning
approaches.

Hadoop-Based Systems Cloud-based approaches for managing large-scale RDF mainly use
NoSQL distributed data stores or employ various partitioning approaches on top of Hadoop infras-
tructure, i.e., the HDFS and its MapReduce implementation, in order to leverage computational
resources of multiple nodes. For instance, Sempala [82] is a Hadoop-based approach that serves as the
SPARQL-to-SQL approach on top of Hadoop. It uses Impala2 as a distributed SQL processing engine.
Sempala uses unified vertical partitioning based on a single property table to improve the runtime
of the star-shaped queries by excluding the joins. The limitation of Sempala is that it was designed
only for that particular shape of the queries. PigSPARQL [83] uses Hadoop based implementation of
2
https://impala.apache.org/

27

https://impala.apache.org/

Chapter 3 Related Work

vertical partitioning for data representation. It translates SPARQL queries into Pig3 LATIN queries
and runs them using the Pig engine. A most recent approach based on MapReduce is RYA [84].
It is a Hadoop based scalable RDF store that uses Accumulo4 as a distributed key-value store for
indexing the RDF triples. RYA indexes triples into three tables and replicate them across the cluster
for leveraging the indexes over all the possible records. It has the mechanism of performing join
reorder, but it lacks the in-memory computation, which makes it not comparable with other systems.
One of RYA’s advantages is the power of performing join reorder. The main drawback of RYA is
that it relies on disk-based processing increasing query execution times. Other RDF systems like
JenaHBase [85] and H2RDF+ [86] use the Hadoop database HBase for storing triple and property
tables. JenaHBase represents triples in the form of three index tables: SPO, POS, and OSP. It maps
RDF URIs and most literals to numerical ids and uses the same table structure for all indices: the
row key is built from the concatenation of the ids, and leaving the rest i.e. column qualifiers and cell
values empty. This is done in order to leverage the lexicographical sorting of the row keys, covering
multiple triple patterns with the same table. The main idea behind indexing is reducing network and
disk I/O overhead, for fast joins. H2RDF+ is conceptually similar to Rya and JenaHBase as it stores
RDF data in HBase. It does that by storing triples in the row key which uses six tables for all possible
triple permutations thus creates six different indexes. In addition, it also maintains index statistics for
triple pattern selectivity estimation as well as join output size and cost. H2RDF+ is able to answer
selective queries efficiently as it is able to determine the scale for non-selective queries to be executed
centrally but is slower when done through distributed execution. SHARD [87] is one approach that
groups RDF data into a dedicated partition so-called semantic-based partition. It groups these RDF
data by subject and implements a query engine which iterates through each of the clauses used on the
query and performs a query processing. A MapReduce job is created while scanning each of the triple
patterns and generates a single plan for each of the triple patterns which leads to a larger query plan,
therefore, it contains too many Map and Reduces jobs. Our partitioning algorithm implemented on
the Semantic-based query engine is based on SHARD, but instead of creating MapReduce jobs we
employ the Spark framework in order to increase scalability.

While the MapReduce paradigm has been realized for disk-based as well as in-memory processing,
the concept is not concerned with controlling aspects of generally distributed workflows, such as
which intermediate results to cache. As a consequence, high-level frameworks were devised which
may use MapReduce as a building block. Apache Spark is one of them [21]. Below, we will list some
of the approaches which make use of the Apache Spark (in-memory computation) framework.

In-Memory Systems S2RDF [1] and SPARQLGX [19] approaches are considered the most
recent distributed SPARQL evaluators over large-scale RDF datasets. S2RDF [1] is a distributed
query engine that translates SPARQL queries into SQL ones while running them on Spark-SQL [49].
It introduces a data partitioning strategy that extends vertical partitioning with additional statistics,
containing pre-computed semi-joins for query optimization. While doing so, S2RDF avoids tuples
that do not have counterparts in the referenced relation (join) which reduces the query input size and
thus execution runtime. By pre-computing the possible join relations between partitions i.e. tables of
Vertical Partitioning (VP), the S2RDF query processor can directly access the subset of a specific
table where the object also exists as a subject in at least one tuple in the other table and join it with the
equivalent subset of that table. This avoids dangling tuples, tuples that do not find a corresponding join

3
https://pig.apache.org/

4
accumulo.apache.org

28

https://pig.apache.org/
accumulo.apache.org

3.3 SPARQL Query Evaluators

partner, to be used as input and thus also reduces I/O overhead and the number of join comparisons that
lead to overall speeds up. S2RDF query processor is based on the algebra representation of SPARQL
expressions. It uses Jena ARQ for parsing the SPARQL query into a corresponding algebra tree. It
traverses through the algebra tree and generates the corresponding Spark SQL expressions mapped to
the extended vertical partitioning schema as described above. As a consequence, such an equivalent
Spark SQL query is then executed by the Spark engine. SPARQLGX [19] is similar to S2RDF, but
instead of translating SPARQL to SQL, it maps SPARQL into direct Spark RDD operations. It is a
scalable query engine that is capable of evaluating efficiently the SPARQL queries over distributed
RDF datasets [88]. It uses a simplified VP approach, where each predicate is assigned to a specific
parquet file. As an addition, it is able to assign RDF statistics for further query optimization while also
providing the possibility of directly query files on the HDFS using SDE (its direct SPARQL evaluator).

Nevertheless, these engines lack one important information derived from the knowledge, RDF terms.
RDF terms includes information about a statement such as language, typed literals and blank nodes
which are omitted from most of the engines. Beside RDF terms, we also wanted to investigate different
partitioning mechanisms while querying a large amount of RDF. During this thesis, we propose two
different SPARQL query evaluator. Sparklify – a scalable software component for efficient evaluation
of SPARQL queries over distributed RDF datasets. The conceptual foundation is the application of
ontology-based data access (OBDA) tooling, specifically SPARQL-to-SQL rewriting, for translating
SPARQL queries into Spark executable code. We demonstrate our approach using Sparqlify, which has
been used in the LinkedGeoData5 community project to serve more than 30 billion triples on-the-fly
from a relational OpenStreetMap database. As we mentioned previously, we wanted to see if different
partitioning strategies improve the execution time while evaluating SPARQL queries over large-scale
RDF datasets and propose a Semantic-based approach which partitions the data into subject-based
grouping (e.g. all entities which are associated with a unique subject). For more details on the
proposed approaches, see Chapter 6.

5
http://linkedgeodata.org

29

http://linkedgeodata.org

CHAPTER 4

Large-Scale RDF Dataset Statistics

Over the last two decades, the Semantic Web has grown from a mere idea for modeling data in the
web, into an established field of study driven by a wide range of standards and protocols for data
consumption, publication, and exchange on the Web. For the record, today we count more than 10,000
datasets openly available online using Semantic Web standards 1. Thanks to such standards, large
datasets became machine-readable [89]. Nevertheless, many applications such as data integration,
search, and interlinking may not take full advantage of the data without having a priori statistical
information about its internal structure and coverage. RDF dataset statistics can be beneficial in many
ways, for example: 1) Vocabulary reuse (suggesting frequently used similar vocabulary terms in other
datasets during dataset creation), 2) Quality analysis (analysis of incoming and outcoming links in
RDF datasets to establish hubs similar to what PageRank has achieved in the traditional web), 3)
Coverage analysis (verifying whether frequent dataset properties cover all similar entities and other
related tasks), 4) privacy analysis (checking whether property combinations may allow to uniquely
identify persons in a dataset) and 5) link target analysis (finding datasets with similar characteristics,
e.g. similar frequent properties) for interlinking candidates.

A number of solutions have been conceived to offer users such statistics about RDF vocabularies [11]
and datasets [12, 13]. However, those efforts showed severe deficiencies in terms of performance when
the dataset size goes beyond the main memory size of a single machine. This limits their capabilities
to medium-sized datasets only, which paralyzes the role of applications in embracing the increasing
volumes of the available datasets.

As the memory limitation was the main shortcoming in the existing works, we investigated parallel
approaches that distribute the workload among several separate memories. One solution that gained
traction over the past years is the concept of RDD, initially suggested at [21], which are in-memory
data structures. Using RDDs, we are able to perform operations on the whole dataset stored in a
significantly enlarged distributed memory.

Apache Spark 2 is an implementation of the concept of RDDs. It allows performing coarse-grained
operations over voluminous datasets in a distributed manner in parallel. It extends earlier efforts in the
area such as Hadoop MapReduce.

In this chapter we address the following research question:

1
http://lodstats.aksw.org/

2
http://spark.apache.org

31

http://lodstats.aksw.org/
http://spark.apache.org

Chapter 4 Large-Scale RDF Dataset Statistics

RQ1: How can we efficiently explore the structure of large-scale RDF datasets?

Contributions of this chapter are summarize as follows:

• We propose an algorithm for computing RDF dataset statistics and implement it using an
efficient framework for large-scale, distributed and in-memory computations: Apache Spark.

• We perform an analysis of the complexity of the computational steps and the data exchange
between nodes in the cluster.

• We evaluate our approach and demonstrate empirically its superiority over a previous centralized
approach.

• We integrated the approach into the SANSA framework, where it is actively maintained and
re-uses the community infrastructure (mailing list, issues trackers, website, etc.).

• An approach for triggering RDF statistics calculation remotely simply using HTTP requests.
DistLODStats is built as a plugin into the larger SANSA framework and makes use of Apache
Livy, a novel lightweight solution for interacting with the Spark cluster via a REST Interface.

This chapter is based on the following publications ([22, 23]):

• Gezim Sejdiu; Ivan Ermilov; Jens Lehmann; and Mohamed Nadjib-Mami, “DistLODStats:
Distributed Computation of RDF Dataset Statistics,” in Proceedings of 17th International
Semantic Web Conference (ISWC), 2018.

• Gezim Sejdiu; Ivan Ermilov; Jens Lehmann; and Mohamed-Nadjib Mami, “STATisfy Me:
What are my Stats?,” in Proceedings of 17th International Semantic Web Conference (ISWC),
Poster & Demos, 2018.

The remainder of this chapter is organized as follows: Our approach for the computation of RDF
dataset statistics is detailed in Section 4.1. An analysis of the complexity of the computational steps
and the data exchange between nodes is conducted in Subsection 4.1.4 to assess the complexity of
each statistical criterion. The evaluation of the approach is elaborated in Subsection 4.1.6. STATisfy,
a component for triggering RDF statistics calculation remotely by using HTTP request has been
described in Section 4.2. Finally, we summarize our work in Section 4.3.

4.1 A Scalable Distributed Approach for Computation of RDF Dataset
Statistics

We adopted the 32 statistical criteria proposed in [20]. In contrast to [20], we perform the computation
in a large-scale distributed environment using Spark and the concept of RDDs. Instead of processing
the input RDF dataset directly, this approach requires the conversion to an RDD that is composed of
three elements: Subject, Property and Object. We name such an RDD a main dataset.
The statistical criteria proposed in [20] are formalized as a triple (F,D, P) consisting of a filter

condition F, a derived dataset D and a post processing operation P. In our approach, we adapt the
definition of those elements to be applicable to RDDs.

32

http://jens-lehmann.org/files/2018/iswc_distlodstats.pdf
http://jens-lehmann.org/files/2018/iswc_distlodstats.pdf
http://jens-lehmann.org/files/2018/iswc_statisfy_pd.pdf
http://jens-lehmann.org/files/2018/iswc_statisfy_pd.pdf

4.1 A Scalable Distributed Approach for Computation of RDF Dataset Statistics

Definition 4.1.1 (Statistical criterion) A statistical criterion C is a triple C = (F,D, P), where:

• F is a SPARQL filter condition.

• D is a derived dataset from the main dataset (RDD of triples) after applying F.

• P is a post-processing filter operating on the data structure D.

F acts as a filter operation, which determines whether a specific criterion is matched against a triple
in the main dataset. D is the result of applying the criterion on the main dataset. P is an operation
applied to D to (optionally) perform further computational steps. If no extra computation is needed, P
just returns exactly the results from the intermediate dataset D.

4.1.1 Main Dataset Data Structure

The main dataset is based on an RDD data structure which is a basic building block of the Spark
framework. RDDs are in-memory collections of records that can be operated in parallel on large
clusters. By using RDDs, Spark abstracts away the differences of the underlying data sources.
RDDs during their lifecycle are kept in-memory, which enables efficient reuse of RDDs during
several consequent transformations. Spark provides fault-tolerance by keeping a lineage information
(a Directed Acyclic Graph (DAG) of transformations) for each RDD. This way any RDD can be
reconstructed in case of node failure by tracing back the lineage. Spark enables full control over
the persistence state and partitioning of the RDDs in the cluster. Thus, we can further improve the
computational efficiency of statistical criteria by planning a suitable storage strategy (i.e. alternating
between memory and disk). For example, we can precisely determine which RDDs will be reused
and manage the degree of parallelism by specifying how an RDD is partitioned across the available
resources.

Definition 4.1.2 (Basic Operations) All the statistical criteria can be represented in our approach
using the following basic operations: map, filter, reduce-by, and group-by. These operations can be
formalized as follows:

• map : I → O, where I is an input RDD and O is an output RDD. Map transforms each value
from an input RDD into another value, following a specified rule.

• f ilter : I → O, where I is an input RDD and O is an output RDD, which contains only the
elements that satisfy a condition.

• reduce : I → O, where I is an input RDD of key-value (K,V) pairs and O is an output RDD of
(K, list(V)) pairs.

• group-by : (I, F) → O, where I is an input RDD of pairs (K, list(V)), F is a grouping function
(e.g., count, avg), and O is an output RDD containing the values in list(V) from I aggregated
using the grouping function.

33

Chapter 4 Large-Scale RDF Dataset Statistics

Input (HDFS file)

RDD: Tuple<Sub,Pred,Obj>

Results

Parsing and Mapping

R
ule (Filter -->A

ction)Transformation 1

Transformation nTransformation n

Text

1

2

3

Figure 4.1: RDD lineage of a Criterion execution. It consists of three steps: (1) saving RDF data into a
scalable storage, (2) parsing and mapping RDF into the main dataset (RDD of triples), and (3) performing
statistical criteria evaluation on the main dataset.

4.1.2 Distributed LODStats Architecture

The computation of statistical criteria is performed as depicted in Figure 4.1. Our approach consists
of three steps: (1) saving RDF data in scalable storage, (2) parsing and mapping the RDF data into the
main dataset, and (3) performing statistical criteria evaluation on the main dataset and generating
results.

Fetching the RDF data (Step 1): RDF data needs first to be loaded into a large-scale storage
that Spark can efficiently read from. For this purpose, we use HDFS 3. HDFS is able to accommodate
any type of data in its raw format, horizontally scale to an arbitrary number of nodes, and replicate
data among the cluster nodes for fault tolerance. In such a distributed environment, Spark adopts
different data locality strategies to try to perform computations as close to the needed data as possible
in HDFS and thus avoid data transfer overhead.

Parsing and mapping RDF into the main dataset (Step 2): In the course of Spark execution,
data is parsed into triples and loaded into an RDD of the following format: Triple<Subj,Pred,Obj>
(by using the Spark map transformation).

Statistical criteria evaluation (Step 3): For each criterion, Spark generates an execution plan,
which is composed of one or more of the following Spark transformations: map, filter, reduce and
group-by.

4.1.3 Algorithm

The DistLODStats algorithm (see Algorithm 1) constructs the main dataset from an RDF file (Line 1).
Afterwards, the algorithm iterates over the criteria defined inside the DistLODStats framework and
evaluates them (Lines 4, 6 and 8).

To define a statistical criterion inside the DistLODStats framework, one must specify filter, action,
and postProc methods. The evaluation of the criterion then starts first by the filter method (Line 4)
that is used to apply the rule filters of the criterion (Rule Filter in Table 4.1). Applied on a main
dataset, this latter will return a new RDD with a subset of the triples. Next, the action method is
3
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

34

https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

4.1 A Scalable Distributed Approach for Computation of RDF Dataset Statistics

used to apply the criterion’s rule action (Rule Action in Table 4.1). Applied on the filtered RDD, this
either computes statistics directly or reorganizes the RDD so statistics can be computed in the next
step. At the end, the postProc method is used as an optional operation to perform further statistical
computations (e.g. average after count or sort).

Algorithmus 1 : DistLODStats.
input :RDF: an RDF dataset, C: a list of criterion.
/* Iterate through the list of criteria */

1 RDD mainDataset = RDF .toRDD < Triple > ()
2 mainDataset.cache()
3 foreach c ∈ C do
4 triples← c. f ilter(mainDataset)
5 triples.cache()
6 triples← c.action(triples)
7 if c.hasPostProc then
8 triples← c.postProc(triples)

In our work, we make use of Spark caching techniques. Basically, if an RDD is constructed from a
data source e.g. file, or through a lineage of RDDs, and then cached, there is no need to construct the
RDD again the next time it is needed. We have used two different approaches for caching: (1) caching
the main dataset entirely (Line 2), and (2) caching a derived RDD after applying the criteria filter on
the main dataset (Line 5). In the first approach, the RDD is constructed from the RDF source during
the first criteria computation, so the next criteria do not need to fetch it again. In the second approach,
the RDD resulting from executing the filter of one criterion is cached and used by any other criterion
sharing the same filter pattern.

4.1.4 Complexity Analysis

The performance of criteria computation depends on two factors mainly:

• Data shuffling and filtering. In general, the computation can be expensive if there is data
movement involved during the distributed execution, which is also known as shuffling. This
generally happens when there is a data reduction (in the map-reduce sense). This entails cases
like grouping together similar data or applying aggregation functions for SUM, AVG, COUNT,
etc. Another factor influencing the performance of criteria computation are filters. The more
data is filtered in the early stages, the less processing is required in subsequent steps.

• Data scanning. To execute the criterion filter on the same data, data is scanned only once for
all criteria. However, if data changes state, for example, is mapped to another form with new
columns added, then another scan of the new state is needed. Finally, if data is shuffled across
cluster nodes, then a new scan is needed as well.

Per-criterion complexity analysis. Based on the two previous factors, we performed a complexity
analysis of each statistical criterion. The results are reported in Table 4.2. We deem the complexity
is mostly linear corresponding to cases where only one or a limited number of scans is required.

35

Chapter 4 Large-Scale RDF Dataset Statistics

Criterion Rule (Filter→ Action) Postproc.

1 used classes p=RDF_TYPE && o.isURI() → map(_.o) –

2 class usage count p=RDF_TYPE && o.isURI() → map(f => (f.o, 1)).reduceByKey(_ + _) take(100)

3 classes defined p=RDF_TYPE && s.isURI()&& → map(_.s) –

(o=RDFS_CLASS||o=OWL_CLASS)

4 class hierarchy p=RDFS_SUBCLASS_OF && → G += (?s,?o) depth(G)

depth s.isIRI() && o.isIRI()

5 property usage → map(f => (f.p, 1)).reduceByKey(_ + _) take(100)

6 prop. usage per subj. → groupBy(_.s).reduceByKey(_ + _) count

7 prop. usage per obj. → groupBy(_.o).reduceByKey(_ + _) count

8 prop. distinct per subj. → groupBy(_.s).combineByKey(_ + _) sum/count

9 prop. distinct per obj. → groupBy(_.o).combineByKey(_ + _) sum/count

10 outdegree → map(f => (f.s, 1)).combineByKey(_ + _) sum/count

11 indegree → map(f => (f.o, 1)).combineByKey(_ + _) sum/count

12 property p=RDFS_SUBPROPERTY_OF && → G += (?s,?o) depth(G)

hierarchy depth s.isIRI() && o.isIRI()

13 subclass usage p=RDFS_SUBPROPERTY_OF → count() –

14 triples → count() –

15 entities mentioned → map(f=>(s.isURI(),p.isURI(),o.isURI())).count –

16 distinct entities → map(f=>(s.isURI(),p.isURI(),o.isURI())).distinct –

17 literals o.isLiteral() → count() –

18 blanks as subj. s.isBlank() → count() –

19 blanks as obj. o.isBlank() → count() –

20 datatypes o.isLiteral() → map(o => (o.dataType(), 1)).reduceByKey(_ + _) –

21 languages o.isLiteral() → map(o => (o.languageTag(), 1)).reduceByKey(_ + _) –

22 average typed string o.isLiteral() && obj → count(); len/count

length .getDatatype()=XSD_STRING) len+=o.length()

23 average untyped o.isLiteral() && → count(); len/count

string length o.getDatatype().isEmpty() len+=o.length()

24 typed subject p=RDF_TYPE → count() –

25 labeled subject p=RDFS_LABEL → count() –

26 sameAs p=OWL_SAME_AS → count() –

27 links !s.getNS()=(o.getNS()) → map(_.(s.getNS()+o.getNS())).map(f=> (f, 1)).reduceByKey(_+_) –

28 max per property o.getDatatype()={XSD_INT | → map(f => (f.p, f.o)) –

{int,float,time} XSD_float | XSD_datetime} .maxBy(_._2)

29 average per property o.getDatatype()={XSD_INT | → m1=>map(_.o).count m1/m2

{int,float,time} XSD_float | XSD_datetime} m2=>map(_.p).count

30 subj. vocabularies → map(f => (f.s.getNS())).map(f => (f, 1)).reduceByKey(_ + _) –

31 pred. vocabularies → map(f => (f.p.getNS())).map(f => (f, 1)).reduceByKey(_ + _) –

32 obj. vocabularies → map(f => (f.o.getNS())).map(f => (f, 1)).reduceByKey(_ + _) –

Table 4.1:Definition of Spark rules (using Scala notation) per criterion. A list of statistical criteria following
the Rule (Filter->Action) -> Postproc paradigm using the Spark/Scala notation.

36

4.1 A Scalable Distributed Approach for Computation of RDF Dataset Statistics

Criterion Runtime Complexity Data shuffling and Data scanning

(1, 3) O(n) Data is filtered locally and returned, i.e. no data exchange is needed.

(2, 5) As sorting is required to retrieve the
top 100 results, i.e. the complexity
depends on the sorting algorithm
used.

This operation can be implemented in a map-reduce fashion: classes ini-
tially are distributed across the cluster, so calculating their counts requires
data to be shuffled and then reduced. The sorting in post-processing re-
quires moving the data. Currently, data is sorted in each node and the
union of the datasets is subsequently sorted as well.

(6, 7, 8, 9) O(n) Following a map-reduce approach, the data is first mapped to
<subject,property> pairs and then reduced by subject, so data needs to be
shuffled prior to the grouping. De-duplication (distinct) is automatically
achieved by the reduce function.

(4, 12) O(V+E) The best representation of this criterion is a graph where data is already
connected, and only linear traversal is required so no data transfer is
needed.

(10, 11, 20,
21)

O(n) Following a map-reduce approach, data is first mapped to <subject,1>
and then reduced by subject counting the 1s, so data needs to be shuffled
prior to the grouping.

(13, 14) O(n) The count is performed locally and the individual counts are summed up
for the cluster, i.e. no data movement is needed.

(15) O(n) Counting of entities with mentioned s, p and o is done in parallel, so
the overall count uses individual counts and sums them. Hence, no data
transfer is needed.

(16) O(n) This is similar to 15, but instead of counting, just returning the triples, so
data is saved directly after checking isURI and saved back, i.e. no data is
moved.

(17, 18, 19,
24, 25, 26,
27, 30, 31,
32)

O(n) Data is filtered and then counted in each node, the overall count can be
obtained by summing up individual counts, so no data movement.

(23, 23) O(n) The computation requires to project out the objects only and map them
to the length of themselves, then the average is computed by summing up
the length dividing by the size of each map. The AVG count is done in
parallel in each node and then the AVG of all AVGs is a matter of getting
single values from each node, so no data movement is needed.

(28) O(n) Obtaining the maximum per property requires also reducing data dis-
tributed in the cluster, so data movement needed.

(29) O(n) The data here is also reduced by property, so the sum and the count, thus
the average, can happen in the same time. Either way, data needs to be
moved across the cluster.

Table 4.2: Complexity and data shuffling breakdown by statistical criterion. Notation conventions: n =
number of triples; V = number of vertices; E = number of edges.

However, there are situations where the complexity can increase when there are iterative executions,
like the case of data sorting or graph-based computations (e.g. finding cycles or getting the path
between two edges).
Below we give an overview of complexity analysis for our most operators used through our approach.
The complexity of map() and f ilter() itself is linear with respect to the number of input triples.

The overall complexity depends on the functions passed to them. Consider an RDD as a single data
structure on memory, any other operations (such as map and filter) are linear, or O(n). The subsequent
step is to split this RDD between s nodes, the complexity on each node then becomes O(n/s). Let be
f a function with complexity O(f), then its complexity will be O(n/s ∗O(f)). As evident from the

37

Chapter 4 Large-Scale RDF Dataset Statistics

triples

HDFS Main Dataset
RDD

Statistical
Results

Computing

DistLODStats
3

Filtering

1

2

HDFS triples file to
triples RDD

s p o
Rule's Filter Rule's Action / Post Proc.

Figure 4.2: Overview of DistLODStats’s abstract architecture. It is composed of three steps: First, it reads
RDF data from HDFS and converts them into RDD of triples. Second, this latter undergoes a Filtering operation
applying the Rule’s Filter and producing a new filtered RDD. Third, the filtered RDD will serve as an input to
the next step: Computing where the rule’s action and/or post-processing are effectively applied. As a result, a
statistical representation is generated.

formula O(n/s ∗O(f)), the runtime increases linearly when the size of RDD increases and decreases
linearly with the number of nodes in the cluster in case of a function f with with O(f) = O(1).

The complexity of the sortBy operation according to Spark4 is a sampled O(n), which means only
the unique sample keys m (with m ≤ n) are sorted and lead to a complexity of O(m ∗ log(m)) plus the
ranges of key sets. Afterword, the data is shuffled around in O(n) which is costly as sorting needs to
be applied internally for the range of keys collected on a given partition p, i.e. O(p ∗ log(p)) time is
required.

4.1.5 Implementation

DistLODStats comprises three main phases depicted in Figure 4.2 and explained previously. The
output of the Computing phase will be the statistical results represented in a human-readable format
e.g. VoID [50], or row data.

We expressed the three phases of the 32 criteria using the basic operations defined in Definition 4.1.2.
Next, those have been mapped to Spark transformations and actions in Table 4.1, where: map is
mapped directly to Spark Map(), reduce is mapped to groupByKey(), and group-by is mapped
to reduceByKey(). Exceptions of this general strategy were done for the implementation of the
post-processing steps of Criteria 4 and 12, where we use a Spark GraphX5, which is more suitable for
this particular case of graph-oriented criterion computation.
Furthermore, we provide a Docker image of the system6 available under Apache License 2.0,

integrated within the BDE platform7 - an open-source Big Data Processing Platform allowing users to
install numerous big data processing tools and frameworks and create working data flow applications.

4
http://tiny.cc/jn91iz

5
https://spark.apache.org/docs/latest/graphx-programming-guide.html

6
https://github.com/SANSA-Stack/Spark-RDF-Statistics

7
https://github.com/big-data-europe

38

http://tiny.cc/jn91iz
https://spark.apache.org/docs/latest/graphx-programming-guide.html
https://github.com/SANSA-Stack/Spark-RDF-Statistics
https://github.com/big-data-europe

4.1 A Scalable Distributed Approach for Computation of RDF Dataset Statistics

We implemented DistLODStats using Spark-2.2.0, Scala 2.11.11 and Java 8. DistLODStats has
meanwhile been integrated into SANSA [30, 31], an open source8 data flow processing engine for
performing distributed computation over large-scale RDF datasets. It provides data distribution,
communication, and fault tolerance for manipulating large RDF graphs and applying machine learning
algorithms on the data at scale. Via this integration, DistLODStats can also leverage the developer
and user community as well as infrastructure behind the SANSA project. This also ensures the
sustainability of DistLODStats given that SANSA is backed by several grants until at least 2021.

4.1.6 Evaluation

The aim of our evaluation is to see how well our approach can perform against non-distributed
approaches as well as analyzing the scalability of the distributed approach. In particular, we addressed
the following questions:

• (Q1): How does the runtime of the algorithm change when more nodes in the cluster are added?

• (Q2): How does the algorithm scale to larger datasets?

• (Q3): How does the algorithm scale to a larger number of datasets?

In the following, we present our experimental setup including the datasets used. Thereafter, we give
an overview of our results, which we subsequently discuss in the final part of this section.

Experimental Setup

We used one synthetic and two real-world datasets for our experiments:

1. We chose the geospatial dataset LinkedGeoData [90] which offers a spatial RDF knowledge
base derived from OpenStreetMap.

2. As a cross-domain dataset, we selected DBpedia [6] (v 3.9). DBpedia is a knowledge base with
a large ontology.

3. As a synthetic dataset, we chose to use the Berlin SPARQL Benchmark (BSBM) [91]. It is
based on an e-commerce use case which is built around a set of products that are offered by
different vendors. The benchmark provides a data generator, which can be used to create sets of
connected triples of any particular size.

Properties of these datasets are given in Table 4.3.
For the evaluation, all data is stored on the same HDFS cluster using Hadoop 2.8.0. All experiments

were carried out on a 6 nodes cluster (1 master, 5 workers): Intel(R) Xeon(R) CPU E5-2620 v4 @
2.10GHz (32 Cores), 128 GB RAM, 12 TB SATA RAID-5. The experiments on a local mode are all
performed on a single instance of the cluster. The machines were connected via a Gigabit network.
All experiments were executed three times and the average value is reported.

8
https://github.com/SANSA-Stack

39

https://github.com/SANSA-Stack

Chapter 4 Large-Scale RDF Dataset Statistics

−→
DBpedia BSBM

LinkedGeoData en de fr 2GB 20GB 200GB

#nr. of
triples

1,292,933,812 812,545,486 336,714,883 340,849,556 8,289,484 81,980,472 817,774,057

size (GB) 191.17 114.4 48.6 49.77 2 20 200

Table 4.3: Dataset summary information (nt format). Lists dataset characteristics used on the evaluation of
the DistLODStats. The size (in GB) and the number of triples are given.

Runtime (h) (mean/std)

−→
LODStats DistLODStats

a) files b) bigfile c) local d) cluster e) speedup ratio

LinkedGeoData n/a n/a 36.65/0.13 4.37/0.15 7.4x

Men
DBpedia 24.63/0.57 fail 25.34/0.11 2.97/0.08 7.6x

Mde
DBpedia n/a n/a 10.34/0.06 1.2/0.0 7.3x

M f r
DBpedia

n/a n/a 10.49/0.09 1.27/0.04 7.3x

Table 4.4: Distributed Processing on Large-Scale Datasets. Reports the performance analysis of the speedup
gained by DistLODStats as compared with the original centralized version. The experiments were run on
four datasets (DBpediaen, DBpediade, DBpedia f r , and LinkedGeoData) in a local environment on a single
instance with two configurations: (1) files of the dataset are considered separately, and (2) one big file–all files
concatenated.

Results

We evaluate our approach using the above datasets to compare it against the original LODStats. We
carried out two sets of experiments. First, we evaluate the execution time of our distributed approach
against the original approach. Second, we evaluate the horizontal scalability via increasing nodes
(machines) in the cluster. Results of the experiments are presented in Table 4.4, Figure 4.3, 4.4 and
4.5.

Distributed Processing on Large-Scale Datasets To address Q1, we started our experiments by
evaluating the speedup gained by adopting a distributed implementation of LODStats criteria using
our approach, and compare it against the original centralized version. We run the experiments on four
datasets (DBpediaen, DBpediade, DBpedia f r , and LinkedGeoData) in a local environment on a
single instance with two configurations: (1) files of the dataset are considered separately, and (2) one
big file–all files concatenated.
Table 4.4 shows the performance of two algorithms applied to the four datasets. The column

LODStatsa) reports on the performance of LODStats on files separately (considering each file as
a sequence of execution), the next columns LODStatsb) reports on the performance of LODStats
using a single big file by concatenating each file, and the last columns reports on the performance
of DistLODStats on the same case as previously i.e. the performance for one big dataset in local
mode c) and cluster mode d). We observe that the execution in DistLODStatsc),d) finishes with all the
datasets (see Figure 4.3). However, for LODStatsa),b) the execution often fails at different stages of
the execution. In particular, n/a indicates parser exceptions and fail out of memory exceptions. The

40

4.1 A Scalable Distributed Approach for Computation of RDF Dataset Statistics

Large-Scale RDF Datasets

Ru
nt

im
e

(h
)

0

10

20

30

40

Dbpedia_en Dbpedia_de Dbpedia_fr LinkedGeoData

cluster mode local mode

Figure 4.3: Speedup performance evaluation of DistLODStats. Reports speedup performance analysis for
large-scale RDF datasets for DistLODStats on local mode and cluster mode, respectively. All results illustrate
consistent improvement for each dataset when running on a cluster. The geometric mean of the speedup is 7.4x.

only case where the execution finishes and actually slightly outperforms DistLODStatsc) on a single
node is executing LODStats on the dataset DBpediaen split into files (25.34h for DistLODStatsc) vs
24.63h in LODStatsa)). This is because the DistLODStatsc) considers the input dataset as a big file
instead of evaluation it on each file separately. LODStats streams the criteria one by one, so having a
large dataset streamed that way would lead to very high processing times. However, with small data as
input, the processing can finish in short amount of time, but the results can be very inaccurate.

Figure 4.3 shows the speedup performance evaluation for large-scale RDF datasets for DistLODStats
on local mode and cluster mode, respectively. All results illustrate consistent improvement for each
dataset when running on a cluster. The maximum speedup is 7.6x and the geometric mean of the
speedup is 7.4x.

For example, on DBpediaen, the time on cluster mode is about 2.97 hours which is 7.6 times faster
than evaluating DistLODStats on local mode (about 25.34 hours). The reason why the time spent on
local mode extremely decreases is that the size of the working directory of worker processes is too
large and Spark uses threads for distributing the tasks.

Scalability Sizeup scalability To measure the performance of size-up i.e. scalability of our
approach, we run experiments on three different sizes. This analysis keeps the number of nodes in a
cluster constant, we fix the number of workers (nodes) to 5 and grow the size of datasets to measure

41

Chapter 4 Large-Scale RDF Dataset Statistics

Size of BSBM datset in GB

Ru
nt

im
e

(m
)

0

20

40

60

2 20 50 100 200

w/ caching w/o caching

Figure 4.4: Sizeup performance evaluation of DistLODStats. The analysis keeps the number of nodes in a
cluster constant (5 worker nodes) and grows the size of datasets (BSBM) to measure whether our approach can
deal with larger datasets. We see that the execution time cost grows linearly and is near-constant when the size
of the dataset increases. It stays near-constant as long as the data fits in memory which demonstrates one of the
advantages of utilizing an in-memory approach in performing the statistics computation.

whether a given algorithm can deal with larger datasets. Since real-world datasets are considered to
be unique in the size and also on other aspects e.g. number of unique terms, we chose the BSBM
benchmark tool to generate artificial datasets of different sizes. We started by generating a dataset of
2GB. Then we iteratively increased the size of datasets by one order of magnitude.
On each dataset, we ran the distributed algorithm and the runtime is reported on Figure 4.4. The

x-axis is a generated BSBM dataset per each order of 10x magnitude.
By comparing the runtime (see Figure 4.4), we note that the execution time cost grows linearly and

is near-constant when the size of the dataset increases. As expected, it stays near-constant as long as
the data fits in memory. This demonstrates one of the advantages of utilizing an in-memory approach
in performing the statistics computation. The overall time spent in data read/write and network
communication found in disk-based approaches is no present in distributed in-memory computing.
The performance only starts to degrade when substantial amounts of data need to be written to disk
due to memory overflows. The results show the scalability of our algorithm in the context of sizeup,
which answers question Q2.
Node scalability In order to measure node scalability, we use variations of the number of workers on

42

4.1 A Scalable Distributed Approach for Computation of RDF Dataset Statistics

of workers

Ru
nt

im
e

(m
)

0

20

40

60

80

1 2 3 4 5

w/ caching w/o caching

Figure 4.5: Scalability performance evaluation on DistLODStats. The analysis keeps the size of the dataset
constant (BSBM50GB) and varies the number of workers on the cluster. The number of workers varies from 1,
2, 3, and 4 to 5. We can see that as the number of workers increases, the execution time cost is super-linear on
BSBM50GB dataset.

our cluster. The number of workers varies from 1, 2, 3 and 4 to 5.
Let TN be the time required to complete the task on N workers. The speedup S is the ratio S = TL

TN
,

where TL is the execution time of the algorithm on local mode. Efficiency measures the processing
power being used (i.e speedup per worker). It is defined as the time to run the algorithm on N workers
compared to the time to run algorithm on local mode: E = S

N =
TL
NTN

.

Figure 4.5 shows the speedup for BSBM50GB. We can see that as the number of workers increases,
the execution time cost is super-linear.
As depicted in Figure 4.6, the speedup performance trend is consistent as the number of workers

increases.
In contrast, as the number of workers was increased from 1 to 5, efficiency increased only up to the

4th worker for BSBM50GB dataset. This implies that the tasks generated from the given dataset were
covered with almost 4 nodes. The results imply that DistLODStats can achieve near-linear or even
superlinear scalability in performance, which answers question Q3.
Breakdown by Criterion

Now we analyze the overall runtime of criteria execution. Figure 4.7 reports on the runtime of each

43

Chapter 4 Large-Scale RDF Dataset Statistics

of workers

ra
tio

0

2

4

6

8

10

1 2 3 4 5

speedup

efficiency

Figure 4.6: Speedup Ratio and Efficiency of DistLODStats. The speedup performance trend is consistent as
the number of workers increases. Efficiency increased only up to the 4th worker for BSBM50GB dataset. The
results imply that DistLODStats can achieve near-linear or even superlinear scalability in performance.

criterion on both BSBM20GB and BSBM200GB datasets.
Discussion. DistLODStats consists of 32 predefined criteria most of which have a runtime

complexity of O(n) where n is the number of input triples. The breakdown for BSBM with two
instances is shown in Figure 4.7. The results obtained confirm to a large extent the pre-analysis made
in Figure 4.1.4. The execution is longer when there is data movement in the cluster compared to when
data is processed without movement e.g. Criterion 2, 3 and 4. There are some criteria that are quite
efficient to compute even with data movement e.g. 22, 23. This is because data is largely filtered
before the movement. Criterion 2 and 28 are the most expensive ones in terms of time of execution.
This is most probably because of the sorting and maximum algorithm used by Spark. Criteria 20 and
21 are particularly expensive because of the extra overhead caused by extracting the data type and
language for each particular object of type Literal. Criteria like 14 and 15 do not require movement of
data, but yet are inefficient in execution. This is because the data is not filtered previously. The last
three criteria do include data movement but are among the most efficient ones. This is because the low
number of namespaces the chosen datasets have.
Overall, the evaluation study conducted demonstrates that parallel and distributed computation of

the different statistical values is scalable, i.e. the execution finishes in a reasonable time relative to the

44

4.2 STATisfy: A REST Interface for DistLODStats

#criteria no.

Ru
nt

im
e

(m
ill

is
ec

on
ds

)

1

10

100

1000

10000

100000

1000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

BSBM_20GB BSBM_200GB

Figure 4.7: Overall Breakdown by Criterion Analysis (log scale). The execution time is longer when there is
data movement in the cluster compared to when data is processed without movement. There are some criteria
that are quite efficient to compute even with data movement e.g. 22, 23. This is because data is largely filtered
before the movement.

high volume of datasets.

4.2 STATisfy: A REST Interface for DistLODStats

The increasing adoption of the Linked Data format, RDF, over the last two decades has brought new
opportunities. It has also raised new challenges though, especially when it comes to managing and
processing large amounts of RDF data. In particular, assessing the internal structure of a data set is
important, since it enables users to understand the data better. One prominent way of assessment is
computing statistics about the instances and schema of a data set. However, computing statistics of
large RDF data is computationally expensive. To overcome this challenging situation, we previously
built DistLODStats, a framework for parallel calculation of 32 statistical criteria over large RDF
datasets, based on Apache Spark. Running DistLODStats is, thus, done via submitting jobs to a Spark
cluster. Often times, this process is done manually, either by connecting to the cluster machine or via
a dedicated resource manager.

SANSA andDistLODStats use Apache Spark9 as an underlying engine, which is a popular framework
for processing large datasets in-memory. Spark provides two possibilities of running and interacting
with applications:

• Interactive - via a Command Line Interface (CLI) called Spark Shell, or via Spark Notebooks
(e.g. SANSA-Notebooks [30]),

• Batch - which includes a bash script called spark-submit used to submit a Spark application to
the cluster without interaction during run time.

Spark application is usually launched by logging first into a cluster, either in the premises or remotely
in the cloud. This process presents several difficulties:

9
http://spark.apache.org/

45

http://spark.apache.org/

Chapter 4 Large-Scale RDF Dataset Statistics

C
ol

la
bo

ra
tiv

e
A

na
ly

tic
s

Se
rv

ic
es

 M
ar

ke
tp

la
ce

REST
Server

B
ig
D
at
aE

u
ro

p
e

 Local Cluster
Standalone Resource manager

Master

Worker 1 Worker 2 Worker n

SANSA DistLODStats

Figure 4.8: STATisfy overview architecture. Main services of STATisfy: Client – will create a remote Spark
cluster for initialization, and submit jobs through REST APIs. Livy REST Server – it will then discover this
job and sent through Remote Procedure Call (RCP) to SparkSession, where the code will be initialized and
executed using DistLODStats.

• It requires a sophisticated user access control management, which may become hard to maintain
with multiple users.

• It raises the chances of exhausting the cluster or even causing its failure.

• It exposes cluster and its configurations to all the users with access.

In order to elevate those, we have investigated Apache Livy 10 – a novel open-source REST interface
for interacting remotely with Apache Spark. It supports executing snippets of code or programs in a
Spark context that runs locally, in a Spark cluster or in Apache Hadoop YARN.

4.2.1 System Design Overview

Traditionally, when running a Spark job, submitting it to a Spark cluster is done via a spark-shell or
spark-submit. Usually, this process is done manually either entering the cluster gateway machines or
via a dedicated resource manager (e.g. SLURM, OpenStack).

For users with little experience in cluster management and the Hadoop infrastructure, it can
be challenging to run Spark. As an alternative, we introduce STATisfy11: REST Interface for
DistLODStats.
10
https://livy.incubator.apache.org/

11
https://github.com/GezimSejdiu/STATisfy

46

https://livy.incubator.apache.org/
https://github.com/GezimSejdiu/STATisfy

4.3 Summary

Instead of computing RDF statistics directly on the cluster, the interaction is done via REST APIs
(as it is depicted in the Figure 4.8).

The client-side will create a remote Spark cluster for initialization, and submit jobs through REST
APIs. Livy REST Server will then discover this job and send it through Remote Procedure Call (RCP)
to SparkSession, where the code will be initialized and executed. In the meantime, the client will be
waiting for the result of this job coming from the same direction.

Running the STATisfy is similar to using DistLODStats via spark-submit. The difference is that this
shell is not running locally, instead, it runs in a cluster and transfers the data back and forth through
the network.

For demonstrating the usage of the tool, we have deployed it on the comprehensive statistics catalog
LODStats12 which crawls RDF data from metadata portals such as CKAN dataset metadata registry.
By doing this, it obtains a comprehensive picture of the current state of the Web of Data. As we use
DistLODStats as an underlying engine for computing RDF statistics afterward, the limitation was that
the user has to interact with the cluster manually and initiate the job for computing such statistics.
By using STATisfy REST interface, LODStats will interact with the cluster from anywhere which
provides the capabilities necessary to do this without compromising on ease of use or security.

As it is shown in Figure 4.8, the user starts a session via REST API using Livy for submitting a job
to the Spark cluster. With the POST request, the user could submit a request to DistLODStats using
the Livy server. Using Livy, STATisfy will then help to launch this request in the cluster. As a result,
the output will be curled by their end in the format of the VoID description.

4.3 Summary

For obtaining an overview over the Web of Data as well as evaluating the quality of individual datasets,
it is important to gather statistical information describing characteristics of the internal structure of
datasets. However, this process is both data-intensive and computing-intensive and it is a challenge to
develop fast and efficient algorithms that can handle large scale RDF datasets.

In this chapter, we presented DistLODStats, a novel software component for distributed in-memory
computation of RDF datasets statistics implemented using the Spark framework. DistLODStats is
maintained and has an active community due to its integration in SANSA. Our definition of statistical
criteria provides a framework reducing the implementation effort required for adding further statistical
criteria. We showed that our approach improves upon a previous centralized approach we compare
against. Since Spark RDDs are designed to scale horizontally, cluster sizes can be adapted to dataset
sizes accordingly.
DistLODStats is a prominent solution, however, it requires setup and managing of the cluster

configuration and job submission. To make the process easier, we have introduced STATisfy, a tool
for interacting with DistLODStats via a REST Interface. This way DistLODStats can be provided
as-a-service, where users only send (HTTP) requests to the remote cluster and obtain the wished
results, without having any knowledge about system access or cluster management. STATisfy is used
for the LODStats project and inclusion in the new DBpedia13 community release processes is ongoing.

12
http://lodstats.aksw.org/

13
https://wiki.dbpedia.org/

47

http://lodstats.aksw.org/
https://wiki.dbpedia.org/

CHAPTER 5

Quality Assessment of RDF Datasets at Scale

Large amounts of data are being published openly to Linked Data by different data providers. A
multitude of applications such as semantic search, query answering, and machine reading [89] depend
on these large-scale1 RDF datasets. The quality of underlying RDF data plays a fundamental role
in large-scale data consuming applications. Measuring the quality of linked data spans a number of
dimensions including but not limited to: accessibility, interlinking, performance, syntactic validity or
completeness [7]. Each of these dimensions can be expressed through one or more quality metrics.
Considering that each quality metric tries to capture a particular aspect of the underlying data,
numerous metrics are usually provided against the given data that may or may not be processed
simultaneously.

On the other hand, the limited number of existing techniques of quality assessment for RDF datasets
are not adequate to assess data quality at large-scale and these approaches mostly fail to capture
the increasing volume of big data. To date, a limited number of solutions have been conceived to
offer a quality assessment of RDF datasets [14–17]. But, these methods can either be used on a
small portion of large datasets [15] or narrow down to specific problems e.g., syntactic accuracy of
literal values [16], or accessibility of resources [18]. In general, these existing efforts show severe
deficiencies in terms of performance when data grows beyond the capabilities of a single machine.
This limits the applicability of existing solutions to medium-sized datasets only, in turn, paralyzing
the role of applications in embracing the increasing volumes of the available datasets.
To deal with big data, tools like Apache Spark2 have recently gained a lot of interest. Apache

Spark provides scalability, resilience, and efficiency for dealing with large-scale data. Spark uses the
concepts of RDD [21] and performs operations like transformations and actions on this data in order
to effectively deal with large-scale data.
To handle large-scale RDF data, it is important to develop flexible and extensible methods that

can assess the quality of data at scale. At the same time, due to the broadness and variety of quality
assessment domain and resulting metrics, there is a strong need to provide a generic pattern to
characterize the quality assessment of RDF data in terms of scalability and applicability to big data.

In this chapter, we borrow the concepts of data transformation and action from Spark and present a
pattern for designing quality assessment metrics over large RDF datasets, which is inspired by design
patterns. In software engineering, design patterns are general and reusable solutions to common

1
http://lodstats.aksw.org/

2
https://spark.apache.org/

49

http://lodstats.aksw.org/
https://spark.apache.org/

Chapter 5 Quality Assessment of RDF Datasets at Scale

problems. Akin to design pattern, where each pattern acts like a blueprint that can be customized
to solve a particular design problem, the introduced concept of Quality Assessment Pattern (QAP)
represents a generalized blueprint of scalable quality assessment metrics. In this way, the quality
metrics designed following QAP can exhibit the ability to achieve scalability to large-scale data
and work in a distributed manner. In addition, we also provide an open source implementation and
assessment of these quality metrics in Apache Spark following the proposed QAP.

In this chapter we address the following research question:

RQ2: Can we scale RDF dataset quality assessment horizontally?

Contributions of this chapter are summarize as follows:

• We present a Quality Assessment Pattern QAP to characterize scalable quality metrics.

• We provide DistQualityAssessment – a distributed (open source) implementation of quality
metrics using Apache Spark.

• We perform an analysis of the complexity of the metric evaluation in the cluster.

• We evaluate our approach and demonstrate empirically its superiority over a previous centralized
approach.

• We integrated the approach into the SANSA framework. SANSA is actively maintained and
uses the community ecosystem (mailing list, issues trackers, continuous integration, website,
etc.).

This chapter is based on the following publication ([24]):

• Gezim Sejdiu; Anisa Rula; Jens Lehmann; and Hajira Jabeen, “A Scalable Framework for
Quality Assessment of RDF Datasets,” in Proceedings of 18th International Semantic Web
Conference (ISWC), 2019.

The remainder of this chapter is organized as follows: Our approach for the computation of RDF
dataset quality metrics is detailed in Section 5.1 and evaluated in Section 5.2. Finally, we summarize
our work in Section 5.3.

5.1 A Scalable Framework for Quality Assessment of RDF Datasets

In this section, we first introduce the basic notions used in our approach, the formal definition of the
proposed quality assessment pattern and then describe the workflow.

5.1.1 Quality Assessment Pattern

Data quality is commonly conceived as a multi-dimensional construct [92] with a popular notion
of ’fitness for use’ and can be measured along many dimensions D such as accuracy (daccu ∈ D),
completeness (dcomp ∈ D) and timeliness (dtmls ∈ D). The assessment of a quality dimensions d
is based on quality metrics QM = {m1,m2, . . . mk} where mi is a heuristic that is designed to fit a
specific assessment dimension. The following definitions form the basis of QAP.

50

http://jens-lehmann.org/files/2019/iswc_dist_quality_assessment.pdf
http://jens-lehmann.org/files/2019/iswc_dist_quality_assessment.pdf

5.1 A Scalable Framework for Quality Assessment of RDF Datasets

Quality Metric := Action |(Action OP Action)

OP := ∗ |− |/ |+

Action := Count(Transformation)

Transformation := Rule(Filter) |(Transformation BOP Transformation)

Filter := getPredicates ∼?p |getSubjects ∼?s |getObjects ∼?o |getDistinct(Filter)

|Filter or Filter |Filter && Filter)

Rule := isURI(Filter) |isIRI(Filter) |isInternal(Filter) |isLiteral(Filter)

|!isBroken(Filter) |hasPredicateP |hasLicenceAssociated(Filter)

|hasLicenceIndications(Filter) |isExternal(Filter) |hasType((Filter)

|isLabeled(Filter)

BOP := ∩ | ∪

Table 5.1: Quality Assessment Pattern. A reusable template for quality metric implementation composed of
transformations and actions.

Definition 5.1.1 (Filter) Let F = { f1, f2, . . . fl} be a set of filters where each filter fi sets a criteria
for extracting predicates, objects, subjects, or their combination. A filter fi takes a set of RDF triples
as input and returns a subgraph that satisfies the filtering criteria.

Definition 5.1.2 (Rule) Let R = {r1, r2, . . . rj} be a set of rules where each rule ri sets a conditional
criteria. A rule takes a subgraph as input and returns a new subgraph that satisfies the conditions
posed by the rule ri.

Definition 5.1.3 (Transformation) A transformation τ : G → G′ is an operation that applies rules
defined by R on the RDF graph G and returns an RDF subgraph G′. A transformation τ can be a
union ∪ or intersection ∩ of other transformations.

Definition 5.1.4 (Action) An action α : G → R is an operation that triggers the transformation of
rules on the filtered RDF graph G′ and generates a numerical value. Action α is the count of elements
obtained after performing a τ operation.

Definition 5.1.5 (Quality Assessment Pattern QAP) The Quality Assessment Pattern QAP is a
reusable template to implement and design scalable quality metrics. The QAP is composed of
transformations and actions. The output of a QAP is the outcome of an action returning a numeric
value against the particular metric.

QAP is inspired by Apache Spark operations and designed to fit different data quality metrics (for
more details see Table 5.1).
Each data quality metric can be defined following the QAP. Any given data quality metric mi

that is represented through the QAP using transformation τ and action α operations can be easily
transformed into Spark code to achieve scalability.

Table 5.2 demonstrates a few selected quality metrics defined against proposed QAP.
As shown in Table 5.2, each quality metric can contain multiple rules, filters or actions. It is worth

mentioning that action count(triples) returns the total number of triples in the given data. This
can also be seen that the action can be an arithmetic combination of multiple actions i.e. ratio, sum,

51

Chapter 5 Quality Assessment of RDF Datasets at Scale

Metric Transformation τ Action α

L1 Detection of a r = hasLicenceAssociated(?p) α = count(r)

Machine Readable License α > 0 ? 1 : 0

L2 Detection of a Human r = isURI(?s) ∩ hasLicenceIndications(?p) ∩ α = count(r)

Readable License isLiteral(?o) ∩ isLicenseStatement(?o) α > 0 ? 1 : 0

I2 Linkage Degree of Linked r_1 = isIRI(?s) ∩ internal(?s) ∩ α_1 = count(r_3)

External Data Providers isIRI(?o) ∩ external(?o) α_2 = count(triples)

r_2 = isIRI(?s) ∩ external(?s) ∩ α = a_1/a_2

isIRI(?o) ∩ internal(?o)

r_3 = r_1 ∪ r_2

U1 Detection of a Human r_1 = isURI(?s) ∩ isInternal(?s) ∩ α_1 = count(r_1) +

Readable Labels isLabeled(?p) count(r_2) +

r_2 = isInternal(?p) ∩ isLabeled(?p) count(r_3)

r_3 = isURI(?o) ∩ isInternal(?o) ∩ α_2 = count(triples)

isLabeled(?p) α_1/ α_2

RC1 Short URIs r_1 = isURI(?s) ∪ isURI(?p) ∪ isURI(?o) α_1 =count(r_2)

r_2 = resTooLong(?s, ?p, ?o) α_1/count(triples)

SV3 Identification of Literals r = isLiteral(?o) ∩ getDatatype(?o) ∩ α = count(r)

with Malformed Datatypes isLexicalFormCompatibleWithDatatype(?o)

CN2 Extensional Conciseness r = isURI(?s) ∩ isURI(?o) α_1 = count(r)

α_2 = count(triples)

(α_2- α_1)/ α_2

Table 5.2: Definition of selected metrics following QAP. List of few selected quality metrics defined against
proposed QAP.

etc. We illustrate our proposed approach on some metrics selected from [7, 17]. Given that the aim
of this chapter is to show the applicability of the proposed approach and comparison with existing
methods, we have only selected those which are already provided out-of-box in Luzzu.

5.1.2 System Overview

In this section, we give an overall description of the data model and the architecture of DistQual-
ityAssessment. We model and store RDF graphs G based on the basic building block of the Spark
framework, RDDs. RDDs are in-memory collections of records that can be operated in parallel on a
large distributed cluster. RDDs provide an interface based on coarse-grained transformations (e.g
map, filter and reduce): operations applied on an entire RDD. A map function transforms each value
from an input RDD into another value while applying τ rules. A filter transforms an input RDD to an
output RDD, which contains only the elements that satisfy a given condition. Reduce aggregates the
RDD elements using a specific function from τ.

The computation of the set of quality metricsQM is performed using Spark as depicted in Figure 5.1.
Our approach consists of four steps:

Defining quality metrics parameters (Step 1) The metric definitions are kept in a dedicated file
that contains most of the configurations needed for the system to evaluate quality metrics and gather
result sets.

52

5.1 A Scalable Framework for Quality Assessment of RDF Datasets
D

ef
in

iti
on

s

● Define quality dimensions
● Define quality metrics, threshold and other configurations

RDF Data

 Q
ua

lit
y

as
se

ss
m

en
t

SANSA Engine

D
at

a
In

ge
st

io
n

Distributed Data
Structures

Q
A

P

Metrics

A
na

ly
se

SANSA-NotebooksData Quality Vocabulary (DQV)

1

2

3 4

Figure 5.1: Overview of distributed quality assessment’s abstract architecture. Main components of
DistQualityAssessment: 1) Definitions – defining quality metrics parameters, 2) Retrieving the RDF data, 3)
Parsing and mapping RDF data into the main dataset (RDD of triples), and 4) Quality metric evaluation.

Retrieving the RDF data (Step 2) RDF data first needs to be loaded into a large-scale storage that
Spark can efficiently read from. We use HDFS. HDFS is able to fit and stores any type of data in its
Hadoop-native format and parallelizes them across a cluster while replicating them for fault tolerance.
In such a distributed environment, Spark automatically adopts different data locality strategies to
perform computations as close to the needed data as possible in HDFS and thus avoids data transfer
overhead.

Parsing and mapping RDF into the main dataset (Step 3) We first create a distributed dataset
called main dataset that represent the HDFS file as a collection of triples. In Spark, this dataset is
parsed and loaded into an RDD of triples having the format Triple<(s,p,o)>.
Quality metric evaluation (Step 4) Considering the particular quality metric, Spark generates an

execution plan, which is composed of one or more τ transformations and α actions. The numerical
output of the final action is the quality of the input RDF corresponding to the given metric.

5.1.3 Implementation

We have used the Scala3 programming language API in Apache Spark to provide the distributed
implementation of the proposed approach.

The DistQualityAssessment (see Algorithm 2) constructs the main dataset (Line 1) while reading
RDF data (e.g. NTriples file or any other RDF serialization format) and converts it into an RDD of
triples. This latter undergoes the transformation operation of applying the filtering through rules in R

3
https://www.scala-lang.org/

53

https://www.scala-lang.org/

Chapter 5 Quality Assessment of RDF Datasets at Scale

Algorithmus 2 : Spark-based parallel quality assessment algorithm.
input :RDF: an RDF dataset, param: quality metrics parameters.
output :dqv description or metric numerical value

1 triples = spark .rdf(lang)(input)
2 triples.persist()
3 dqv ← ∅
4 foreach m ∈ param.getListO f Metrics do
5 triples← triples.Tran f orm { t =>
6 rule← m.Rule
7 t .apply(rule) }
8 metric← triples.apply(m.Action)
9 if m.hasDQVdescription then
10 dqvi f y ← metric.dqvi f y()

11 dqv.add(dqvi f y)

12 return (dqv,metric)

and producing a new filtered RDD (G′) (Line 5). At the end, G′ will serve as an input to the next step
which applies a set of α actions (Line 8). The output of this step is the metric output represented as a
numerical value (Line 8). The result set of different quality metrics (Line 12) can be further visualized
and monitored using SANSA-Notebooks [30].
The user can also choose to extract the output in a machine-readable format (Line 10). We have used
the data quality vocabulary (DQV) [93] to represent the quality metrics.

Furthermore, we also provide a Docker image of the system integrated within the BDE platform4 -
an open-source Big Data processing platform allowing users to install numerous big data processing
tools and frameworks and create working data flow applications.
The work done here (available under Apache License 2.0) has been integrated into SANSA [31],

an open source5 data flow processing engine for scalable processing of large-scale RDF datasets.
SANSA uses Spark offering fault-tolerant, highly available and scalable approaches to process massive
sized datasets efficiently. SANSA provides the facilities for semantic data representation, querying,
inference, and analytics at scale. Being part of this integration, DistQualityAssessment can take
advantage of having the same user community as well as infrastructure build via the SANSA project.
Doing so, it can also ensure the sustainability of the tool given that SANSA is supported by several
grants until at least 2021.

Complexity Analysis We deem that the overall time complexity of the distributed quality assessment
evaluation is O(n). The performance of metrics computation depends on data shuffling (while filtering
using rules in R) and data scanning. Our approach performs a direct mapping of any quality metric
designed using QAP into a sequence of Spark-compliant Scala-commands, as a consequence, most
of the operators used are a series of transformations like map, f ilter and reduce. The complexity of
map and f ilter is considered to be linear with respect to the number of triples associated with it. The

4
https://github.com/big-data-europe

5
https://github.com/SANSA-Stack

54

https://github.com/big-data-europe
https://github.com/SANSA-Stack

5.2 Evaluation

complexity of a metric then depends on the α operation that returns the count of the filtered output.
This later step works on the distributed RDD between p nodes which implies that the complexity of
each node then becomes O(n/p), where n is a number of input triples. Let be O(τ) a complexity of τ,
then the complexity of the metric will be O(n/p ∗ O(τ)). This indicates that the runtime increases
linearly when the size of an RDD increases and decreases linearly when more nodes p are added to
the cluster.

5.2 Evaluation

The main aim of DistQualityAssessment is to serve massive large-scale real-life RDF datasets. We are
interested in addressing the following additional questions.

• Flexibility: How fast our approach processes different types of metrics?

• Scalability: How large are the RDF datasets that DistQualityAssessment can scale to? What is
the system speedup w.r.t the number of nodes in a cluster mode?

• Efficiency: How well our approach performs compared with other state-of-the-art systems on
real-world datasets?

In the following, we present our experimental setup including the datasets used. Thereafter, we give
an overview of our results.

5.2.1 Experimental Setup

We chose two real-world and one synthetic datasets for our experiments:

1. DBpedia [6] (v 3.9) – a cross domain dataset. DBpedia is a knowledge base with a large
ontology. We build a set of 3 pipelines of increasing complexity: (i) Men

DBpedia (≈ 813M
triples); (ii) Mde

DBpedia (≈ 337M triples); (iii) M f r
DBpedia

(≈ 341M triples). DBpedia has been
chosen because of its popularity in the Semantic Web community.

2. LinkedGeoData [90] – a spatial RDF knowledge base derived from OpenStreetMap.

3. Berlin SPARQL Benchmark (BSBM) [91] – a synthetic dataset based on an e-commerce use
case containing a set of products that are offered by different vendors and reviews posted by
consumers about products. The benchmark provides a data generator, which can be used to
create sets of connected triples of any particular size.

Properties of the considered datasets are given in Table 5.3.
We implemented DistQualityAssessment using Spark-2.4.0, Scala 2.11.11 and Java 8, and all the

data were stored on the HDFS cluster using Hadoop 2.8.0. The experiments in local mode are all
performed on a single instance of the cluster. Specifically, we compare our approach with Luzzu [17]
v4.0.0, a state-of-the-art quality assessment system6. All distributed experiments were carried out on
a small cluster of 7 nodes (1 master, 6 workers): Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz (32
Cores), 128 GB RAM, 12 TB SATA RAID-5. The machines were connected via a Gigabit network.
All experiments have been executed three times and the average value is reported in the results.
6
https://github.com/Luzzu/Framework

55

https://github.com/Luzzu/Framework

Chapter 5 Quality Assessment of RDF Datasets at Scale

−→
DBpedia BSBM

LinkedGeoData en de fr 2GB 20GB 200GB

#nr. of
triples

1,292,933,812 812,545,486 336,714,883 340,849,556 8,289,484 81,980,472 817,774,057

size (GB) 191.17 114.4 48.6 49.77 2 20 200

Table 5.3: Dataset summary information (nt format). Lists dataset information used on the evaluation of the
DistQualityAssessment. The size (in GB) and the number of triples are given.

5.2.2 Results

We evaluate the proposed approach using the above datasets to compare it against Luzzu [17]. We
carry out two sets of experiments. First, we evaluate the runtime of our distributed approach in contrast
to Luzzu. Second, we evaluate the horizontal scalability via increasing nodes in the cluster. Results
of the experiments are presented in Table 5.4, Figure 5.2 and 5.3. Based on the metric definition,
some metrics make use of external access (e.g. Dereferenceability of Forward Links) which leads to a
significant increase in Spark processing due to network latency. For the sake of the evaluation, we have
suspended such metrics. As of that, we choose seven metrics (see Table 5.2 for more details) where the
level of difficulty varies from simple to complex according to the combination of transformation/action
operations involved.

Performance evaluation on large-scale RDF datasets

We started our experiments by evaluating the speedup gained by adopting a distributed implementation
of quality assessmentmetrics using our approach, and compare it against Luzzu. We run the experiments
on five datasets (DBpediaen, DBpediade, DBpedia f r , LinkedGeoData and BSBM200GB). Local
mode represents a single instance of the cluster without any tuning of Spark configuration and the
cluster mode includes further tuning. Luzzu was run in a local environment on a single machine with
two strategies: (1) streaming the data for each metric separately, and (2) one stream/load – all metrics
evaluated just once.

Table 5.4 shows the performance of two approaches applied to five datasets. In Table 5.4 we indicate
"Timeout" whenever the process did not complete within a certain amount of time7 and "Fail" when
the system crashed before this timeout delay. Column Luzzua) represents the performance of Luzzu
on bulk load – considering each metric as a sequence of the execution, on the other hand, the column
Luzzub) reports on the performance of Luzzu using a joint load by evaluating each metric using one
load. The last columns reports on the performance of DistQualityAssessment run on a local mode
c), cluster mode d) and speedup ratio of our approach compared to Luzzub) (d)/b) − 1) and itself
evaluated on local mode (d)/c) − 1) is reported on the column e). We observe that the execution of
our approach finishes with all the datasets whereas this is not the case with Luzzu which either timeout
or fail at some point.

Unfortunately, Luzzu was not capable of evaluating the metrics over large-scale RDF datasets from
Table 5.4 (part one). For that reason, we run yet another set of experiments on very small datasets that
Luzzu was able to handle. The second part of the Table 5.4 shows a performance evaluation of our

7 We set the timeout delay to 24 hours of the quality assessment evaluation stage.

56

5.2 Evaluation

Runtime (m) (mean/std)

−→
Luzzu DistQualityAssessment

a) single b) joint c) local d) cluster e) speedup ratio w.r.t

Luzzu |DistQualityAssessmentc)

La
rg
e-
sc
al
e LinkedGeoData Fail Fail 446.9/63.34 7.79/0.54 n/a|56.4x

DBpediaen Fail Fail 274.31/38.17 1.99/0.04 n/a|136.8x

DBpediade Fail Fail 161.4/24.18 0.46/0.04 n/a|349.9x

DBpedia f r Fail Fail 195.3/26.16 0.38/0.04 n/a|512.9x

BSBM200GB Fail Fail 454.46/78.04 7.27/0.64 n/a|61.5x

Sm
al
lt
o
m
ed

iu
m

BSBM0.01GB 2.64/0.02 2.65/0.01 0.04/0.0 0.42/0.04 65x|(-0.9x)

BSBM0.02GB 5.9/0.16 5.66/0.02 0.04/0.0 0.43/0.03 146.5x|(-0.9x)

BSBM0.05GB 16.38/0.44 15.39/0.21 0.05/0.0 0.46/0.02 326.6x|(-0.9x)

BSBM0.1GB 40.59/0.56 37.94/0.28 0.06/0.0 0.44/0.05 675.5x|(-0.9x)

BSBM0.2GB 101.8/0.72 101.78/0.64 0.07/0.0 0.4/0.03 1453.3|(-0.8x)

BSBM0.5GB 459.19/18.72 468.64/21.7 0.15/0.01 0.48/0.03 3060.3x|(-0.7x)

BSBM1GB 1454.16/10.55 1532.95/51.6 0.4/0.02 0.56/0.02 3634.4x|(-0.3x)

BSBM2GB Timeout Timeout 3.19/0.16 0.62/0.04 n/a|4.1x

BSBM10GB Timeout Timeout 29.44/0.14 0.52/0.01 n/a|55.6x

BSBM20GB Fail Fail 34.32/9.22 0.75/0.29 n/a|44.8x

Table 5.4: Performance evaluation on large-scale RDF datasets. A speedup analysis gained by DistQual-
ityAssessment as compared with Luzzu. The experiments were run on five datasets (DBpediaen, DBpediade,
DBpedia f r , LinkedGeoData and BSBM200GB). Luzzu was run in a local environment on a single machine
with two strategies: (1) streaming the data for each metric separately, and (2) one stream/load – all metrics
evaluated just once.

approach compared with Luzzu on very small RDF datasets. In some cases (e.g. RC1, SV3) for a
very small dataset, Luzzu performs better than our approach with a small margin of runtime in the
local mode. It is due to the fact that in the streaming model when Luzzua) finds the first statement
which fulfills the condition (e.g.finding the shortest URIs), it stops the evaluation and returns the
results. On the contrary, our approach evaluates the metrics over the whole dataset exploiting the
fault-tolerance and resilient features build-in Spark. In other cases, Luzzu suffers from significant
slowdowns, which are several orders of magnitude slower. Therefore, its average runtime over all
metrics is worst as compared to our approach. It is important to note that our approach to these very
small datasets degrades while running on the cluster mode. This is because of the network overhead
while shuffling the data, but it outperforms Luzzua),b) when considering ”average runtime” over all
the metrics (even for very small datasets).

Findings shown in Table 5.4 depicts that our approach starts outperforming when the size of the
dataset grows (e.g. BSBM2GB). The runtime in the cluster mode stays constant when the size of the
data fits into the main memory of the cluster. On other hand, Luzzu is not able to evaluate the metrics
when the size of data starts increasing, the time taken lasts beyond the delay we set for small datasets.
Because of the large differences, we have used a logarithmic scale to better visualize these results.

57

Chapter 5 Quality Assessment of RDF Datasets at Scale

BSBM datset (size in GB)

Ru
nt

im
e

(s
)

0

200

400

600

2 20 50 100 200

L2 L1 I2 U1 RC1 SV3 CN2

Figure 5.2: Sizeup performance evaluation of DistQualityAssessment. The analysis fixes the number of
nodes to 6 and grows the size of datasets to measure whether DistQualityAssessment can deal with larger
datasets. We see that the execution time increases linearly and is near-constant when the size of the dataset
increases. As expected, it stays near-constant as long as the data fits in memory.

Scalability performance analysis

In this experiment, we evaluate the efficiency of our approach. Figure 5.2 and 5.3 illustrates the results
of the comparative efficiency analysis.
Data scalability To measure the performance of size-up scalability of our approach, we run

experiments on five different sizes.
We fix the number of nodes to 6 and grow the size of datasets to measure whether DistQualityAssess-

ment can deal with larger datasets. For this set of experiments, we consider BSBM benchmark tool to
generate synthetic datasets of different sizes since the real-world dataset is considered to be unique in
their size and attributes.

We start by generating a dataset of 2GB. Then, we iteratively increase the size of datasets. On each
dataset, we run our approach and the runtime is reported on Figure 5.2. The x-axis shows the size of
the BSBM dataset with an increasing order of 10x magnitude.

By comparing the runtime (see Figure 5.2), we note that the execution time increases linearly and is
near-constant when the size of the dataset increases. As expected, it stays near-constant as long as the
data fits in memory. This demonstrates one of the advantages of utilizing the in-memory approach for
performing quality assessment computation. The overall time spent in data read/write and network
communication found in disk-based approaches is saved. However, when the data overflows the
memory, and it is spilled to disk, the performance degrades. These results show the scalability of our
algorithm in the context of size-up.

Node scalability In order to measure node scalability, we vary the number of workers on our cluster.

58

5.2 Evaluation

of workers

Ru
nt

im
e

(m
)

0

25

50

75

100

125

1 2 3 4 5 6

L2 L1 I2 U1 RC1 SV3 CN2

Figure 5.3: Node scalability performance evaluation of DistQualityAssessment. The analysis keeps the
size of the dataset constant (BSBM200GB) and varies the number of workers on the cluster. The number of
workers varies from 1, 2, 3, 4 and 5 to 6. We can see that as the number of workers increases, the execution
time cost-decrease is almost linear. It decreases about 14 times (from 433.31 minutes down to 28.8 minutes)
as cluster nodes increase from one to six worker nodes. The results shown here imply that our approach can
achieve near-linear scalability in performance in the context of speedup.

The number of workers has varied from 1, 2, 3, 4 and 5 to 6.
Figure 5.3 shows the speedup for BSBM200GB with the various number of worker nodes. We can

see that as the number of workers increases, the execution time cost-decrease is almost linear. The
execution time decreases about 14 times (from 433.31 minutes down to 28.8 minutes) as cluster nodes
increase from one to six worker nodes. The results shown here imply that our approach can achieve
near-linear scalability in performance in the context of speedup.

Furthermore, we conduct the effectiveness evaluation of our approach. Speedup S is an important
metric to evaluate a parallel algorithm. It is defined as a ratio S = Ts/Tn, where Ts represents the
execution time of the algorithm run on a single node and Tn represents the execution time required for
the same algorithm on n nodes with the same configuration and resources. Efficiency is defined as a
ratio E = S/n = Ts/nTn which measures the processing power being used, in our case the speedup per
node.
The speedup and efficiency curves of DistQualityAssessment are shown in Figure 5.4. The trend

shows that it achieves almost linear speedup and even superlinear in some cases. The upper curve in
the Figure 5.4 indicates superlinear speedup. The speedup grows faster than the number of worker
nodes. This is due to the computation task for the metric being computationally intensive, and the
data does not fit in the cache when executed on a single node. But it fits into the caches of several
machines when the workload is divided amongst the cluster for parallel evaluation. While using Spark,
the superlinear speedup is an outcome of the improved complexity and runtime, in addition to efficient

59

Chapter 5 Quality Assessment of RDF Datasets at Scale

of workers

ra
tio

0

5

10

15

20

1 2 3 4 5 6

speedup efficiency

Figure 5.4: Effectiveness of DistQualityAssessment. The speedup performance trend shows that it achieves
almost linear speedup and even superlinear in some cases. The speedup grows faster than the number of worker
nodes due to the computation task for the metric being computationally intensive, and the data does not fit in the
cache when executed on a single node but fits into several machines when the workload is divided amongst the
cluster for parallel evaluation.

memory management behavior of the parallel execution environment.

Correctness of metrics

In order to test the correctness of implemented metrics, we assess the numerical values for metrics
like L1, L2, and RC1 on very small datasets and the results are found correct w.r.t Luzzu. For metrics
like I2 and CN2, Luzzu uses approximate values for faster performance, and that is not the same as
getting the exact number as in the case of our implementation.

Overall analysis by metrics

We analyze the overall run-time of the metric evaluation. Figure 5.5 reports on the run-time of each
metric considered (see Table 5.2) on both BSBM20GB and BSBM200GB datasets.
DistQualityAssessment implements predefined quality assessment metrics from [7]. We have

implemented these metrics in a distributed manner such that most of them have a run-time complexity
of O(n) where n is the number of input triples. The overall performance of analysis for the BSBM
dataset with two instances is shown in Figure 5.5. The results obtained show that the execution is
sometimes a little longer when there is a shuffling involved in the cluster compared to when data is
processed without movement e.g. Metric L2 and L1. Metric SV3 and CN2 are the most expensive
ones in terms of runtime. This is due to the extra overhead caused by extracting the literals for objects,
and checking the lexical form of its datatype.

60

5.3 Summary

1.85
0.97

4.14
1.18 1.62

19.96 14.18

100.41
75.81

251.02
175.4 171.69

511.4 436.15

metrics

Ru
nt

im
e

(s
ec

on
ds

)

1

5

10

50

100

500

L2 L1 I2 U1 RC1 SV3 CN2

BSBM_20GB BSBM_200GB

Figure 5.5: Overall analysis of by metric in the cluster mode (log scale). It shows that the execution is
sometimes a little longer when there is a shuffling involved in the cluster compared to when data is processed
without movement e.g. Metric L2 and L1. Metric SV3 and CN2 are the most expensive ones in terms of
runtime. This is due to the extra overhead caused by extracting the literals for objects and checking the lexical
form of its datatype.

Overall, the evaluation study carried out demonstrates that distributed computation of different
quality measures is scalable and the execution ends in reasonable time given the large volume of data.

5.3 Summary

The data quality assessment becomes challenging with the increasing sizes of data. Many existing
tools mostly contain a customized data quality functionality to detect and analyze data quality issues
within their own domain. However, this process is both data-intensive and computing-intensive and it
is a challenge to develop fast and efficient algorithms that can handle large scale RDF datasets.
In this thesis, we have introduced DistQualityAssessment, a novel approach for distributed in-

memory evaluation of RDF quality assessment metrics implemented on top of the Spark framework.
The presented approach offers generic features to solve common data quality checks. As a consequence,
this can enable further applications to build trusted data utilities.
We have demonstrated empirically that our approach improves upon the previous centralized

approach that we have compared against. The benefit of using Spark is that its core concepts (RDDs)
are designed to scale horizontally. Users can adapt the cluster sizes corresponding to the data sizes, by
dropping when it is not needed and adding more when there is a need for it.

61

CHAPTER 6

Scalable RDF Querying

In recent years, our information society has reached the stage where it produces billions of data records,
amounting to multiple quintillions of bytes1, on a daily basis. Extraction, cleansing, enrichment and
refinement of information are key to fuel value-adding processes, such as analytics as a premise for
decision making. Devising appropriate (ideally uniform) representations and facilitating efficient
querying of data, metadata, and provenance arising from such phases constantly poses challenges,
especially when data volumes are vast. The most prominent and promising effort is the W3C
consortium with encouraging RDF as a common data representation and vocabularies (e.g. RDFS,
OWL) as a way to include meta-information about the data. These data and meta-data can be further
processed and analyzed using the de-facto query language for RDF data, SPARQL. SPARQL serves
as a standard query language for manipulating and retrieving RDF data.
Querying RDF data becomes challenging when the size of the data increases. This has motivated

a considerable amount of work on designing distributed RDF systems able to efficiently evaluate
SPARQL queries ([1, 19]). Being able to query a large amount of data in an efficient and faster way is
one of the key requirements for every SPARQL engine.
To address these challenges, in this thesis, we propose a scalable RDF querying engine based on

two different partitioning strategies. First, Sparklify – SPARQL-to-SQL rewriter based on the vertical
partitioning [94] implemented on top of Apache Spark. As a second approach, we investigated and
developed the so-called Semantic-based query system. Both approaches are a scalable and efficient
evaluation of SPARQL queries over distributed RDF datasets. The main component of the both
systems are the data partitioning and query evaluation over this data representation.

In this chapter we address the following research question:

RQ3: Can distributed RDF datasets be queried efficiently and effectively?

Contributions of this chapter are summarized as follows:

• We present a novel approach for vertical partitioning including RDF terms using the distributed
computing framework, Apache Spark.

• We developed a scalable query system using Sparqlify – a SPARQL-to-SQL rewriter on top of
Apache Spark (under the Apache Licence 2.0).

1
https://www.domo.com/learn/data-never-sleeps-5

63

https://www.domo.com/learn/data-never-sleeps-5

Chapter 6 Scalable RDF Querying

• We evaluate Sparklify with state-of-the-art engines and demonstrate it empirically.

• A scalable approach for semantic-based partitioning using the distributed computing framework,
Apache Spark.

• A scalable semantic-based query engine (SANSA.Semantic) on top of Apache Spark.

• Comparison of the semantic-based system with state-of-the-art engines and demonstrate the
performance empirically.

• We integrated the proposed approaches into the SANSA [31]2 larger framework. Sparklify
serves as a default query engine in SANSA. SANSA is an active project and maintained,
including issue tracker, mailing list, changelogs, website, etc.

This chapter is based on the following publications ([25–27]):

• Gezim Sejdiu; Damien Graux; Imran Khan; Ioanna Lytra; Hajira Jabeen; and Jens Lehmann,
“Towards A Scalable Semantic-based Distributed Approach for SPARQL query evaluation,”
15th International Conference on Semantic Systems (SEMANTiCS), Research & Innovation ,
2019.

• Claus Stadler; Gezim Sejdiu; Damien Graux; and Jens Lehmann, “Sparklify: A Scalable
Software Component for Efficient evaluation of SPARQL queries over distributed RDF datasets,”
in Proceedings of 18th International Semantic Web Conference (ISWC), 2019. This article is
a joint work with Claus Stadler, a PhD student at the University of Leipzig. In this article, I
devised the implementation of the conceptual architecture, helped on the implementation of the
proposed approach, reviewed related work, and preparation of the experiments and analysis of
the obtained results.

• Claus Stadler; Gezim Sejdiu; Damien Graux; and Jens Lehmann. "Querying large-scale RDF
datasets using the SANSA framework". In Proceedings of 18th International Semantic Web
Conference (ISWC), Poster & Demos, 2019. This demonstration article is a joint work with
Claus Stadler, a PhD student at the University of Leipzig. In this article, I helped in describing
the architecture and implementation of the running example.

The rest of the chapter is structured as follows: Sparklify, a scalable software component for
SPARQL evaluation of large RDF data is presented in Section 6.1. Its data modeling, data partitioning,
and query translation using a distributed framework (Apache Spark) are detailed in Subsection 6.1.1
and evaluated in Subsection 6.1.2. Second part of the chapter, Section 6.2 elaborate the Semantic-based
approach, including its system architecture overview as presented in Section 6.5. The Semantic-based
approach is evaluated in Subsection 6.2.3. Finally, we summarize our work in Section 6.3.

6.1 Sparklify: A Scalable Software for SPARQL Evaluation of Large
RDF Data

In this section, we present the overall architecture of Sparklify, the SPARQL-to-SQL rewriter, and
mapping to Spark Scala-compliant code.
2
http://sansa-stack.net/

64

https://gezimsejdiu.github.io/publications/semantic_based_query_paper_SEMANTICS2019.pdf
http://jens-lehmann.org/files/2019/iswc_sparklify.pdf
http://jens-lehmann.org/files/2019/iswc_sparklify.pdf
https://gezimsejdiu.github.io/publications/sansa-sparklify-ISWC-demo.pdf
https://gezimsejdiu.github.io/publications/sansa-sparklify-ISWC-demo.pdf
http://sansa-stack.net/

6.1 Sparklify: A Scalable Software for SPARQL Evaluation of Large RDF Data

Sparqlify

SANSA

SANSA Engine

RDF Layer
Data Ingestion

Partitioning

1

2

Query Layer
Sparklifying

Views Views

3

Distributed Data
Structures

Results

R
D

F
D

at
a

7

8SELECT ?s ?w WHERE {
?s a dbp:Person .
?s ex:workPage ?w .
}S

PA
R

Q
L

Prefix dbp:<http://dbpedia.org/ontology/>
Prefix ex:<http://ex.org/>

Create View view_person As
 Construct {
 ?s a dbp:Person .
 ?s ex:workPage ?w .
 }
With
 ?s = uri('http://mydomain.org/person', ?id)
 ?w = uri(?work_page)
Constrain
 ?w prefix "http://my-organization.org/user/"
From
 person;

SELECT id, work_page
FROM view_person ;

S
Q

L
A

E
T

SPARQL query

SPARQL Algebra
Expression Tree (AET)

Normalize AET

4

5 6

Figure 6.1: Sparklify Architecture Overview. It consists of four main components: Data modeling – data
ingestion and data partitioning (using the extensible VP), Mappings/Views – the relational-to-RDF mapping,
Query Translator – SQL query generator from the SPARQL query, and Query Evaluator - SQL query evaluated
directly into the Spark SQL engine.

6.1.1 System Architecture Overview

The overall system architecture is shown in Figure 6.1. It consists of four main components: Data
Model, Mappings, Query Translator and Query Evaluator. In the following, each component is
discussed in details.

Data Model SANSA [31] comes with different data structures and different partitioning strategies.
We model and store RDF graph following the concept of RDDs – a basic building blocks of the Spark
Framework. RDDs are in-memory collections of records that are capable of operating in a parallel
overall larger cluster. Sparklify makes use of the SANSA bottom layer which corresponds with the
extended VP including RDF terms. This partition model is the most convenient storage model for the
fast processing of RDF datasets on top of HDFS.

Data Ingestion (Step 1) RDF data first needs to be loaded into a large-scale storage that Spark
can efficiently read from. We use HDFS. Spark employ different data locality scheme in order to
accomplish computations nearest to the desired data in HDFS, as a result avoiding i/o overhead.

Data Partition (Step 2) VP approach in SANSA is designed to support the extensible partitioning of
RDF data. Instead of dealing with a single three-column table (s, p, o), data is partitioned into multiple
tables based on the used RDF predicates, RDF term types and literal datatypes. The first column of
these tables is always a string representing the subject. The second column always represents the
literal value as a Scala/Java datatype. Tables for storing literals with language tags have an additional

65

Chapter 6 Scalable RDF Querying

third-string column for the language tag.
Mappings/Views After the RDF data has been partitioned using the extensible VP (as it has been

described on Step 2) the relational-to-RDF mapping is performed. Sparqlify supports both the W3C
standard R2RML sparqlification [95].

The main entities defined with SML are view definitions. See Step 5 in the Figure 6.1 as an example.
The actual view definition is declared by the Create View . . . As in the first line. The remainder of the
view contains these parts: (1) the From directive defines the logical table based on the partitioned
table (see Step 2). (2) an RDF template is defined in the Construct block containing, URI, blank node
or literals constants (e.g. ex:worksAt) and variables (e.g. ?emp, ?institute). TheWith block defines the
variables used in the template by means of RDF term constructor expressions whose arguments refer
to columns of the logical table.

Query Translation This process generates a SQL query from the SPARQL query using the
bindings determined in the mapping/view construction phases. It walks through the SPARQL query
(Step 4) using Jena ARQ3 and generates the SPARQL Algebra Expression Tree (AET). Essentially,
rewriting SPARQL basic graph patterns and filters over views yields AETs that are UNIONS of JOINS.
Further, these AETs are normalized and pruned in order to remove UNION members that are known
to yield empty results, such as joins based on International Resource Identifiers (IRI)s with disjoint
sets of known namespaces, or joins between different RDF term types (e.g. literal and IRI). Finally,
the SQL is generated (Step 6) using the bindings corresponding to the views (Step 5).
Query Evaluator The SQL query created as described in the previous section can now be

evaluated directly into the Spark SQL engine. The result set of this SQL query is distributed data
structure of Spark (e.g. DataFrame) (Step 7) which then is mapped into a SPARQL bindings. The
result set can further used for analysis and visualization using the SANSA-Notebooks (Step 8) [30].

6.1.2 Evaluation

The goal of our evaluation is to observe the impact of the extensible VP as well as analyzing its
scalability when the size of the dataset increases. At the same time, we also want to measure the effect
of using Sparqlify optimizer for improving query performance. Especially, we want to verify and
answer the following questions:

Q1) : Is the runtime affected when more nodes are added in the cluster?

Q2) : Does it scale to a larger dataset?

Q3) : How does it scale when adding a larger number of datasets?

In the following, we present our experiment setting including the benchmarks used and server
configurations. Afterword, we elaborate on our findings.

Experimental Setup

We used two well-known SPARQL benchmarks for our evaluation. The Lehight University Benchmak
(LUBM) v3.1 [96] and Waterloo SPARQL Diversity Test Suite (WatDiv) v0.6 [97]. Characteristics of
the considered datasets are given in Table 6.1.
3
https://jena.apache.org/documentation/query/

66

https://jena.apache.org/documentation/query/

6.1 Sparklify: A Scalable Software for SPARQL Evaluation of Large RDF Data

−→
LUBM Watdiv

1K 5K 10K 10M 100M 1B

#nr. of triples 138,280,374 690,895,862 1,381,692,508 10,916,457 108,997,714 1,099,208,068

size (GB) 24 116 232 1.5 15 149

Table 6.1: Summary information of used datasets (nt format). Lists dataset characteristics used on the
evaluation. The size (in GB) and the number of triples are given.

LUBM comes with a Data Generator (UBA) which generates synthetic data over the Univ-Bench
ontology in the unit of a university. Our LUBM datasets consist of 1000, 5000, and 10000 universities.
The number of triples varies from 138M for 1000 universities, to 1.4B triples for 10000 universities.
LUBM’s test suite is comprised of 14 queries.

We have usedWatDiv datasets with approximate 10K to 1B triples with scale factors 10, 100 and
1000, respectively. WatDiv provides a test suite with different query shapes, therefore, it allows us to
compare the performance of Sparklify and the other approach we compare within a more compact
way. We have generated these queries using theWatDiv Query Generator and report the average mean
runtime in the overall results presented below. It comes with a set of 20 predefined query templates
so-called Basic Testing Use Case which is grouped into four categories, based on the query shape :
star (QS), linear (QL), snowflake (QF), and complex (QC).

We implemented Sparklify using Spark-2.4.0, Scala 2.11.11, Java 8, and Sparqlify 0.8.3 and all the
data were stored on the HDFS cluster using Hadoop 2.8.0. All experiments were carried out on a
commodity cluster of 7 nodes (1 master, 6 workers): Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
(32 Cores), 128 GB RAM, 12 TB SATA RAID-5, connected via a Gigabit network. The experiments
have been executed three times and the average runtime has been reported into the results.

Results

We evaluate Sparklify using the above datasets and compare it with the chosen state-of-the-art
distributed SPARQL query evaluator. Since our approach does not involve any pre-processing of
the RDF data before being able to evaluate SPARQL queries on it, Sparklify is thereby closer to the
so-called direct evaluators. Indeed, Sparklify only needs to virtually partition the data prior. As a
consequence, we omit other distributed evaluators (such as e.g. S2RDF [1]) and compare it with
SPARQGX [19] as it outperforms other approaches as noted by Graux et.al [19]. We compare our
approach with SPARQLGX’s direct evaluator named SDE and report the loading time for partitioning
and query execution time, see Table 6.2. We specify “fail” whenever the system fails to complete the
task and “n/a” when the task could not be completed due to a failure in one of the intermediate phase.
In some cases e.g. in Table 6.2, QC in Watdiv-1B dataset, we define "partial fail" due to the failure of
one of the queries, therefore the sum-up is not possible.

Findings of the experiments are depicted in Table 6.2, Figure 6.2, 6.3, and 6.4.
To verify Q1, we analyze the speedup and compare it with SPARQLGX. We run the experiments

on three datasets, Watdiv-10M, Watdiv-1B and LUBM-10K.
Table 6.2 shows the performance analysis of two approaches run on three different datasets. Column

SPARQLGX-SDEa reports on the performance of SPARQLGX-SDE considering the total runtime to
evaluate the given queries. Column Sparklifyb lists the times required for Sparklify to perform the VP

67

Chapter 6 Scalable RDF Querying

Runtime (s) (mean)

−→
SPARQLGX-SDE Sparklify

a) total b) paritioning c) querying d) total

W
at
di
v-
10

M QC 103.24 134.81 61 195.84

QF 157.8 241.24 107.33 349.51

QL 102.51 236.06 134 370.3

QS 131.16 237.12 108.56 346

W
at
di
v-
1B QC partial fail 778.62 2043.66 2829.56

QF 6734.68 1295.31 2576.52 3871.97

QL 2575.72 1275.22 610.66 1886.73

QS 4841.85 1290.72 1552.05 2845.3

LU
BM

-1
0K

Q1 1056.83 627.72 718.11 1346.8

Q2 fail 595.76 fail n/a

Q3 1038.62 615.95 648.63 1267.37

Q4 2761.11 632.93 1670.18 2303.18

Q5 1026.94 641.53 564.13 1206.67

Q6 537.65 695.74 267.48 963.62

Q7 2080.67 630.44 1331.13 1967.25

Q8 2636.12 639.93 1647.57 2288.48

Q9 3124.52 583.86 2126.03 2711.24

Q10 1002.56 593.68 693.73 1287.71

Q11 1023.32 594.41 522.24 1118.58

Q12 2027.59 576.31 1088.25 1665.87

Q13 1007.39 626.57 6.66 633.26

Q14 526.15 633.39 258.32 891.89

Table 6.2: Performance analysis on large-scale RDF datasets. Comparison analysis of Sparklify as compared
with SPARQLGX’s direct evaluator named SDE. The loading time for partitioning and query execution time is
reported.

and then the query execution time is reported on the Sparklifyc . Total runtime for Sparklify is shown
in the last column, Sparklifyd.

We observe that the execution of both approaches fails for the Q2 in the LUBM-10K dataset while
evaluating the query. We believe that it is due to the reason that LUBM Q2 involves a triangular pattern
which is often resource consuming. As a consequence, in both cases, Spark performs the shuffling (e.g.
data scanning) while reducing the result set. It is interesting to note that for the Watdiv-1B dataset,
SPARQLGX-SDE fails for the query C3 when data scanning is performed. Sparklify is capable of
evaluating it successfully. Due to the Spark SQL optimizer in conjunction with Sparqlify’s approach
of rewriting a SPARQL query typically into only a single SQL query – effectively offloading all
query planning to Spark – Sparklify performs better than SPARQLGX-SDE when the size of the
dataset increases (see Watdiv-1B results in the Table 6.2) and when there are more joins involved

68

6.1 Sparklify: A Scalable Software for SPARQL Evaluation of Large RDF Data

1065.81 1363.08

8604

391.47

1673.79

14152.25

Watdiv dataset / (size in GB)

Ru
nt

im
e

(s
)

0

5000

10000

15000

10M/1.5 100M/15 1B/149

Sparklify SAPRQLGX-SDE

Figure 6.2: Sizeup analysis (on Watdiv dataset). The analysis keeps the number of nodes constant i.e. 6
worker nodes and grow the size of the dataset (Watdiv) in order to measure whether the approaches chosen
for evaluation can deal with larger datasets. As depicted, the execution time for Sparklify grows linearly as
compared with SPARQLGX-SDE, and keep staying near-linear when the size of the dataset increases.

(see Watdiv-1B and LUBM-10K results in the Table 6.2). SPARQLGX-SDE evaluates the queries
faster when the size of the datasets is smaller, but it degrades when the size of the dataset increases.
The likely reason for Sparklify’s worse performance on smaller datasets is its higher partitioning
overhead. Figure 6.2 shows that Sparklify starts outperforming when the size of the datasets grows
(e.g. Watdiv-100M).

Size-up scalability analysis To measure the performance of the data scalability (e.g. size-up) of
both approaches, we run experiments on three different sizes of Watdiv (see Figure 6.2).
We keep the number of nodes constant i.e 6 worker nodes and grow the size of the datasets to

measure whether both approaches can deal with larger datasets. We see that the execution time for
Sparklify grows linearly compared with SPARQLGX-SDE, which keeps staying as near-linear when
the size of the datasets increases. The results presented show the scalability of Sparklify in the context
of the sizeup, which addresses the question Q2.

Node scalability analysis To measure the node scalability of Sparklify, we vary the number of
worker nodes. We vary them from 1, 3 to 6 worker nodes.

Figure 6.3 depict the speedup performance of both approaches run onWatdiv-100M dataset when
the number of worker nodes varies. We can see that as the number of nodes increases, the runtime cost
for the Sparklify decreases linearly. The execution time for Sparklify decreases about 0.6 times (from
2547.26 seconds down to 1588.4 seconds) as worker nodes increase from one to three nodes. We see
that the speedup stays constant when more worker nodes are added since the size of the data is not that

69

Chapter 6 Scalable RDF Querying

2547.26

1588.4

1654.14

8323.04

2848.11
2210.02

of worker nodes

Ru
nt

im
e

(s
)

0

2500

5000

7500

10000

1 3 6

Sparklify SAPRQLGX-SDE

Figure 6.3: Node scalability (on Watdiv-100M). The analysis varies the number of worker nodes e.g. from 1,
3, to 6 worker nodes and keeps the size of the dataset constant i.e. Watdiv-100M. It shows that as the number of
nodes increases, the runtime cost for Sparklify decreases linearly. It decreases about 0.6 times (from 2547.26
seconds down to 1588.4 seconds) as worker nodes increase from one to three nodes.

large and the network overhead increases a little the runtime when it runs over six worker nodes. This
implies that our approach is efficient up to three worker nodes for theWatdiv-100M (15GB) dataset.
In another hand, SPARQLGX-SDE takes longer to evaluate the queries when running on one worker
node but it improves when the number of worker nodes increases.

Result presented here shows that Sparklify can achieve linear scalability in the performance, which
addresses Q3.

Correctness of the result set In order to assess the correctness of the result set, we computed the
count of the result set for the given queries and compare it within both approaches. We conclude that
both approaches return exactly the same result set which implies the correctness of the results.

Overall analysis by SPARQL queries Here we analyze Watdiv queries run on Watdiv-100M
dataset in a cluster mode on both approaches.

According to Figure 6.4, SPARQLGX-SDE performance decreases as the number of triple patterns
involved in the query increase. This might be due to the fact that SPARQLGX-SDE has to read the
whole triple file each time. In contrast to SPARQLGX-SDE, Sparklify seems to perform well when
there are more triple patterns involved (see queries QC, QF and QS in the Figure 6.4) but slightly
worst when there are linear queries (see QL) evaluated. This may be due to the reason that Sparqlify
typically rewrites a SPARQL query into a single SQL query, thus maximizing the opportunities given
to the Spark SQL optimizer. Conversely, SPARQLGX-SDE constructs the workflow by chaining Scala
API calls, which may restrict the possibilities e.g. in regard to join ordering. Based on our findings

70

6.2 A Scalable Semantic-Based Distributed Approach for SPARQL Query Evaluation

291.06

446.29 451.11 465.68

536.23

769.17

340.55

564.07

Queries

Ru
nt

im
e

(s
)

0

200

400

600

800

QC QF QL QS

Sparklify SAPRQLGX-SDE

Figure 6.4: Overall analysis of queries on the Watdiv-100M dataset (cluster mode). This analysis gives
more insights about running Watdiv queries on Watdiv-100M dataset in a cluster mode on both approaches,
Sparklify and SPARQLGX-SDE. The findings show that SPARQLGX-SDE performance decreases as the
number of triple patterns involved in the query increase. In contrast to SPARQLGX-SDE, Sparklify seems to
perform well when there are more triple patterns involved (i.e. QC, QF and QS) but slightly worst when there
are linear queries (see QL) evaluated.

and the evaluation study carried out, we show that Sparklify is scalable and the execution time ends in
a reasonable time given the size of the dataset.

6.2 A Scalable Semantic-Based Distributed Approach for SPARQL
Query Evaluation

In this section, we present the system architecture of the Semantic-based approach, the semantic-based
partitioning, and mapping SPARQL to Spark Scala-compliant code.

6.2.1 System Architecture Overview

The system architecture overview is shown in Figure 6.5.
It consists of three main facets: Data Storage Model, SPARQL Query Fragments Translator, and

Query Evaluator. Below, each facet is discussed in more details.

71

Chapter 6 Scalable RDF Querying

SANSA Engine

RDF Layer
Data Ingestion

Partitioning

2

3

Query Layer
Semantic

map map

5

Distributed Data
Structures

Results

R
D

F
D

at
a

6

7SELECT ?s ?w WHERE {
?s a dbp:Person .
?s ex:workPage ?w .
}S

PA
R

Q
L

Joy :owns Car1
Joy :livesIn Bonn
Car1 :typeOf Car
Car1 :madeBy Audi
Car1 :madeIn Ingolstadt
Bonn :cityOf Germany
Audi :memeberOf Volkswagen
Ingolstadt :cityOf Germany

1

Joy :owns Car1 :livesIn Bonn
Car1 :typeOf Car :madeBy Audi :madeIn Ingolstadt
Bonn :cityOf Germany
Audi :memeberOf Volkswagen
Ingolstadt :cityOf Germany

4

Figure 6.5: Semantic-based System Architecture Overview. It consists of three main facets: Data Storage
Model – model and partition the data using the semantic-based approach, SPARQL Query Fragments Translator
– the process of generating the Scala code in the format of Spark RDD operations, and Query Evaluator – the
SPARQL evaluation using the Spark RDD executable code (generated from the previous step).

Data Storage Model

We model the RDF data following the concept of RDDs. RDDs are immutable collections of records,
which represent the basic building blocks of the Spark framework. RDDs can be kept in-memory
and are able to operate in parallel throughout the Spark cluster. We make use of SANSA [31]’s data
representation and distribution layer for such representation.

Data Partitioning Partitioning the RDF data is the process of dividing datasets in a specific
logical and/or physical representation in order to ease faster access and better maintenance. Often,
this process is performed for improving the system availability, load balancing and query processing
time. There are many different data partitioning techniques proposed in the literature. We choose
to investigate the so-called semantic-based partitioning behaviors when dealing with large-scale
RDF datasets. This partitioned technique was proposed in the SHARD [87] system. We have
implemented this technique using in-memory processing engine, Apache Spark for better performance.
A semantically partitioned fact is a tuple (S, R) containing pieces of information R ∈ (P,O) about
the same S where S is a unique subject on the RDF graph and R represents all its associated facts i.e
predicates P and objects O.

Data Model First, the RDF data (see Step 1 as an example) needs to be loaded into a large-scale
distributed storage (Step 2). We use HDFS. We choose HDFS as Spark is capable of performing
operations based on data locality in order to choose the nearest data for faster and efficient computation
over the cluster. Second, we partition (Step 3) the data using semantic-based partitioning (see Step 4 as
an example of such partition). Instead of working with table-wise representation where the triples are

72

6.2 A Scalable Semantic-Based Distributed Approach for SPARQL Query Evaluation

kept in the format of RDD<Triple>, data is partitioned into subject-based grouping (e.g. all entities
which are associated with a unique subject). Consider the example in the Figure 6.5 (Step 2, first line),
which represents two triples associated with the entity Joy:

Joy :owns Car1 :livesIn Bonn

This line represents that the entity Joy owns a car entity Car1, and that Joy lives in Bonn.
Often flattening data is considered immature with respect to other data representation, we want

to explore and investigate if it improves the performance of the query evaluation. We choose this
representation for the reason of easy-storage and reuse while designing a query engine. Although,
it slightly degrades the performance when it comes to multiple scans over the table when there are
multiple predicates involved in the query. However, this is minimal, as Spark uses in-memory, caching
operations. We will discuss this in Section 6.2.3 into more detail.

SPARQL Query Fragments Translation

This process generates the Scala code in the format of Spark RDD operations using the key-value
pairs mechanism. With Spark pairRDD, one can manipulate the data by splitting it into key-value
pairs and group all associated values with the same keys. It walks through the SPARQL query (Step 4)
using the Jena ARQ4 and iterate through clauses in the SPARQL query and bind the variables into the
RDF data while fulfilling the clause conditions. Such iteration corresponds to a single clause with one
of the Spark operations (e.g. map, filter, reduce). Often this operation needs to be materialized i.e the
result set of the next iteration depends on the previous clauses and therefore a join operation is needed.
This is a bottleneck since scanning and shuffling is required. In order to keep these joins as small as
possible, we leverage the caching techniques of the Spark framework by keeping the intermediate
results in-memory while the next iteration is performed. Finally, the Spark-Scala executable code is
generated (Step 5) using the bindings corresponding to the query. Besides simple BGP translation, our
system supports UNION, LIMIT and FILTER clauses.

Query Evaluator

The mappings created as shown in the previous section can now be evaluated directly into the Spark
RDD executable code. The result set of these operations is distributed data structure of Spark
(e.g. RDD) (Step 6). The result set can be used for further processing and visualization using the
SANSA-Notebooks (Step 7) [30].

6.2.2 Distributed Algorithm Description

We implement our approach using the Apache Spark framework (see Algorithm 3). It constructs the
graph (Line 1) while reading RDF data and converts it into an RDD of triples. Later, it partitions the
data (Line 2, for more details see Algorithm 4) using the semantic-based partitioning strategy. Finally,
the query evaluator is constructed (Line 3) which is detailed in Algorithm 5.
The partition algorithm (see Algorithm 4) transforms the RDF graph into a convenient semantic-

based partitioning (Line 2). For each unique triple in the graph in a distributed fashion, it does the

4
https://jena.apache.org/documentation/query/

73

https://jena.apache.org/documentation/query/

Chapter 6 Scalable RDF Querying

Algorithmus 3 : Spark parallel semantic-based query engine.
input :q: a SPARQL query, input: an RDF dataset
output :result an RDD – list of result set
/* Loading the graph */

1 graph = spark .rdf(lang)(input)
/* Partitioning the graph. See Algorithm 4 for more details. */

2 partitionGraph← graph.partitonAsSemanticGraph()
/* Querying the graph. See Algorithm 5 for more details. */

3 result ← partitionGraph.sparql(q)
4 return result

following: It gets the values about subjects and objects (Line 3) and local name of the predicate (Line
4). It generates the key-value pairs of the subject and its associated triples with predicate and objects
separated with space in between (Line 5). After the mapping is done, the data is grouped by key (in
our case subject) (Line 6). Afterward, when this information is collected, the block is partitioned
using the map transformation function of Spark to refactor the format of the lines based on the above
information (Line 7).

Algorithmus 4 : partitonAsSemanticGraph: Semantic-based partition algorithm.
input :graph: an RDD of triples
output :partionedData: an RDD of partitions

1 partitonedData← ∅
2 foreach ∀!triple ∈ graph && triple.getSubject , ∅ do
3 s← triple.getSubject; o← triple.getObject
4 p← triple.getPredicate.getLocalName
5 partitonedData + = (s, p + ” ” + o + ” ”)
6 partitonedData.reduceByKey(_ + _)
7 .map(f → (f ._1 + ” ” + f ._2))
8 return partitonedData

This SPARQL query rewriter includes multiple Spark operations. First, partitioned data is mapped
to a list of variable bindings satisfying the first BGP of the query (Line 2). During this process, the
duplicates are removed and the intermediate result is kept in-memory (RDD) with the variable bindings
as a key. The consequent step is to iterate through other variables and bind them by processing the
upcoming query clauses and/or filtering the other ones unseen on the new clause. These intermediate
steps perform Spark operations over both, the partitioned data and the previously bound variables
which were kept on Spark RDDs.

The ith step discovers all variables in the partitioned data which satisfy the ith clause appeared and
keep this intermediate result in-memory with the key being any variable in the ith step which has
been introduced on the previous step. During this iteration, the intermediate results are reconstructed
in the way that the variables not seen in this iteration are mapped (Line 5) with the variables of the
previous clause and generate a key-value pair of variable bindings. Afterward, the join operation is
performed over the intermediate results from the previous clause and the new ones with the same key.

74

6.2 A Scalable Semantic-Based Distributed Approach for SPARQL Query Evaluation

This process iterates until all clauses are seen and variables are assigned. Finally, the variable binding
(Line 7) to fulfill the SELECT clause of the SPARQL query happens and returns the result (Line 8) of
only those variables which are present in the SELECT clause.

Algorithmus 5 : sparql: Semantic-based query algorithm.
input :partitonedData: an RDD of partitions
output :result an RDD of result set

1 foreach p ∈ partitionedData do
2 1stVariable← assignVariablesFor1stClaues()
3 foreach i ∈ getClauses() do
4 iVariable← assignVariablesForiClaues()
5 mapResult ← mapByKey(getCommonVariables())
6 joinResult ← join(mapResult)

7 joinResult . f ilter(getSelectVariables())
8 result ← result. join(joinResult)

9 return result

6.2.3 Evaluation

In our evaluation, we observe the impact of semantic-based partitioning and analyze the scalability of
our approach when the size of the dataset increases.
In the following subsections, we present the benchmarks used along with the server configuration

setting, and finally, we discuss our findings.

Experimental Setup

We make use of two well-known SPARQL benchmarks for our experiments: theWaterloo SPARQL
Diversity Test Suite (WatDiv) v0.6 [97] and Lehigh University Benchmark (LUBM) v3.1 [96]. The
dataset characteristics of the considered benchmarks are given in Table 6.3.
WatDiv comes with a test suite with different query shapes which allows us to compare the

performance of our approach and the other approaches. In particular, it comes with a predefined set of
20 query templates which are grouped into four categories, based on the query shape: star-shaped
queries, linear-shaped queries, snowflake-shaped queries, and complex-shaped queries. We have used
WatDiv datasets with 10M to 100M triples with scale factors 10 and 100, respectively. In addition, we
have generated the SPARQL queries using WatDiv Query Generator.
LUBM comes with a Data Generator (UBA) which generates synthetic data over the Univ-Bench

ontology in the unit of a university. LUBM provides Test Queries, more specifically 14 test queries.
Our LUBM datasets consist of 1000, 2000, and 3000 universities. The number of triples varies from
138M for 1000 universities, to 414M triples for 3000 universities.

We implemented our approach using Spark-2.4.0, Scala 2.11.11, Java 8, and all the data were stored
on the HDFS cluster using Hadoop 2.8.0. All experiments were carried out on a commodity cluster
of 6 nodes (1 master, 5 workers): Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz (32 Cores), 128

75

Chapter 6 Scalable RDF Querying

LUBM Watdiv
1K 2K 3K 10M 100M

#nr. of triples 138,280,374 276,349,040 414,493,296 10,916,457 108,997,714

size (GB) 24 49 70 1.5 15

Table 6.3: Dataset characteristics (nt format). Lists dataset information used on the evaluation. The size (in
GB) and the number of triples are given.

GB RAM, 12 TB SATA RAID-5. We executed each experiment three times and the average query
execution time has been reported.

Preliminary Results

We run experiments on the same cluster and evaluate our approach using the above benchmarks.
In addition, we compare our proposed approach with selected state-of-the-art distributed SPARQL
query evaluators. In particular, we compare our approach with SHARD [87] – the original approach
implemented on Hadoop MapReduce, SPARQLGX [19]’s direct evaluator SDE, and Sparklify [25]
and report the query execution time (cf. Table 6.4). We have selected these approaches as they do not
include any pre-processing steps (e.g. statistics) while evaluating the SPARQL query, similar to our
approach.
Our evaluation results for performance analysis, sizeup analysis, node scalability, and breakdown

analysis by SPARQL queries are shown in Table 6.4, Figure 6.6, 6.7, and 6.8 respectively. In Table6.4
we use “fail” whenever the system fails to complete the task and “n/a” when the task could not
be completed due to a parser error (e.g. not able to translate some of the basic patterns to RDDs
operations).

In order to evaluate our approach with respect to the speedup, we analyze and compare it with other
approaches.

This set of experiments was run on three datasets, Watdiv-10M, Watdiv-100M and LUBM-1K.
Table 6.4 presents the performance analysis of the systems on three different datasets. We can

see that our approach evaluates most of the queries as opposed to SHARD. SHARD system fails to
evaluate most of the LUBM queries and its parser does not support Watdiv queries. On the other hand,
SPARQLGX-SDE performs better than both Sparklify and our approach, when the size of the dataset
is considerably small (e.g. less than 25GB). This behavior is due to the large partitioning overhead for
Sparklify and our approach. However, Sparklify performs better compared to SPARQLGX-SDE when
the size of the dataset increases (seeWatdiv-100M results in the Table 6.4) and the queries involve
more joins (see LUBM-1K results in the Table 6.4). This is due to the Spark SQL optimizer and
Sparqlify self-joins optimizers. Both SHARD and SPARQLGX-SDE fail to evaluate query Q2 in the
LUBM-1K dataset. Sparklify can evaluate the query but takes longer as compared to our approach.
This is due to the fact that our approach uses Spark’s lazy evaluation and join optimization by keeping
the intermediate results in memory.

Scalability analysis In order to evaluate the scalability of our approach, we conducted two sets of
experiments. First, we measure the data scalability (e.g. size-up) of our approach and position it with
other approaches. As SHARD fails for most of the LUBM queries, we omit other queries on this set

76

6.2 A Scalable Semantic-Based Distributed Approach for SPARQL Query Evaluation

Runtime (s) (mean)

Queries SHARD SPARQLGX-SDE SANSA.Sparklify SANSA.Semantic

W
at
di
v-
10

M C3 n/a 38.79 72.94 90.48

F3 n/a 38.41 74.69 n/a

L3 n/a 21.05 73.16 72.84

S3 n/a 26.27 70.1 79.7

W
at
di
v-
10

0M C3 n/a 181.51 96.59 300.82

F3 n/a 162.86 91.2 n/a

L3 n/a 84.09 82.17 189.89

S3 n/a 123.6 93.02 176.2

LU
BM

-1
K

Q1 774.93 103.74 103.57 226.21

Q2 fail fail 3348.51 329.69

Q3 772.55 126.31 107.25 235.31

Q4 988.28 182.52 111.89 294.8

Q5 771.69 101.05 100.37 226.21

Q6 fail 73.05 100.72 207.06

Q7 fail 160.94 113.03 277.08

Q8 fail 179.56 114.83 309.39

Q9 fail 204.62 114.25 326.29

Q10 780.05 106.26 110.18 232.72

Q11 783.2 112.23 105.13 231.36

Q12 fail 159.65 105.86 283.53

Q13 778.16 100.06 90.87 220.28

Q14 688.44 74.64 100.58 204.43

Table 6.4: Performance analysis on large-scale RDF datasets. A comparison of our approach with SHARD –
the original approach implemented on Hadoop MapReduce, SPARQLGX’s direct evaluator SDE, and Sparklify
w.r.t query execution time.

of experiments and choose only Q1, Q5, and Q14. Q1 has been chosen due to its complexity while
bringing large inputs of the data and high selectivity, Q5 since it has considerably larger intermediate
results due to the triangular pattern in the query, and Q14 mainly for its simplicity. We run experiments
on three different sizes of LUBM (see Figure 6.6).
We keep the number of nodes constant i.e. 5 worker nodes and increase the size of the datasets to

measure whether our approach deals with larger datasets.
We see that the query execution time for our approach grows linearly when the size of the datasets

increases. This shows the scalability of our approach as compared to SHARD, in the context of
the sizeup. SHARD suffers from the expensive overhead of MapReduce joins which impacts its
performance, as a result, it is significantly worse than other systems.

Second, in order to measure the node scalability of our approach, we increase the number of worker
nodes and keep the size of the dataset constant. We vary them from 1, 3 to 5 worker nodes.

77

Chapter 6 Scalable RDF Querying

 LUBM dataset / (size in GB)

Ru
nt

im
e

(s
)

0

2000

4000

6000

8000

1K/24 2K/49 3K/70

SHARD SPARQLGX-SDE SANSA.Sparklify SANSA.Semantic

Figure 6.6: Sizeup analysis (on LUBM dataset). The analysis keeps the number of nodes constant i.e. 5
worker nodes and increases the size of the datasets to measure whether a semantic-based approach deals with
larger datasets. The query execution time for our approach grows linearly when the size of the datasets increases.
This shows the scalability of our approach as compared to SHARD, in the context of the sizeup. SHARD suffers
from the expensive overhead of MapReduce joins which impacts its performance, as a result, it is significantly
worse than other systems.

Figure 6.7 shows the performance of systems on LUBM-1K dataset when the number of worker
nodes varies. We see that as the number of nodes increases, the runtime cost of our query engine
decreases linearly as compared with the SHARD, which keeps staying constant. SHARD performance
stays constant (high) even when more worker nodes are added. This trend is due to the communication
overhead SHARD needs to perform between map and reduce steps. The execution time of our
approach decreases about 1.7 times (from 1,821.75 seconds down to 656.85 seconds) as the worker
nodes increase from one to five nodes. SPARQLGX-SDE and Sparklify perform better when the
number of nodes increases compared to our approach and SHARD.

Our main observation here is that our approach can achieve linear scalability in the performance.

Correctness In order to assess the correctness of the result set, we computed the count of the result
set for the given queries and compare it with other approaches. As a result of it, we conclude that all
approaches return exactly the same result set. This implies the correctness of the results.

Breakdown by SPARQL queries Here we analyze some of the LUBM queries (Q1, Q5, Q14) run
on a LUBM-1K dataset in a cluster mode on all the systems.

We can see from Figure 6.8 that our approach performs better compared to the Hadoop-based system,

78

6.2 A Scalable Semantic-Based Distributed Approach for SPARQL Query Evaluation

of worker nodes

Ru
nt

im
e

(s
)

0

500

1000

1500

2000

2500

1 3 5

SHARD SPARQLGX-SDE SANSA.Sparklify SANSA.Semantic

Figure 6.7: Node scalability (on LUBM-1K). The analysis increases the number of worker nodes and keeps
the size of the dataset constant. We vary them from 1, 3 to 5 worker nodes. As the number of nodes increases,
the runtime cost of our query engine decreases linearly as compared with the SHARD, which keeps staying
constant. SHARD performance stays constant (high) even when more worker nodes are added. This trend is
due to the communication overhead SHARD needs to perform between map and reduce steps. The execution
time of our approach decreases about 1.7 times (from 1,821.75 seconds down to 656.85 seconds) as the worker
nodes increase from one to five nodes.

SHARD. This is due to the use of the Spark framework which leverages the in-memory computation
for faster performance. However, the performance declines as compared to other approaches that use
vertical partitioning (e.g., SPARQLGX-SDE on RDD and Sparklify on Spark SQL). This is due to the
fact that our approach performs de-duplication of triples that involves shuffling and incurs network
overhead. The results show that the performance of SPARQLGX-SDE decreases as the number
of triple patterns involved in the query increases (see Q5) when compared to Sparklify. However,
SPARQLGX-SDE performs better when there are simple queries (see Q14). This occurs because
SPARQLGX-SDE must read the whole RDF graph each time when there is a triple pattern involved. In
contrast to SPARQLGX-SDE, Sparklify performs better when there are more triple patterns involved
(see Q5) but slightly worse when linear queries (see Q14) are evaluated.

Based on our findings and the evaluation study carried out, we show that our approach can scale up
with the increasing size of the dataset.

79

Chapter 6 Scalable RDF Querying

LUBM queries

Ru
nt

im
e

(s
)

0

200

400

600

800

Q1 Q5 Q14

SHARD SPARQLGX-SDE SANSA.Sparklify SANSA.Semantic

Figure 6.8:Overall analysis of queries on the LUBM-1K dataset (cluster mode). This analysis depicts some
of LUBM queries (Q1, Q5, Q14) run on a LUBM-1K dataset in a cluster mode on all the systems. Overall, our
approach performs better compared to the Hadoop-based system, SHARD due to the use of the Spark framework
which leverages the in-memory computation for faster performance. However, the performance declines as
compared to other approaches that use vertical partitioning (e.g., SPARQLGX-SDE on RDD and Sparklify on
Spark SQL). This is due to the fact that our approach performs de-duplication of triples that involves shuffling
and incurs network overhead.

6.3 Summary

Querying RDF data becomes challenging when the size of the data increases. Existing Spark-based
SPARQL systems mostly do not retain all RDF term information consistently while transforming them
into a dedicated storage model such as using vertical partitioning. Often, this process is both data and
computing-intensive and raises the need for a scalable, efficient and comprehensive query engine that
can handle large scale RDF datasets.
In this chapter, we propose scalable approaches for SPARQL query evaluation over distributed

RDF data. First, Sparklify: a scalable software component for efficient evaluation of SPARQL
queries over distributed RDF datasets. It uses Sparqify as a SPARQL-to-SQL rewriter for translating
SPARQL queries into Spark executable code. By doing so, it leverages the advantages of the Spark
framework. SANSA features methods to execute SPARQL queries directly as part of Spark workflows
instead of writing the code corresponding to those queries (sorting, filtering, etc.). It also provides a
command-line interface and a W3C standard-compliant SPARQL endpoint for externally querying
data that has been loaded using the SANSA framework. We have shown empirically that Sparklify
can scale horizontally and perform well w.r.t to the state-of-the-art approaches.

80

6.3 Summary

With this work, we showed that the application of OBDA tooling to Big Data frameworks achieves
promising results in terms of scalability. We present a working prototype implementation that can
serve as a baseline for further research.
As a second approach, we investigated and implemented a scalable semantic-based query engine

for efficient evaluation of SPARQL queries over distributed RDF datasets. It uses a semantic-based
partitioning strategy as the data distribution and converts SPARQL to Spark executable code. By
doing so, it leverages the advantages of the Spark framework’s rich APIs. We have shown empirically
that a semantic-based approach can scale horizontally and perform well as compared with the previous
Hadoop-based system: the SHARD triple store. It is also comparable with other in-memory SPARQL
query evaluators when there is less shuffling involved i.e. less duplicate values.

81

CHAPTER 7

Implementation and Use Cases

In this chapter, we give a more detailed overview of the SANSA framework and the components
developed during this thesis. It also shows how they can be applied to various use cases.
The chapter is organized as follows: First, in Section 7.1, we give an overview of the SANSA

framework, which contains the implementation of the methods presented in this thesis. Later, we
demonstrate the use of our components in real use cases in Section 7.2.

This chapter is based on the following publications [31]:

• Danning Sui; Gezim Sejdiu; Damien Graux; and Jens Lehmann. "The Hubs and Authorities
Transaction NetworkAnalysis using the SANSA framework". In 15th International Conference
on Semantic Systems (SEMANTiCS), Poster & Demos, 2019.

• Rajjat Dadwal; Damien Graux; Gezim Sejdiu; Hajira Jabeen; and Jens Lehmann. "Clustering
Pipelines of large RDF POI Data" in Proceedings of 16th Extended Semantic Web Conference
(ESWC), Poster & Demos, 2019.

• Damien Graux; Gezim Sejdiu; Hajira Jabeen; Jens Lehmann; Danning Sui; Dominik Muhs;
and Johannes Pfeffer, “Profiting from Kitties on Ethereum: Leveraging Blockchain RDF with
SANSA,” in 14th International Conference on Semantic Systems, Poster & Demos, 2018.

• Jens Lehmann;Gezim Sejdiu; Lorenz Bühmann; PatrickWestphal; Claus Stadler; Ivan Ermilov;
Simon Bin; Nilesh Chakraborty; Muhammad Saleem; Axel-Cyrille Ngomo Ngonga; and Hajira
Jabeen, “Distributed Semantic Analytics using the SANSA Stack,”; in Proceedings of 16th
International Semantic Web Conference - Resources Track (ISWC’2017), 2017.

• Ivan Ermilov; Jens Lehmann;Gezim Sejdiu; Lorenz Bühmann; PatrickWestphal; Claus Stadler;
Simon Bin; Nilesh Chakraborty; Henning Petzka; Muhammad Saleem; Axel-Cyrille Ngomo
Ngonga; and Hajira Jabeen, “The Tale of Sansa Spark,” in Proceedings of 16th International
Semantic Web Conference, Poster & Demos, 2017 (Best Demo Award). This demonstration
article is joint work with Ivan Ermilov, a PhD student at the University of Leipzig. In this article,
I helped in describing the architecture, implementation of the examples and demonstration of
the prototype.

• Ivan Ermilov; Axel-Cyrille Ngonga Ngomo; Aad Versteden; Hajira Jabeen; Gezim Sejdiu;
Giorgos Argyriou; Luigi Selmi; Jürgen Jakobitsch; and Jens Lehmann, “Managing Lifecycle of

83

https://gezimsejdiu.github.io/publications/sansa-hubs-and-authorities-transaction-semantics19-poster.pdf
https://gezimsejdiu.github.io/publications/sansa-hubs-and-authorities-transaction-semantics19-poster.pdf
https://gezimsejdiu.github.io/publications/piping-clustering-eswc19-poster.pdf
https://gezimsejdiu.github.io/publications/piping-clustering-eswc19-poster.pdf
http://jens-lehmann.org/files/2018/semantics_ethereum_pd.pdf
http://jens-lehmann.org/files/2018/semantics_ethereum_pd.pdf
http://svn.aksw.org/papers/2017/ISWC_SANSA_SoftwareFramework/public.pdf
http://jens-lehmann.org/files/2017/iswc_pd_sansa.pdf
https://svn.aksw.org/papers/2017/KESW_BDE_Workflow/public.pdf
https://svn.aksw.org/papers/2017/KESW_BDE_Workflow/public.pdf

Chapter 7 Implementation and Use Cases

Big Data Applications,”; in KESW, 2017. This article is a joint work with Ivan Ermilov, a PhD
student at the University of Leipzig. In this article, I helped with the implementation of the
proposed approach and SC4 (Transport) use case, reviewed related work, and preparation of the
experiments and analysis of the obtained results.

• Sören Auer; Simon Scerri; Aad Versteden; Erika Pauwels; Angelos Charalambidis; Stasi-
nos Konstantopoulos; Jens Lehmann; Hajira Jabeen; Ivan Ermilov; Gezim Sejdiu; Andreas
Ikonomopoulos; Spyros Andronopoulos; Mandy Vlachogiannis; Charalambos Pappas; Athana-
sios Davettas; Iraklis A. Klampanos; Efstathios Grigoropoulos; Vangelis Karkaletsis; Victor
Boer; Ronald Siebes; Mohamed Nadjib Mami; Sergio Albani; Michele Lazzarini; Paulo Nunes;
Emanuele Angiuli; Nikiforos Pittaras; George Giannakopoulos; Giorgos Argyriou; George
Stamoulis; George Papadakis; Manolis Koubarakis; Pythagoras Karampiperis; Axel-Cyrille
Ngonga Ngomo; and Maria-Esther Vidal, “The BigDataEurope Platform – Supporting the Vari-
ety Dimension of Big Data,” in 17th International Conference onWeb Engineering (ICWE2017),
2017. This article is a joint work with the BDE consortium. In this article, I contributed within
the semantic layer, more specifically; bringing the Big Data Analytics for RDF into the BDE
platform and co-contributing into dockerizing BDE components.

7.1 The SANSA framework

In this section, we introduce SANSA1, an open-source2 structured data processing engine for
performing distributed computation over large-scale RDF datasets. It provides data distribution,
scalability, and fault tolerance for manipulating large RDF datasets, and facilitates analytics on the
data at scale by making use of cluster-based big data processing engines. It comes with: (i) specialized
serialization mechanisms and partitioning schemata for RDF, using vertical partitioning strategies, (ii)
a scalable query engine for large RDF datasets and different distributed representation formats for
RDF, namely graphs, tables, and tensors, (iii) an adaptive reasoning engine which derives an efficient
execution and evaluation plan from a given set of inference rules, (iv) several distributed structured
machine learning algorithms that can be applied on large-scale RDF data, and (v) a framework with
a unified API that aims to combine distributed in-memory computation technology with semantic
technologies.
To achieve the goal of storing and manipulating large RDF datasets, we leverage existing big data

frameworks like Apache Spark3 and Apache Flink4, which have matured over the years and offer a
proven and reliable method for general-purpose processing of large-scale data.

7.1.1 Architecture Overview

We now give an overview of the SANSA framework. Figure 7.1 shows the overall architecture of
SANSA that consists of four layers: Knowledge Distribution & Representation Layer, Query Layer,
Inference Layer andMachine Learning Layer.

In the following, we explain the role of each layer.
1
http://sansa-stack.net/

2
https://github.com/SANSA-Stack

3
http://spark.apache.org/

4
http://flink.apache.org/

84

https://svn.aksw.org/papers/2017/KESW_BDE_Workflow/public.pdf
https://svn.aksw.org/papers/2017/KESW_BDE_Workflow/public.pdf
http://jens-lehmann.org/files/2017/icwe_bde.pdf
http://jens-lehmann.org/files/2017/icwe_bde.pdf
http://sansa-stack.net/
https://github.com/SANSA-Stack
http://spark.apache.org/
http://flink.apache.org/

7.1 The SANSA framework

Inference

Knowledge Distribution &
Representation

D
ep

lo
y

C
or

e
A

P
Is

 &
 L

ib
ra

rie
s

Local Cluster
Standalone Resource manager

Querying

Machine Learning

Figure 7.1: Overview of the SANSA stack. The SANSA framework combines distributed analytics and
semantic technologies into a scalable semantic analytics stack.

Knowledge Distribution & Representation Layer It is the lowest layer on top of the existing
distributed frameworks (Apache Spark or Apache Flink). This layer mainly provides the facility to
read and write native RDF or OWL data from HDFS or a local drive and represent it in the native
distributed data structures of the frameworks.
In addition, it also provides a dedicated serialization mechanism for faster I/O. SANSA aim

to support Jena and OWL API interfaces for processing RDF and OWL data, respectively. This
particularly targets usability, as many users are already familiar with the corresponding libraries and
thus would require less time to get productive with the SANSA stack.
Moreover, it allows users to compute RDF statistics (cf. Chapter 4) and quality assessment (cf.

Chapter 5) in a distributed manner.
Query Layer Querying an RDF graph is the primary method for searching, exploring, and

extracting information from the underlying RDF data. SPARQL is the W3C standard for querying
RDF graphs. Our aim is to have cross-representational transformations and partitioning strategies
for efficient query answering. We are investigating the performance of different data structures (e.g.,
graphs, tables, tensors) in the context of different types of queries and workflows. SANSA provides
APIs for performing SPARQL queries directly in Spark and Flink programs (cf. Chapter 6). It also
features a W3C standard-compliant HTTP SPARQL endpoint server component for enabling externally
querying the data that has been loaded using its APIs. These queries are eventually transformed into

85

Chapter 7 Implementation and Use Cases

lower-level Spark/Flink programs executed on the Distribution & Representation Layer. At present,
SANSA implements flexible triple-based partitioning strategies on top of RDF (such as predicate tables
with sub-partitioning by datatypes), which will be complemented with sub-graph based partitioning
strategies. In addition, it also support a so-called semantic-based query engine – a scalable approach
to evaluate SPARQL queries over distributed RDF datasets. Based on the partitioning and the SQL
dialects supported by Spark and Flink, SANSA provides an infrastructure for the integration of existing
SPARQL-to-SQL rewriting tools. This bears the potential advantage of leveraging the optimizers of
both the rewriters as well as those of the underlying frameworks for SQL. Currently, the Sparklify
implementation serves as the baseline. It uses Sparqlify5 as a SPARQL-to-SQL rewriter for translating
SPARQL queries into Spark executable code. Query results can then be further processed by other
modules in the SANSA Framework.

Inference Layer Both RDFS and OWL contain schema information in addition to links between
different resources. This additional information and rules allow to perform reasoning on the knowledge
bases in order to infer new knowledge and expanding the existing one. The core of the inference
process is to continuously apply schema related rules on the input data to infer new facts. This process
is helpful for deriving new knowledge and for detecting inconsistencies in the knowledge base. It is
well known that there is always a trade-off between the expressiveness of a formal language and the
efficiency of reasoning in that language. SANSA contains an adaptive rule engine that can use a given
set of arbitrary rules and derive an efficient execution plan from a given set of inference rules.
By using SANSA, applications will be able to fine-tune the rules they require and – in case of

scalability problems – adjust them accordingly.
Machine Learning Layer While most machine learning algorithms are based on processing

simple features, the machine learning algorithms in SANSA exploit the graph structure and semantics
of the background knowledge specified using the RDF and OWL standards. In many cases, this
allows obtaining either more accurate or more human-understandable results. There exist a wide
range of machine learning algorithms for structured data. However, the challenging task would
be to distribute the data and to devise distributed versions of these algorithms to fully exploit the
underlying frameworks. We are exploring different algorithms namely, tensor factorization, association
rule mining, decision trees and clustering on structured data. The aim is to provide out-of-the-box
algorithms to work with the structured data in a distributed, fault-tolerant and resilient fashion. Based
on those advances, we will also be able to efficiently perform analytics to gain insights into the data
for relevant trends, predictions or detection of anomalies.

7.1.2 SANSA-Notebooks: Developer friendly access to SANSA

SANSA provides Notebooks for an easy local deployment for development and demonstration
purposes. SANSA-Notebooks is an interactive toolkit on top of Hadoop-Spark-Workbench6 with
Apache Zeppelin7, which allows the copying of files from/to HDFS and an interactive Spark code
execution via a web GUI. The architecture of SANSA-Notebooks is depicted in Figure 7.2.
We utilize SANSA-Notebooks (see Figure 7.3) in Big Data labs8 and courses as they alleviate the

complicated Hadoop/Spark setup and allow the students to focus on developing distributed algorithms
5
https://github.com/AKSW/Sparqlify

6
https://github.com/big-data-europe/docker-hadoop-spark-workbench

7
https://zeppelin.apache.org/

8
https://github.com/SmartDataAnalytics/MA-INF-4223-DBDA-Lab

86

https://github.com/AKSW/Sparqlify
https://github.com/big-data-europe/docker-hadoop-spark-workbench
https://zeppelin.apache.org/
https://github.com/SmartDataAnalytics/MA-INF-4223-DBDA-Lab

7.1 The SANSA framework

Hadoop

Spark

Apache Zeppelin

RDF Query Inference OWL ML

exchange data

submit
notebook

Hue GUI

filebrowser

upload
download Docker container

Spark SANSA notebook

Figure 7.2: SANSA-Notebooks architecture. An interactive toolkit on top of dockerized Hadoop-Spark-
Workbench with Apache Zeppelin.

Figure 7.3: SANSA Notebooks example. RDF-Stats Spark application running in SANSA-Notebooks with
statistics visualization.

on top of SANSA. Cluster deployment of the examples is also possible through Docker images (see
SANSA-Examples Github repository9). Additionally, SANSA is readily available from the Maven
Central Repository. Thus it is straightforward to include it in other projects using Maven or SBT – the
most popular build managers for Scala – for both Spark- and Flink-based setups.
The notebooks present a compiled list of the SANSA examples10. These examples give a quick

overview of the SANSA APIs. SANSA is build on the concepts of distributed datasets (i.e RDD,
DataFrame, DataSet). A dataset is inferred from the external data, then parallel operations e.g.
transformations and actions are applied which trigger a job execution on a cluster. In the following,
we provide a concise description of the examples grouped by the SANSA layers.

1. RDF.

a) Reading and writing triple files from HDFS or file system and some basic triple operations.

b) A distributed evaluation of numerous RDF Dataset Statistics dubbed RDF-Stats (see Fig-
ure 7.3), for example, property distribution, class distribution, distinct subjects/objects/en-
tities as well as statistics summary.

9
https://github.com/SANSA-Stack/SANSA-Examples

10 The source code for all of them is provided at https://github.com/SANSA-Stack/SANSA-Examples

87

https://github.com/SANSA-Stack/SANSA-Examples
https://github.com/SANSA-Stack/SANSA-Examples

Chapter 7 Implementation and Use Cases

c) A distributed evaluation of numerous RDF Dataset quality assessment metrics i.e schema
completeness, conciseness, interlinking, etc.

d) Assigning weights to a given entity based on the Spark GraphX PageRank algorithm after
triples have been transformed to a graph representation (i.e. PageRank for resources).

2. Query. The example applies Sparqlify11, which is a SPARQL-to-SQL rewriter, for data
partitioning and schema extraction. The queries are executed using the SparkSQL engine.

3. RDF inference. The examples apply a reasoning profile (RDFS Full, RDFS Simple, OWL
Horst, Transitive) on a given input file with an optimised execution plan.

4. OWL. The examples provided for the OWL layer demonstrate the process of loading an OWL
file into Spark RDD, a Spark Dataset, or a Flink DataSet.

5. Machine Learning.
a) Clustering algorithms. Three examples for different clustering algorithms are provided,

namely power iteration clustering, BorderFlow and modularity clustering. They all take
an RDF graph as input and return the list of triples for each of the different clusters.

b) Rule mining. This example applies association rule mining on a given RDF knowledge
base. The output is the set of closed Horn rules that satisfy a support-confidence threshold.

One of the powerful features of the SANSA Notebooks is that you can view the result set of the
previous session within the Spark framework and, in case you have found some insight for your data
and would like to share, you can easily create a report and either print or send it.

The main goal of the SANSA framework is to build a generic stack that can work with large amounts
of linked data, offering algorithms for scalable, i.e. horizontally distributed, semantic data analysis.
To validate this, we have developed use case implementations in several domains and projects.

A more detailed list of use cases with technical details and implementation is given on the following
sections (cf. Section 7.2, 7.3, and 7.4).

7.2 Leveraging Blockchain RDF Data Using the SANSA Framework

With the hype on blockchain technologies and in particular in the Ethereum blockchain [98], many
participants wanted to know more about the most impactful players across the blockchains transaction
network. In parallel, as the number of statements, actions, and transactions in the network is
increasing quickly, many “Big Data” challenges arise. First, transactions are raw data and one cannot
take advantage of them for further analysis. To do so, Alethio designed EthOn (The Ethereum
Ontology) [28] which models such raw data as triples using the RDF standard. This ontology describes
all Ethereum terms including blocks, transactions, contract messages, event logs, etc., as well as
their relationships. Afterword, performing querying and analysis on such large-scale RDF datasets is
computing-intensive. To overcome these challenges, we have explored the potential of the SANSA [31]
framework. With SANSA on Spark, RDF triples are loaded into Spark distributed and resilient data
structured, namely the data frames, for further analysis.

11
http://aksw.org/Projects/Sparqlify.html

88

http://aksw.org/Projects/Sparqlify.html

7.2 Leveraging Blockchain RDF Data Using the SANSA Framework

Amazon S3
buckets

EthOn RDF
triples

Connected Components

SANSA Engine

Data ingestion

Data partition

Querying (SPARQL)

Hubs &
Authorities
entities

PageRank Connected
Components

Top Accounts, Hubs & Authorities, Wallet
Exchange behaviorData visualization using the Databricks

notebooks or SANSA notebooks

Figure 7.4: Hubs and Authorities analysis workflow. The architecture overview for gaining insight about
Hubs and Authorities using the SANSA framework.

7.2.1 The Hubs and Authorities Transaction Network Analysis

In this work, we perform an analysis (using well-known graph processing algorithms) of the value
transaction network graph with the main focus on the Hubs and Authorities behaviors. “Authorities”
are accounts that payout to a large crowd of addresses, with high volume; while “Hubs” are entities
who receive extensive Ether (ETH) flow into their accounts. In this study, we do not differentiate these
two roles but rank them all together as the biggest players/entities.

Finding big Ethereum players with SANSA

The Ethereum network graph contains nodes of external accounts which have had a transaction on
the Ethereum blockchain. The connection (edges) between such nodes on the network indicate the
transaction relationship between them; when a node (an external account) sends ETH to another, a
transaction record is written, and an edge between them is added in the network with the direction of
the ETH flow. When we encounter multiple edges between same pairs of nodes, we summarize the
edges as a single one12. The edge weight is the total transaction value in Ether. As an example, if
address A sends x ETH to address B in total, there will be an edge of weight x from node A to node B.
In this study, self-loops i.e. transactions from an address to itself are omitted.

SANSA framework has been used for efficient reading and querying of RDF datasets using SPARQL
as depicted on Figure 7.4. First, the data need to be loaded on an efficient storage that SANSA can
read from. For that purpose, we use Amazon S3 buckets containing the whole RDF Ethereum network
transactions. Afterword, the SANSA data representation layer loads the data in a form of RDD of
12 This optimization is also convenient practically as it is easier not to have duplicated edges in a graph.

89

Chapter 7 Implementation and Use Cases

Figure 7.5: PageRank Score Distribution of Top-50
Accounts.

Figure 7.6: Category Distribution of Top-50 Ac-
counts.

triples. During this process, SANSA performs a data partition for fast processing and then aggregate
and filter the data using its query layer. Further, we applied two classic graph analysis algorithms via
Apache GraphX: Connected Components and Page Rank. Connected Components algorithm enables
us to find the largest cluster of connected nodes, regardless of transaction direction. Within this largest
cluster, we can derive the page rank score of all nodes. Top-ranked entities and their relation are
visualized.

Results

Datasets The Ethereum dataset in the format of RDF contains more than 17B triples. For the sake
of the experiment, we limited the dataset to 10,000 blocks which contain around 38M triples, including
both value transactions and contract messages.

Top Accounts Analysis The PageRank algorithm was run over the largest connected component
of 185,741 nodes (accounts) and 250,637 edges (aggregated transaction relations).
Figure 7.5 plots the top 50 account’s distribution. Based on the findings, we can see that these

accounts are grouped on two different types: mining pool wallets, and (mostly centralized) exchange
wallets.

Figure 7.6 shows that 58% of the addresses are controlled by exchanges, while another 12% with
convincing tags related to the mining pools. The exchange and mining pool wallets can be found
in the top position of our ranking, underlining the effectiveness of PageRank: Addresses related to
mining pools allocate extensive amounts of payouts to their subscribed miners, resulting in large
out-degrees, as well as high accumulated transaction value. We can see that the main wallets are
centralized exchanges which distribute (and receive) large volumes of the transaction to (and from)
their deposit wallets, token contracts, etc.

Our PageRank implementation successfully detects the most influential accounts across the network,
corresponding to the Hubs and Authorities, connecting various transactors and carrying heavy flow
weights.

Focusing on those known accounts (with labels from Etherscan13), we present (see Figure 7.7) the
network overview of top hubs and authorities with transactions as edges surrounding them.

13
https://etherscan.io/

90

https://etherscan.io/

7.2 Leveraging Blockchain RDF Data Using the SANSA Framework

Figure 7.7: Transaction Network of Top Hubs and Authorities.

Typical Behavior Patterns of Exchanges’ Deposit Wallets We investigated the associated
transaction behavior of the exchange wallets. Based on our finding, these behaviors can be grouped
into three categories:

1. Frequently paying out to certain exchanges’ main wallets with a fixed, large value – From the
scatter plot, the payout amount is always around the same value.

2. Frequently receiving funds from the same exchange main wallets, and paying out to various
token contracts – This is due to the activity which is associated with exchanges as they use
external accounts as deposit addresses for collecting tokens based on trading needs.

3. Frequently receiving funds from a group of “miner” accounts, with “proxy” accounts in between,
which clean out their received ETH within a short time frame – Usually, these addresses receive
funds from miner accounts, which again get paid reasonable amounts by known mining pools,
which we assume are mining rewards (usually around 0.11-0.12 ETH).

Despite pointing out the three typical behaviors above, they are not necessarily mutually exclusive.
There are addresses that share more than one of the deducted patterns. These behavior patterns
explored here are based on the labels we have gathered, and this may be different for other use cases.

91

Chapter 7 Implementation and Use Cases

(a) The unique attributes of a Kitty.

(b) An instance of a Kitty. (c) History of three types of auction events.

(d) The process pipeline. (e) An illustration of a small family tree.

Figure 7.8: Leveraging Blockchain RDF Data with SANSA: CryptoKitties as a Use Case.

7.2.2 Profiting From Kitties on Ethereum

The Ethereum ecosystem generates a large amount of data, including but not limited to protocol-level
data (e.g. average block time, gas prices), as well as application-level data (e.g. account interactions,
smart contract deployments). To efficiently handle this volume of data, Alethio has investigated
different tools and frameworks with one focus: the infrastructure should be resilient, load-bearing,
and most importantly, scalable. And so, for that reason to overcome the variety of the different
data sources, Alethio introduces semantification of the Ethereum network and uses SANSA as an
underlying engine for large scale distributed RDF based querying, reasoning, and machine learning on
top of these RDF datasets. To show the joint effort between SANSA and Alethio, we describe a use
case on how SANSA can be used to analyze Ethereum at new scales, as depicted in Figure 7.8.

92

7.3 Mining Big Data Applications Logs Using the SANSA Framework

CryptoKitties14 is one of the first games to be built on blockchain technology. In particular,
CryptoKitties initiated and released the first generation virtual kitties, with delicately designed icons
and genes sequences. All the kitties are virtual with some biological feature settings. Shown in
Figure 7.8(b) is a kitty with its specific biological attributes displayed in Figure 7.8(a). The attributes
are stored in a sequence, succeeded from its parents’ gene sequences, with the possibility ofmewtations.
An owner can sell, breed or gift it to other users. When users sell or breed it, they will send transactions
to the CryptoKitties smart contracts, which will complete the execution of either transferring ownership
between users or generating a new kitty. Based on that, game users can trade or breed kitties like
traditional collectibles, while having the guarantee that the blockchain will track ownership securely.
Moreover, one can breed two kitties to create a brand-new, genetically unique offspring.

Data Challenges. Alethio has been exploring efficient means of processing large RDF data sets.
SANSA empowers Alethio to read and query the data at scale as described in Figure 7.8(d). Indeed,
once the complete RDF data set is loaded, SANSA filters it to retain only the CryptoKitties triples
–transactions, contract messages, and log information– before performing more specific analyses.

Practically, the challenges tackled with SANSA can be divided into two groups: game performance
and customer behaviors. The first one focuses on time series metrics: throughput time, the event
volume, number of active users and amount of spent Ether, which can jointly estimate the trend of
popularity for the game. In Figure 7.8(c), the history of CryptoKitties auctions events shows clearly
that there was a peak of traffic in December after the game was launched for around one month. By this
time series, we can estimate the popularity of the game throughout history. The second one requires
machine learning algorithms to detect correlations between indicators (e.g. to determine whether
richer owners have the tendency to collect special/rare kitties which are more expensive) and topology
from a network view. In Figure 7.8(e), we present a small subset of the kitty family tree, where incest
happened during the reproduction: kitty 1057 is the secondary-degree relative (grandparent) of kitty
3200, while later it bred with kitty 3200 and gave birth to kitty 3225.

7.3 Mining Big Data Applications Logs Using the SANSA Framework

Big Data Europe (BDE)15 [29] is a large Horizon2020 funded EU project which offers an open-
source big data processing platform allowing users to install numerous big data processing tools and
frameworks. The platform has been tested and used by the 17 different partners of the project scattered
across Europe and its 7 different use cases cover a variety of societal challenges like climate, health,
weather, etc.

More specifically, BDE also allows the creation of a workflow for a stack containing many
applications, each serving a particular data value chain. An important feature of the integrator interface
is the mu.semte.ch microservice which transforms docker events to RDF and stores them in a triple
store16. The work is also being done towards storing the network logs in the triple store, by translating
the HTTP network traffic as triples as they occur in the network. This network log data combined
with the docker event data grows over time and provides a useful source that can help in analyzing

14
https://www.cryptokitties.co/

15
https://github.com/big-data-europe

16
https://github.com/big-data-europe/mu-swarm-logger-service

93

https://www.cryptokitties.co/
https://github.com/big-data-europe
https://github.com/big-data-europe/mu-swarm-logger-service

Chapter 7 Implementation and Use Cases

the event-call-time proximity. SANSA has been used to perform useful analytics over this data and
provide a possibility to create user profiles for the BDI platform.

Application Example: A Smart Green and Integrated Transport

The H2020 Societal Challenge 417, Smart Green and Integrated Transport, covers a broad topic ranging
from urban mobility to safety, logistics, transport system integration, infrastructure monitoring, and
planning. Transport systems consume huge flows of data to provide services, monitor infrastructures

Setup Zookeeper/Kafka

Figure 7.9: Transport pilot initialization workflow. The SC4 initialization pipeline including different BDE
dockerized components.

and discover the usage patterns in order to forecast what will be the status in the near or distant future.
All these systems consume streams of data from different sources and in different formats. In the
SC4 pilot, we have therefore decided to build a pilot that can ingest, transform, integrate and store
streams of data that have spatial and temporal dimensions. One of the project partners, CERTH-HIT,
is managing a system that monitors the traffic flow in Thessaloniki, Greece, using floating car data
from a transport company. The legacy system is based on a relational database, stored procedures
and R scripts to map-match the location of the vehicles to the road segments and compute the traffic
flow and average speed among other statistical parameters. The result of the computation is used for
monitoring and as input for forecasting the value of the parameters in the near future and is made
available through a web service. The aim of the pilot is to address the scalability issues of the current
system leveraging the availability of distributed frameworks and the containerization technology for
the deployment of services in different environments.

The pilot is based on the microservices architecture where different software components, producers
and consumers, communicate through a messaging system connecting data sources to data sinks.
Producers and consumers are implemented as Flink18 jobs while Kafka19 has been chosen as the
messaging system. The producer fetches the data every two minutes from the web service, stores
the records sets into HDFS, transforms the records into a binary format, using a schema shared with
the consumer, and finally sends the records to a Kafka topic. The consumer reads the records from
the Kafka topic and process them at event time applying the map matching function. The consumer
must connect to an R server where an R script has been installed to perform the computation for
the map matching using the road network data from Open Street Map stored in a PostGis database.
The consumer adds the identifier of the road segment as an additional field to the original record
and finally aggregates the records per road segment and in time windows to compute the traffic flow
and the average speed in each road segment. The result of the aggregation can be sent to HDFS or

17
https://www.big-data-europe.eu/pilot-transport/

18
http://flink.apache.org/

19
https://kafka.apache.org/

94

https://www.big-data-europe.eu/pilot-transport/
http://flink.apache.org/
https://kafka.apache.org/

7.4 Scalable Integration of Big POI Data Using the SANSA Framework

to Elasticsearch20. From Elasticsearch different visualizations can be created easily with Kibana21.
The records with the aggregated values stored in Elasticsearch will be used as input to a forecasting
algorithm to predict the traffic flow. All the components are available as Docker images and a
docker-compose file has been created adding the initialization service and the UI provided by the BDI
Stack in order to start the services in the right sequence from the browser (e.g. Zookeeper before
Kafka and PostGis and Elasticsearch before the consumer)22.

With such a chain of technologies used, it is obvious that many logs are being generated. The Mu
Swarm Logger Service provided within the BDE platform collects the events generated by the Docker
API and trigger code to log to the database the following events: i) Container’s events (including the
environments variable and labels), ii) Container’s logs (STDOUT, and STDERR), and iii) Docker
stats i.e. health status, CPU and Memory Usage footprint, I/O, etc. The events generated by the
service are modeled using the Events Ontology23. Each pipeline (or stack of services) build within the
BDE pipeline has the possibility to tag services with LOG label in order to generate log events (as
described above). The service then waits for such logs and write them back into an RDF. One can
imagine such a process run over millions of events spread across multiple big data stacks containing
multiple services that will generate a large amount of RDF data (events). Analyzing this valuable
information via traditional RDF data management systems was not possible. Therefore, we integrated
our approaches via SANSA for analyzing log events on the BDE platform. More specifically, BDE
run RDF dataset statistics from SANSA-Notebooks [30] and provide visualization of events generated
e.g. finding the most frequent errors happening at the specific event.

7.4 Scalable Integration of Big POI Data Using the SANSA Framework

Various organizations like DBpedia [6], Wikidata [99] etc. are constantly working for gathering
information from different sources and storing it in a structured form, e.g. RDF. RDF data allow to
model various domains and this characteristic helps to solve problems in different areas i.e., from the
medical domain to the geographical domain.
In this study, we are focusing on POIs. POIs are generally characterized by their geospatial

coordinates along with their thematic/contextual attributes. A common POI use-case is to find hot
zones according to specific topics: i.e. discovering AOIs as a result of the aggregation of POIs. With
the assistance of AOIs, one can identify other similar areas in the same or a different city, recognize
the distinguishing characteristics of this area, and determine potential types of users (or customers)
that would be interested in that area.

In this use case, we propose a flexible architecture to design clustering pipelines for POI semantic
datasets at once. Indeed, using large and detailed RDF vocabularies allow richer POI descriptions. For
example, one POI related to a restaurant might be described by its latitude, longitude, food specialty,
reviews, address, phone number, etc. which could represent up to 50 distinct triples24 leading then
to billions of RDF records overall. As a consequence, we require scalability and build our solution

20
https://www.elastic.co/products/elasticsearch

21
https://www.elastic.co/products/kibana

22
https://github.com/big-data-europe/pilot-sc4-fcd-applications

23
https://github.com/big-data-europe/mu-swarm-logger-service/blob/master/docs/docker-engine-events/
events.owl

24 See e.g. the SLIPO ontology: https://github.com/SLIPO-EU/poi-data-model/

95

https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/kibana
https://github.com/big-data-europe/pilot-sc4-fcd-applications
https://github.com/big-data-europe/mu-swarm-logger-service/blob/master/docs/docker-engine-events/events.owl
https://github.com/big-data-europe/mu-swarm-logger-service/blob/master/docs/docker-engine-events/events.owl
https://github.com/SLIPO-EU/poi-data-model/

Chapter 7 Implementation and Use Cases

Input RDF
POI data

POI_ID Cat1 Cat2

 1 0 1

2 1 0

3 0 1

4 1 1

SANSA-Stack

 Pre
Processing

SPARQL

Filtering

Word

Embedding

Semantic

Clustering

Geo

Clustering

Figure 7.10: A Semantic-Geo Clustering flow. It consists of five main components: data pre-processing,
SPARQL filtering, word embedding, semantic clustering, and geo-clustering.

on top of the distributed semantic stack SANSA which benefits from Apache Spark. The proposed
architecture then enables any kind of clustering algorithm combinations on POI RDF data.

7.4.1 Proposed Solution: Architecture Overview

In order to process RDF (containing POIs) datasets in an efficient and scalable way, we first have to
adopt a convenient processing framework. SANSA is a data-flow engine for distributed computing
of large-scale RDF datasets. It provides APIs for faster reading, querying, inferencing and apply
analytics at scale. It uses Apache Spark as an underlying engine. SANSA contains features which are
utilized for processing RDF data with thematic and spatial information.
Our proposed approach contains up to five main components (which could be enabled/disabled if

necessary) namely: data pre-processing, SPARQL filtering, word embedding, semantic clustering,
and geo-clustering. In particular, in Figure 7.10, we present an example of the Semantic-Geospatial
clustering pipeline. Indeed, we consider two types of clustering algorithms: the semantic-based ones
and the geo-based ones.
In semantic-based clustering algorithms (which do not consider POI locations but rather aim at

grouping POIs according to shared labels), there is a need to transform the POIs categorical values
to numerical vectors to find the distance between them. So far, we can select any word embedding
technique among the three available ones namely one-hot encoding, Word2Vec, andMulti-Dimensional
Scaling. All the above-mentioned methods convert categorical variables into a form that could be
provided to semantic clustering algorithms to form groups of non-location-based similarities.
For example, all restaurants are in one cluster whereas all the ATMs in another one. On the other

hand, the geo-clustering methods help to group the spatially closed coordinates within each semantic
cluster.

More generically, our architecture and implementation allow users to design any kind of clustering
combinations they would like. Actually, the solution is flexible enough to pipe together more than two
clustering ”blocks” and even to add additional RDF datasets into the process after several clustering
rounds. In addition, we directly embedded the state-of-the-art clustering algorithms into the SANSA
Machine Learning layer25 so that these pipelines are prone to be built out of the box.

25
https://github.com/SANSA-Stack/SANSA-ML

96

https://github.com/SANSA-Stack/SANSA-ML

7.4 Scalable Integration of Big POI Data Using the SANSA Framework

Figure 7.11: Visualizations (on a map) of the Semantic-Geo clustering pipeline steps. Visualizations of a
zoom over a particular Austrian region with K-means results of POIs (left) and geographical clustering with
relevant AOIs (right).

Application Example: A Semantic-Geo Clustering Pipeline

To illustrate the feasibility of our approach and demonstrate the potential of the RDF POI clustering
library we developed in SANSA, we present –as an example– in this section the implementation results
of the specific architecture presented in Figure 7.10 i.e. a Semantic-Geo clustering pipeline.

In order to test the process and validate the approach, we used an RDF POI dataset which follows the
ontology described in [100] containing around 18 000 triples which represent information on 623 POIs
(i.e. around 28 triples per POI). We then chose Word2Vec [101] as embedding for the K-means [102]
semantic-clustering algorithm, before running DBSCAN [103] as geo-clustering method. In detail,
we gave the following parameters to the algorithms: 8 clusters within 5 iterations for K-means and
ε = 0.002 with at least 2 points per cluster for DBSCAN. The complete process took around 20
seconds using an 8GB-memory laptop running a single-node SANSA & Spark stack.

We present the results obtained at the various steps in Figure 7.11 on a map, the figure presents
a zoom over a particular Austrian region. The figure is twofold, we first display (left side) the only
result of the K-means where POIs are pinned on a map and where each color corresponds to a specific
cluster. As expected, the semantic clusters are distributed over the entire country since POIs of color
are sharing common “sense” with regards to the categories in the ontology. As a consequence, the
geographical step of aggregation allows then to break those country-spread clusters into pieces and
obtain (right side of Figure 7.11) relevant AOIs. In particular, four AOIs are visible: an orange one in
the corner, a large red one which also embeds a green one and a little magenta.

97

Chapter 7 Implementation and Use Cases

7.5 Summary

SANSA provides a scalable solution for reading and querying large scale RDF data, providing
compatibility with machine learning libraries on Spark including GraphX as a graph processing
library.
With conventional graph analysis tools, we successfully identified Hubs and Authorities in the

Ethereum transaction network and discovered that they are mainly related to exchange wallet and
mining pool activities.
This pipeline also provides a possibility to filter out top accounts, which are likely to exchange’

deposit wallets. Furthermore, with the filtered top rank accounts, the ”mixing” patterns of exchanges’
deposit wallets become recognizable. This can be a promising tool for detecting previously unknown
exchange wallets and lead to a deeper understanding of their behavior patterns for future analyses.
Alethio is investigating DistQualityAssesment as well, for performing large-scale batch quality checks,
e.g. analysing the quality while merging new data, computing attack pattern frequencies and fraud
detection. Alethio uses our approaches on a cluster of 100 worker nodes to assess the quality of their
≈20B26 of RDF data.
In addition, we showed the solution of collecting event logs generated by multiple dockerized

big data components in the BDE platform and analyze them using our approach. The idea behind
collecting reach information about docker logs and other services is for providing a better monitoring
view of the running services. Usually, such historical information may lead to new knowledge for early
detection of failures of the running processes or even by just categorizing the most frequent error types
happening in the past. It is helpful for providing performance and diagnostics information to the user.
Finally, we presented a solution to extract AOIs from big POI data while considering several

dimensions at the same time. The architecture is embedded inside a state-of-the-art SemanticWeb stack
(i.e. SANSA) and then benefits from the advantages of it. For instance, it allows source aggregation or
datasets filtering via SPARQL to only focus on some interesting regions, e.g., a specific country can
be selected. Moreover, even if we restricted our description in this study to a Semantic-Geo clustering
pipeline, our architecture allows any kind of clustering combinations. The above-presented pipeline is
also openly available from a demonstrating notebook27 on the SANSA repository.

26
https://linkeddata.aleth.io/

27
https://github.com/SANSA-Stack/SANSA-Notebooks

98

https://linkeddata.aleth.io/
https://github.com/SANSA-Stack/SANSA-Notebooks

CHAPTER 8

Conclusion and Future Directions

In this chapter, we summarize the work done during this thesis and highlight the main results. During
this thesis, we studied the research problem of efficient distributed in-memory processing of RDF
datasets.
In particular, we addressed the problems of Scalable Computation of RDF Dataset Statistics (cf.

Chapter 4), Quality Assessment of RDF Datasets at Scale (cf. Chapter 5), Scalable and Efficient
SPARQL Query Evaluation (cf. Chapter 6), and usage of such scalable approaches into real-world use
cases (cf. Chapter 7).
In the following sections, we provide a summary of our contributions and elaborate on the main

findings that validate our research questions.

8.1 Review of the Contributions

In this section, we give an overview of the thesis’ contributions in terms of the problems solved
and how they offer concrete and valid solutions to the research questions. The main goal of the
thesis is to advance the area of distributed processing of RDF datasets by providing a novel set of
approaches in order to solve the main challenges in a distributed and scalable setting. In this respect,
our contributions answer three research questions. Let us revisit the research questions defined during
this thesis.
First, we tackled the problem of exploring the structure of the large-scale RDF datasets and

answering the following research question.

RQ1: How can we efficiently explore the structure of large-scale RDF datasets?

Over the last years, the Semantic Web has been growing steadily. Today, we count more than 10,000
datasets made available online following Semantic Web standards. Nevertheless, many applications,
such as data integration, search, and interlinking, may not take the full advantage of the data without
having a priori statistical information about its internal structure and coverage. In fact, there are
already a number of tools, which offer such statistics, providing basic information about RDF datasets
and vocabularies. However, those usually show severe deficiencies in terms of performance once the
dataset size grows beyond the capabilities of a single machine. To address RQ1, in Chapter 4 we
introduced a software component for statistical calculations of large RDF datasets, which scales out

99

Chapter 8 Conclusion and Future Directions

to clusters of machines. More specifically, we described the first distributed in-memory approach
for computing 32 different statistical criteria for RDF datasets using Apache Spark. The preliminary
results show that our distributed approach improves upon a previous centralized approach we compare
against and provides approximately linear horizontal scale-up. The criteria are extensible beyond the
32 default criteria, is integrated into the larger SANSA framework and employed in at least four major
usage scenarios beyond the SANSA community. Overall, we provide the following contributions to
the state-of-the-art:

• We proposed an algorithm for computing RDF dataset statistics and implement it using an
efficient framework for large-scale, distributed and in-memory computations: Apache Spark.

• We performed an analysis of the complexity of the computational steps and the data exchange
between nodes in the cluster.

• Weevaluated our approach and demonstrate empirically its superiority over a previous centralized
approach.

• We integrated the approach into the SANSA framework, where it is actively maintained and
re-uses the community infrastructure (mailing list, issues trackers, website, etc.).

• An approach for triggering RDF statistics calculation remotely simply using HTTP requests.
DistLODStats is built as a plugin into the larger SANSA framework and makes use of Apache
Livy, a novel lightweight solution for interacting with the Spark cluster via a REST Interface.

The second problem we tried to address was the possibility of assessing the quality of large-scale
RDF datasets efficiently in a distributed manner and answers the following research question.

RQ2: Can we scale RDF dataset quality assessment horizontally?

Over the last years, Linked Data has grown continuously. Today, we count more than 10,000
datasets being available online following Linked Data standards. These standards allow data to be
machine-readable and interoperable. Nevertheless, many applications, such as data integration, search,
and interlinking, cannot take full advantage of Linked Data if it is of low quality. There exist a few
approaches for the quality assessment of Linked Data, but their performance degrades with the increase
in data size and quickly grows beyond the capabilities of a single machine. To answer question RQ2,
in this thesis, we present DistQualityAssessment (cf. Chapter 5) – an open source implementation
of quality assessment of large RDF datasets that can scale out to a cluster of machines. This is the
first distributed, in-memory approach for computing different quality metrics for large RDF datasets
using Apache Spark. We also provide a quality assessment pattern that can be used to generate new
scalable metrics that can be applied to big data. The work presented here is integrated with the SANSA
framework and has been applied to at least three use cases beyond the SANSA community. The results
show that our approach is more generic, efficient, and scalable as compared to previously proposed
approaches. Overall, we provide the following contributions to the state-of-the-art:

• We present a Quality Assessment Pattern QAP to characterize scalable quality metrics.

• We provide DistQualityAssessment – a distributed (open source) implementation of quality
metrics using Apache Spark.

100

8.1 Review of the Contributions

• We performed an analysis of the complexity of the metric evaluation in the cluster.

• We evaluate our approach and demonstrate empirically its superiority over a previous centralized
approach.

• We integrated the approach into the SANSA framework. SANSA is actively maintained and
uses the community ecosystem (mailing list, issues trackers, continuous integration, website,
etc.).

The third problem we tackled in this thesis was the problem of querying and retrieving distributed
RDF datasets in an efficient and effective way and answers the following research question.

RQ3: Can distributed RDF datasets be queried efficiently and effectively?

One of the key features of Big Data is its complexity in terms of representation, structure, or formats.
One existing way to deal with it is offered by Semantic Web standards. Among them, RDF –which
proposes to model data with triples representing edges in a graph– has received a large success and
the semantically annotated data has grown steadily towards a massive scale. Therefore, there is a need
for scalable and efficient query engines capable of retrieving such information. To answer RQ3, in
Chapter 6 we proposed scalable approaches for SPARQL query evaluation over distributed RDF data.
First, Sparklify – a scalable software component for efficient evaluation of SPARQL queries over
distributed RDF datasets. It uses Sparqlify as a SPARQL-to-SQL rewriter for translating SPARQL
queries into Spark executable code. Our preliminary results demonstrate that our approach is more
extensible, efficient, and scalable as compared to state-of-the-art approaches. As a second approach,
we investigated and implemented a scalable semantic-based query engine for efficient evaluation of
SPARQL queries over distributed RDF datasets. It uses a semantic-based partitioning strategy as the
data distribution and converts SPARQL to Spark executable code. We have shown empirically that
a semantic-based approach can scale horizontally and perform well as compared with the previous
Hadoop-based system: the SHARD triple store. It is also comparable with other in-memory SPARQL
query evaluators when there is less shuffling involved i.e. less duplicate values. Both approaches are
integrated into a larger SANSA framework and Sparklify serves as a default query engine and has
been used by at least three external use scenarios. Overall, we provide the following contributions to
the state-of-the-art:

• We present a novel approach for vertical partitioning including RDF terms using the distributed
computing framework, Apache Spark.

• We developed a scalable query system using Sparqlify – a SPARQL-to-SQL rewriter on top of
Apache Spark.

• We evaluated Sparklify with state-of-the-art engines and demonstrate it empirically.

• A scalable approach for semantic-based partitioning using the distributed computing framework,
Apache Spark.

• A scalable semantic-based query engine (SANSA.Semantic) on top of Apache Spark.

101

Chapter 8 Conclusion and Future Directions

• Comparison of the semantic-based system with state-of-the-art engines and demonstrate the
performance empirically.

• We integrated the proposed approaches into the SANSA larger framework. Sparklify serves as
a default query engine in SANSA. SANSA is an active project and maintained, including issue
tracker, mailing list, changelogs, website, etc.

8.2 Limitations and Future Directions

In this section, we discuss the limitations we identified during this study and potential future directions
to take in order to overcome such limitations.

In the following, we summarize the limitations and future directions on each of themain contributions
of this thesis.

• Large-scale RDF Dataset Statistics – In Chapter 4 we have demonstrated that our approach
is scalable when computing statistics over a large amount of RDF data as compared with a
centralized approach. Nevertheless, we plan to further improve time efficiency by persisting
the data to an even higher extent more in memory and perform load balancing, which could
further improve the performance. Moreover, as our implementation is purely batch processing,
in which the data chunks are normally very large we plan to investigate additional techniques
for lowering the network overhead and I/O footprint. In this regard, efficient compression (e.g.
Header, Dictionary, Triples (HDT) [104]) methods for lowering data communication would
be very relevant. Finally, as our main focus is on applying distributed techniques to RDF data
processing, we plan to port the existing solution for near real-time computation of RDF dataset
statistics.

• Assessment of RDF Datasets at Scale – Although we have achieved reasonable results in terms
of scalability (cf. Chapter 5), we plan to further improve time efficiency by applying intelligent
partitioning strategies and persist the data to an even higher extent in memory and perform
dependency analysis in order to evaluate multiple metrics simultaneously. We also plan to
explore near real-time interactive quality assessment of large-scale RDF data using Spark
Streaming. Finally, in the future, we intend to develop a declarative plugin for the current
work using Quality Metric Language (QML) [17], which gives users the ability to express,
customize and enhance quality metrics. Besides the above mentioned future direction, as a
long-term vision, we plan to offer DistQualityAssessment as a Service. It is obvious that the
quality assessment of RDF is not considered a one-off event but, on the contrary, intends to
be constantly evolving. Therefore, these changes have to be reflected as well. However, given
the large-scale of such RDF datasets, one should consider various strategies for crawling and
assessing the quality of the data. Currently, there is a number of crawlers available, such as
the LODStats1 project, which has crawled RDF data from metadata portals for the past eight
years. It interacts with the CKAN dataset metadata registry to obtain a comprehensive picture
of the current state of the Data Web. While crawling the data, and specifically over large-scale
RDF datasets, data quality check is a must. The current solution does not provide such option,

1
http://lodstats.aksw.org/

102

http://lodstats.aksw.org/

8.2 Limitations and Future Directions

therefore, integration of our approach with the LODStats project could bring another view w.r.t
to the quality of the data

• Scalable RDF Querying – In this thesis, we showed that the application of OBDA tooling to
Big Data frameworks achieves promising results in terms of scalability. We present a working
prototype implementation that can serve as a baseline for further research. Our next steps
include evaluating other tools, such as Ontop [105], and analyze how their performance in the
Big Data setting can be improved further. For example, we intend to investigate how OBDA
tools can be combined with dictionary encoding of RDF terms as integers and evaluate the
effects. In addition to that, we plan to further extend our parser to support more SPARQL
fragments and adding statistics to the query engine while evaluating queries. We want to analyze
the query performance in the large-scale RDF datasets and explore prospects for improvement.
For example, we intend to investigate the re-ordering of the BGPs and evaluate the effects on
query execution time. In this regard, efficient strategies, as well as a detailed cost function for
query plan optimization, have to be considered. In addition, we also plan to consider other data
management operations i.e. additions, updates, deletions and materialization of the results. One
solution could be considering the Delta2 lake solution as an alternative for storage layer that
brings ACID transactions to RDF data management solutions.

In addition to the future work mentioned above, we see a potential future direction as a long term
vision of this work, in an attempt to foster the interest in scalable processing of RDF datasets.

• Adaptive Distributed RDF Querying – Often the power of freedom while designing SPARQL
queries leads to very complex and performance deficits in SPARQL query evaluation. Within
our SPARQL query evaluators, we will go beyond that by developing adaptive data distribution
strategies, that generate and optimize index structures and distribute data based on anticipated
query workloads of particular inference or machine learning algorithms.

• Efficient Recommendation System for RDF Partitioners – In order to store and query big RDF
datasets efficiently in distributed environments, different partitioning techniques need to be
implemented. Several techniques have been proposed for splitting Big RDF Data, ranging from
vertical (cf. Section 6.1), hash, graph to semantic-based (cf. Section 6.2) partitioners. However,
the selection of the “best partitioner” depends highly on the structure of the dataset and the
query efficiency and effectiveness are coupled to the query engine used. We aim to develop a
recommender system that will suggest the “best partitioner” for both of our SPARQL query
evaluators based on the structure of the data gathered from DistLODStats (cf. Chapter 4) and
specific requirements.

• A Powerful Benchmarking Suite – In order to decide which distributed SPARQL query evaluator
performs best for specific query loads over a large-scale RDF dataset, it is required to perform
benchmarks. Benchmarking is an extremely tedious task demanding repetitive manual effort,
therefore it is required to automate the whole process. However, there are currently no
benchmarking frameworks that support benchmarking and comparing diverse distributed
SPARQL query evaluators. To this end, we will make use of the existing benchmarking platform
i.e. LITMUS [106], HOBBIT [107] and extend them toward supporting distributed settings.

2
https://delta.io/

103

https://delta.io/

Chapter 8 Conclusion and Future Directions

8.3 Closing Remarks

With the increasing amount of the RDF data, processing large-scale RDF datasets are constantly
facing challenges and a lot of potential for exploration. During this thesis, we have shown the benefits
of distributed computing frameworks to successfully tackle the problem of scalable and efficient
processing of RDF datasets. More specifically, we have presented the details of three core components:
1) scalable RDF dataset statistics evaluation, 2) distributed quality assessment of large amounts of
RDF data, and 3) efficient and scalable SPARQL query evaluators. In addition, we have shown the
usage of the proposed techniques into real-world use cases. Future research work can build upon the
contributions presented during this thesis as a starting point for a comprehensive and out-of-the-box
scalable processing of large-scale RDF datasets. The main contributions of this thesis have been
integrated within the SANSA framework and are making an impact on the semantic web community
and several semantic web applications in the big data era – resulting in a SANSA framework and being
used in many European research projects.

104

Bibliography

[1] A. Schätzle, M. Przyjaciel-Zablocki, S. Skilevic, and G. Lausen,
S2RDF: RDF Querying with SPARQL on Spark, Proc. VLDB Endow. 9 (2016) 804,
issn: 2150-8097, url: http://dx.doi.org/10.14778/2977797.2977806
(cit. on pp. 1, 3, 28, 63, 67).

[2] Z. Xu, W. Chen, L. Gai, and T. Wang,
“Sparkrdf: In-memory distributed rdf management framework for large-scale social data,”
International Conference on Web-Age Information Management, Springer, 2015 337
(cit. on p. 2).

[3] N. Papailiou, I. Konstantinou, D. Tsoumakos, P. Karras, and N. Koziris,
“H 2 RDF+: High-performance distributed joins over large-scale RDF graphs,”
Big Data, 2013 IEEE International Conference on, IEEE, 2013 255 (cit. on p. 2).

[4] N. Papailiou, I. Konstantinou, D. Tsoumakos, and N. Koziris,
“H2RDF: adaptive query processing on RDF data in the cloud.,”
Proceedings of the 21st International Conference on World Wide Web, ACM, 2012 397
(cit. on p. 2).

[5] V. R. Benjamins, J. Contreras, O. Corcho, and A. Gómez-pérez,
“Six Challenges for the Semantic Web,” In KR2002 Semantic Web Workshop, 2002 2004
(cit. on p. 2).

[6] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N. Mendes, S. Hellmann,
M. Morsey, P. van Kleef, S. Auer, and C. Bizer,
DBpedia - A Large-scale, Multilingual Knowledge Base Extracted from Wikipedia,
Semantic Web Journal 6 (2015) 167,
url: http://jens-lehmann.org/files/2014/swj_dbpedia.pdf
(cit. on pp. 2, 39, 55, 95).

[7] A. Zaveri, A. Rula, A. Maurino, R. Pietrobon, J. Lehmann, and S. Auer,
Quality assessment for linked data: A survey, Semantic Web 7 (2015) 63
(cit. on pp. 2, 4, 26, 49, 52, 60).

[8] F. Michel, Integrating heterogeneous data sources in the Web of data,
Theses: Université Côte d’Azur, 2017,
url: https://tel.archives-ouvertes.fr/tel-01508602 (cit. on p. 2).

[9] A. Tonon, G. Demartini, and P. Cudré-Mauroux,
“Combining Inverted Indices and Structured Search for Ad-hoc Object Retrieval,”
Proceedings of the 35th International ACM SIGIR Conference on Research and Development

105

http://dx.doi.org/10.14778/2977797.2977806
http://dx.doi.org/10.14778/2977797.2977806
http://jens-lehmann.org/files/2014/swj_dbpedia.pdf
https://tel.archives-ouvertes.fr/tel-01508602

Bibliography

in Information Retrieval, SIGIR ’12, ACM, 2012 125, isbn: 978-1-4503-1472-5,
url: http://doi.acm.org/10.1145/2348283.2348304 (cit. on p. 2).

[10] A. Dutta, C. Meilicke, and S. P. Ponzetto,
“A Probabilistic Approach for Integrating Heterogeneous Knowledge Sources,”
The Semantic Web: Trends and Challenges,
ed. by V. Presutti, C. d’Amato, F. Gandon, M. d’Aquin, S. Staab, and A. Tordai,
Springer International Publishing, 2014 286, isbn: 978-3-319-07443-6 (cit. on p. 2).

[11] P.-Y. Vandenbussche, G. A. Atemezing, M. Poveda-Villalón, and B. Vatant,
Linked Open Vocabularies (LOV): a gateway to reusable semantic vocabularies on the Web,
Semantic Web Preprint (2015) 1 (cit. on pp. 2, 31).

[12] A. Langegger and W. Wöß,
“RDFStats - An Extensible RDF Statistics Generator and Library.,” DEXA Workshops,
IEEE Computer Society, 2009 79, isbn: 978-0-7695-3763-4,
url: http://dblp.uni-trier.de/db/conf/dexaw/dexaw2009.html#LangeggerW09
(cit. on pp. 2, 24, 31).

[13] I. Ermilov, M. Martin, J. Lehmann, and S. Auer,
“Linked Open Data Statistics: Collection and Exploitation,”
Proceedings of the 4th Conference on Knowledge Engineering and Semantic Web, 2013,
url: http://svn.aksw.org/papers/2013/KESW_LODStats_Demo/public.pdf
(cit. on pp. 2, 31).

[14] J. Debattista, C. Lange, S. Auer, and D. Cortis,
Evaluating the quality of the LOD cloud: An empirical investigation,
Semantic Web 9 (2018) 859, url: https://doi.org/10.3233/SW-180306
(cit. on pp. 3, 49).

[15] M. Färber, F. Bartscherer, C. Menne, and A. Rettinger,
Linked data quality of DBpedia, Freebase, OpenCyc, Wikidata, and YAGO,
Semantic Web 9 (2018) 77 (cit. on pp. 3, 49).

[16] W. Beek, F. Ilievski, J. Debattista, S. Schlobach, and J. Wielemaker,
Literally better: Analyzing and improving the quality of literals, Semantic Web 9 (2018)
(cit. on pp. 3, 49).

[17] J. Debattista, S. Auer, and C. Lange,
Luzzu—A Methodology and Framework for Linked Data Quality Assessment,
Journal of Data and Information Quality (JDIQ) 8 (2016) 4
(cit. on pp. 3, 25, 26, 49, 52, 55, 56, 102).

[18] N. Mihindukulasooriya, R. García-Castro, and A. Gómez-Pérez,
“LD Sniffer: A Quality Assessment Tool for Measuring the Accessibility of Linked Data,”
Knowledge Engineering and Knowledge Management,
Springer International Publishing, 2016 149, isbn: 978-3-319-58694-6 (cit. on pp. 3, 26, 49).

106

http://doi.acm.org/10.1145/2348283.2348304
http://dblp.uni-trier.de/db/conf/dexaw/dexaw2009.html#LangeggerW09
http://svn.aksw.org/papers/2013/KESW_LODStats_Demo/public.pdf
http://dx.doi.org/10.3233/SW-180306
https://doi.org/10.3233/SW-180306

[19] D. Graux, L. Jachiet, P. Genevès, and N. Layaïda,
“SPARQLGX: Efficient Distributed Evaluation of SPARQL with Apache Spark,”
The Semantic Web – ISWC 2016,
ed. by P. Groth, E. Simperl, A. Gray, M. Sabou, M. Krötzsch, F. Lecue, F. Flöck, and Y. Gil,
Springer International Publishing, 2016 80, isbn: 978-3-319-46547-0
(cit. on pp. 3, 28, 29, 63, 67, 76).

[20] J. Demter, S. Auer, M. Martin, and J. Lehmann,
“LODStats—An Extensible Framework for High-performance Dataset Analytics,”
Proceedings of the EKAW 2012, Lecture Notes in Computer Science (LNCS) 7603,
Springer, 2012, url: http://svn.aksw.org/papers/2011/RDFStats/public.pdf
(cit. on pp. 3, 32).

[21] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin,
S. Shenker, and I. Stoica,
“Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing,”
Proceedings of the 9th USENIX conference on Networked Systems Design and Implementation,
2012 (cit. on pp. 4, 20, 28, 31, 49).

[22] G. Sejdiu, I. Ermilov, J. Lehmann, and M. Nadjib-Mami,
“DistLODStats: Distributed Computation of RDF Dataset Statistics,”
Proceedings of 17th International Semantic Web Conference, 2018,
url: http://jens-lehmann.org/files/2018/iswc_distlodstats.pdf
(cit. on pp. 5, 7, 23, 32).

[23] G. Sejdiu, I. Ermilov, J. Lehmann, and M.-N. Mami, “STATisfy Me: What are my Stats?”
Proceedings of 17th International Semantic Web Conference, Poster & Demos, 2018,
url: http://jens-lehmann.org/files/2018/iswc_statisfy_pd.pdf
(cit. on pp. 5, 7, 32).

[24] G. Sejdiu, A. Rula, J. Lehmann, and H. Jabeen,
“A Scalable Framework for Quality Assessment of RDF Datasets,”
Proceedings of 18th International Semantic Web Conference, 2019, url:
http://jens-lehmann.org/files/2019/iswc_dist_quality_assessment.pdf
(cit. on pp. 5, 7, 23, 50).

[25] C. Stadler, G. Sejdiu, D. Graux, and J. Lehmann, “Sparklify: A Scalable Software Component
for Efficient evaluation of SPARQL queries over distributed RDF datasets,”
Proceedings of 18th International Semantic Web Conference, 2019,
url: http://jens-lehmann.org/files/2019/iswc_sparklify.pdf
(cit. on pp. 6, 7, 23, 64, 76).

[26] G. Sejdiu, D. Graux, I. Khan, I. Lytra, H. Jabeen, and J. Lehmann,
“Towards A Scalable Semantic-based Distributed Approach for SPARQL query evaluation,”
15th International Conference on Semantic Systems (SEMANTiCS), 2019,
url: https://gezimsejdiu.github.io/publications/semantic_based_query_
paper_SEMANTICS2019.pdf (cit. on pp. 6, 7, 23, 64).

107

http://svn.aksw.org/papers/2011/RDFStats/public.pdf
http://jens-lehmann.org/files/2018/iswc_distlodstats.pdf
http://jens-lehmann.org/files/2018/iswc_statisfy_pd.pdf
http://jens-lehmann.org/files/2019/iswc_dist_quality_assessment.pdf
http://jens-lehmann.org/files/2019/iswc_sparklify.pdf
https://gezimsejdiu.github.io/publications/semantic_based_query_paper_SEMANTICS2019.pdf
https://gezimsejdiu.github.io/publications/semantic_based_query_paper_SEMANTICS2019.pdf

Bibliography

[27] C. Stadler, G. Sejdiu, D. Graux, and J. Lehmann,
“Querying large-scale RDF datasets using the SANSA framework,”
Proceedings of 18th International Semantic Web Conference (ISWC), Poster & Demos, 2019,
url: https://gezimsejdiu.github.io/publications/sansa-sparklify-ISWC-
demo.pdf (cit. on pp. 6, 7, 64).

[28] J. Pfeffer, A. Beregszazi, C. Detrio, H. Junge, J. Chow, M. Oancea, M. Pietrzak,
S. Khatchadourian, and S. Bertolo, EthOn - An Ethereum ontology, 2016 (cit. on pp. 6, 88).

[29] S. Auer, S. Scerri, A. Versteden, E. Pauwels, A. Charalambidis, S. Konstantopoulos,
J. Lehmann, H. Jabeen, I. Ermilov, G. Sejdiu, A. Ikonomopoulos, S. Andronopoulos,
M. Vlachogiannis, C. Pappas, A. Davettas, I. A. Klampanos, E. Grigoropoulos, V. Karkaletsis,
V. de Boer, R. Siebes, M. N. Mami, S. Albani, M. Lazzarini, P. Nunes, E. Angiuli, N. Pittaras,
G. Giannakopoulos, G. Argyriou, G. Stamoulis, G. Papadakis, M. Koubarakis,
P. Karampiperis, A.-C. N. Ngomo, and M.-E. Vidal,
“The BigDataEurope Platform - Supporting the Variety Dimension of Big Data,”
17th International Conference on Web Engineering, 2017,
url: http://jens-lehmann.org/files/2017/icwe_bde.pdf (cit. on pp. 7, 93).

[30] I. Ermilov, J. Lehmann, G. Sejdiu, L. Bühmann, P. Westphal, C. Stadler, S. Bin,
N. Chakraborty, H. Petzka, M. Saleem, A.-C. N. Ngonga, and H. Jabeen,
“The Tale of Sansa Spark,”
Proceedings of 16th International Semantic Web Conference, Poster & Demos,
Best Demo Award, 2017,
url: http://jens-lehmann.org/files/2017/iswc_pd_sansa.pdf
(cit. on pp. 7, 39, 45, 54, 66, 73, 95).

[31] J. Lehmann, G. Sejdiu, L. Bühmann, P. Westphal, C. Stadler, I. Ermilov, S. Bin,
N. Chakraborty, M. Saleem, A.-C. N. Ngonga, and H. Jabeen,
“Distributed Semantic Analytics using the SANSA Stack,”
Proceedings of 16th International Semantic Web Conference - Resources Track (ISWC’2017),
2017, url: http:
//svn.aksw.org/papers/2017/ISWC_SANSA_SoftwareFramework/public.pdf
(cit. on pp. 7, 39, 54, 64, 65, 72, 83, 88).

[32] D. Sui, G. Sejdiu, D. Graux, and J. Lehmann,
“The Hubs and Authorities Transaction NetworkAnalysis using the SANSA framework,”
15th International Conference on Semantic Systems (SEMANTiCS), Poster & Demos, 2019,
url: https://gezimsejdiu.github.io/publications/sansa-hubs-and-
authorities-transaction-semantics19-poster.pdf (cit. on p. 7).

[33] R. Dadwal, D. Graux, G. Sejdiu, H. Jabeen, and J. Lehmann,
“Clustering Pipelines of large RDF POI Data,”
Proceedings of 16th Extended Semantic Web Conference (ESWC 2019), Poster & Demos,
2019, url: https://gezimsejdiu.github.io/publications/piping-clustering-
eswc19-poster.pdf (cit. on p. 7).

108

https://gezimsejdiu.github.io/publications/sansa-sparklify-ISWC-demo.pdf
https://gezimsejdiu.github.io/publications/sansa-sparklify-ISWC-demo.pdf
http://jens-lehmann.org/files/2017/icwe_bde.pdf
http://jens-lehmann.org/files/2017/iswc_pd_sansa.pdf
http://svn.aksw.org/papers/2017/ISWC_SANSA_SoftwareFramework/public.pdf
http://svn.aksw.org/papers/2017/ISWC_SANSA_SoftwareFramework/public.pdf
https://gezimsejdiu.github.io/publications/sansa-hubs-and-authorities-transaction-semantics19-poster.pdf
https://gezimsejdiu.github.io/publications/sansa-hubs-and-authorities-transaction-semantics19-poster.pdf
https://gezimsejdiu.github.io/publications/piping-clustering-eswc19-poster.pdf
https://gezimsejdiu.github.io/publications/piping-clustering-eswc19-poster.pdf

[34] D. Graux, G. Sejdiu, H. Jabeen, J. Lehmann, D. Sui, D. Muhs, and J. Pfeffer,
“Profiting from Kitties on Ethereum: Leveraging Blockchain RDF with SANSA,”
14th International Conference on Semantic Systems, Poster & Demos, 2018,
url: http://jens-lehmann.org/files/2018/semantics_ethereum_pd.pdf
(cit. on p. 7).

[35] I. Ermilov, A.-C. N. Ngomo, A. Versteden, H. Jabeen, G. Sejdiu, G. Argyriou, L. Selmi,
J. Jakobitsch, and J. Lehmann, “Managing Lifecycle of Big Data Applications,” KESW, 2017,
url: https://svn.aksw.org/papers/2017/KESW_BDE_Workflow/public.pdf
(cit. on p. 7).

[36] T. Berners-Lee, J. Hendler, and O. Lassila, The Semantic Web,
Scientific American 284 (2001) 34,
url: http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-
84A9809EC588EF21 (cit. on p. 11).

[37] D. Wood, M. Lanthaler, and R. Cyganiak, RDF 1.1 Concepts and Abstract Syntax,
W3C Recommendation, W3C, 2014,
url: http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/ (cit. on p. 12).

[38] A. Seaborne and G. Carothers, RDF 1.1 N-Triples, W3C Recommendation, W3C, 2014,
url: http://www.w3.org/TR/2014/REC-n-triples-20140225/ (cit. on p. 14).

[39] G. Carothers and E. Prud’hommeaux, RDF 1.1 Turtle, W3C Recommendation, W3C, 2014,
url: http://www.w3.org/TR/2014/REC-turtle-20140225/ (cit. on p. 14).

[40] G. Schreiber and F. Gandon, RDF 1.1 XML Syntax, W3C Recommendation, W3C, 2014,
url: http://www.w3.org/TR/2014/REC-rdf-syntax-grammar-20140225/
(cit. on p. 15).

[41] A. Seaborne and E. Prud’hommeaux, SPARQL Query Language for RDF,
W3C Recommendation, W3C, 2008,
url: http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
(cit. on p. 16).

[42] J. Pérez, M. Arenas, and C. Gutierrez, Semantics and Complexity of SPARQL,
ACM Trans. Database Syst. 34 (2009) 16:1, issn: 0362-5915,
url: http://doi.acm.org/10.1145/1567274.1567278 (cit. on p. 16).

[43] T. White, Hadoop - The Definitive Guide: Storage and Analysis at Internet Scale, 4th,
O’Reilly Media, Inc., 2015 (cit. on p. 17).

[44] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop Distributed File System,”
Proceedings of the 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies
(MSST), MSST ’10, IEEE Computer Society, 2010 1, isbn: 978-1-4244-7152-2,
url: http://dx.doi.org/10.1109/MSST.2010.5496972 (cit. on p. 18).

[45] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google File System,”
Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles, SOSP ’03,
ACM, 2003 29, isbn: 1-58113-757-5,
url: http://doi.acm.org/10.1145/945445.945450 (cit. on p. 18).

109

http://jens-lehmann.org/files/2018/semantics_ethereum_pd.pdf
https://svn.aksw.org/papers/2017/KESW_BDE_Workflow/public.pdf
http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21
http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://www.w3.org/TR/2014/REC-n-triples-20140225/
http://www.w3.org/TR/2014/REC-turtle-20140225/
http://www.w3.org/TR/2014/REC-rdf-syntax-grammar-20140225/
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
http://dx.doi.org/10.1145/1567274.1567278
http://doi.acm.org/10.1145/1567274.1567278
http://dx.doi.org/10.1109/MSST.2010.5496972
http://doi.acm.org/10.1145/945445.945450

Bibliography

[46] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters,”
OSDI’04: Sixth Symposium on Operating System Design and Implementation, 2004 137
(cit. on p. 18).

[47] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and I. Stoica,
“GraphX: Graph Processing in a Distributed Dataflow Framework,” Proceedings of the 11th
USENIX Conference on Operating Systems Design and Implementation, OSDI’14,
USENIX Association, 2014 599, isbn: 978-1-931971-16-4,
url: http://dl.acm.org/citation.cfm?id=2685048.2685096 (cit. on p. 21).

[48] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin,
“PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs,” Presented as part
of the 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI 12),
USENIX, 2012 17, isbn: 978-1-931971-96-6,
url: https://www.usenix.org/conference/osdi12/technical-
sessions/presentation/gonzalez (cit. on p. 21).

[49] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng, T. Kaftan,
M. J. Franklin, A. Ghodsi, and M. Zaharia,
“Spark SQL: Relational Data Processing in Spark,”
Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’15, ACM, 2015 1383, isbn: 978-1-4503-2758-9,
url: http://doi.acm.org/10.1145/2723372.2742797 (cit. on pp. 21, 28).

[50] J. Zhao, M. Hausenblas, K. Alexander, and R. Cyganiak,
Describing Linked Datasets with the VoID Vocabulary, W3C Note,
http://www.w3.org/TR/2011/NOTE-void-20110303/: W3C, 2011 (cit. on pp. 24, 38).

[51] F. Corcoglioniti, M. Rospocher, M. Mostarda, and M. Amadori,
“Processing billions of RDF triples on a single machine using streaming and sorting,”
Proceedings of the 30th Annual ACM Symposium on Applied Computing, ACM, 2015 368
(cit. on p. 24).

[52] S. Khatchadourian and M. P. Consens, “ExpLOD: Summary-Based Exploration of
Interlinking and RDF Usage in the Linked Open Data Cloud,”
The Semantic Web: Research and Applications, ed. by L. Aroyo, G. Antoniou, E. Hyvönen,
A. ten Teije, H. Stuckenschmidt, L. Cabral, and T. Tudorache,
Springer Berlin Heidelberg, 2010 272, isbn: 978-3-642-13489-0 (cit. on p. 24).

[53] C. Böhm, F. Naumann, Z. Abedjan, D. Fenz, T. Grütze, D. Hefenbrock, M. Pohl, and
D. Sonnabend, Profiling linked open data with ProLOD, 2010 IEEE 26th International
Conference on Data Engineering Workshops (ICDEW 2010) (2010) 175 (cit. on p. 24).

[54] Z. Abedjan, T. Grütze, A. Jentzsch, and F. Naumann,
Profiling and mining RDF data with ProLOD++,
2014 IEEE 30th International Conference on Data Engineering (2014) 1198 (cit. on p. 24).

[55] N. Mihindukulasooriya, R. García-Castro, F. Priyatna, E. Ruckhaus, and N. Saturno,
“A Linked Data Profiling Service for Quality Assessment,” MEPDaW/LDQ@ESWC, 2017
(cit. on p. 24).

110

http://dl.acm.org/citation.cfm?id=2685048.2685096
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/gonzalez
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/gonzalez
http://doi.acm.org/10.1145/2723372.2742797

[56] E. Mäkelä,
“Aether–generating and viewing extended VoID statistical descriptions of RDF datasets,”
European Semantic Web Conference, Springer, 2014 429 (cit. on p. 25).

[57] B. Forchhammer, A. Jentzsch, and F. Naumann,
“LODOP - Multi-Query Optimization for Linked Data Profiling Queries,” International
Workshop on Dataset PROFIling and fEderated Search for Linked Data (PROFILES), 2014
(cit. on p. 25).

[58] J. Shi, Y. Qiu, U. F. Minhas, L. Jiao, C. Wang, B. Reinwald, and F. Özcan,
Clash of the Titans: MapReduce vs. Spark for Large Scale Data Analytics,
Proc. VLDB Endow. 8 (2015), issn: 2150-8097,
url: https://doi.org/10.14778/2831360.2831365 (cit. on p. 25).

[59] D. Becker, T. D. King, and B. McMullen, “Big data, big data quality problem,”
International Conference on Big Data, IEEE, 2015 2644 (cit. on p. 25).

[60] D. Rao, V. N. Gudivada, and V. V. Raghavan, “Data quality issues in big data,”
International Conference on Big Data, IEEE, 2015 2654 (cit. on p. 25).

[61] L. Cai and Y. Zhu,
The challenges of data quality and data quality assessment in the big data era,
Data Science Journal 14 (2015) (cit. on p. 25).

[62] T. Catarci, M. Scannapieco, M. Console, and C. Demetrescu, “My (fair) big data,”
International Conference on Big Data, IEEE, 2017 2974 (cit. on p. 25).

[63] C. Batini, A. Rula, M. Scannapieco, and G. Viscusi, From Data Quality to Big Data Quality,
J. Database Manag. 26 (2015) 60, url: https://doi.org/10.4018/JDM.2015010103
(cit. on p. 25).

[64] D. Kontokostas, P. Westphal, S. Auer, S. Hellmann, J. Lehmann, R. Cornelissen, and
A. Zaveri, “Test-driven evaluation of linked data quality,” 23rd International World Wide Web
Conference, WWW ’14, Seoul, Republic of Korea, April 7-11, 2014, 2014 747 (cit. on p. 25).

[65] S. Bonner, A. S. McGough, I. Kureshi, J. Brennan, G. Theodoropoulos, L. Moss, D. Corsar,
and G. Antoniou, “Data quality assessment and anomaly detection via map/reduce and linked
data: A case study in the medical domain,” International Conference on Big Data,
IEEE, 2015 (cit. on p. 26).

[66] S. Benbernou and M. Ouziri,
“Enhancing data quality by cleaning inconsistent big RDF data,”
International Conference on Big Data, IEEE, 2017 74 (cit. on p. 26).

[67] E. Ruckhaus, O. Baldizán, and M.-E. Vidal, “Analyzing Linked Data Quality with LiQuate,”
On the Move to Meaningful Internet Systems: OTM 2013 Workshops,
ed. by Y. T. Demey and H. Panetto, Springer Berlin Heidelberg, 2013 629,
isbn: 978-3-642-41033-8 (cit. on p. 26).

[68] C. Bizer and R. Cyganiak,
Quality-Driven Information Filtering Using the WIQA Policy Framework,
Web Semant. 7 (2009) 1, issn: 1570-8268,
url: https://doi.org/10.1016/j.websem.2008.02.005 (cit. on p. 26).

111

http://dx.doi.org/10.14778/2831360.2831365
https://doi.org/10.14778/2831360.2831365
http://dx.doi.org/10.4018/JDM.2015010103
https://doi.org/10.4018/JDM.2015010103
http://dx.doi.org/10.1016/j.websem.2008.02.005
https://doi.org/10.1016/j.websem.2008.02.005

Bibliography

[69] C. Guéret, P. Groth, C. Stadler, and J. Lehmann,
“Assessing Linked Data Mappings Using Network Measures,”
The Semantic Web: Research and Applications,
ed. by E. Simperl, P. Cimiano, A. Polleres, O. Corcho, and V. Presutti,
Springer Berlin Heidelberg, 2012 87, isbn: 978-3-642-30284-8 (cit. on p. 26).

[70] D. Kontokostas, P. Westphal, S. Auer, S. Hellmann, J. Lehmann, R. Cornelissen, and
A. Zaveri, “Test-Driven Evaluation of Linked Data Quality,”
Proceedings of the 23rd International Conference on World Wide Web, WWW ’14,
Association for Computing Machinery, 2014 747, isbn: 9781450327442,
url: https://doi.org/10.1145/2566486.2568002 (cit. on p. 26).

[71] J. Broekstra, A. Kampman, and F. van Harmelen,
“Sesame: A Generic Architecture for Storing and Querying RDF and RDF Schema,”
The Semantic Web - ISWC 2002, First International Semantic Web Conference, Sardinia, Italy,
June 9-12, 2002, Proceedings, 2002 54 (cit. on p. 27).

[72] K. Wilkinson, “Jena Property Table Implementation,” SSWS, 2006 35 (cit. on p. 27).
[73] D. J. Abadi, A. Marcus, S. Madden, and K. Hollenbach,

SW-Store: a vertically partitioned DBMS for Semantic Web data management,
VLDB J. 18 (2009) 385 (cit. on p. 27).

[74] L. Zou, J. Mo, L. Chen, M. T. Özsu, and D. Zhao,
gStore: Answering SPARQL Queries via Subgraph Matching, PVLDB 4 (2011) 482
(cit. on p. 27).

[75] D. J. Abadi, A. Marcus, S. Madden, and K. J. Hollenbach,
“Scalable Semantic Web Data Management Using Vertical Partitioning,”
Proceedings of the 33rd International Conference on Very Large Data Bases, University of
Vienna, Austria, September 23-27, 2007, 2007 411 (cit. on p. 27).

[76] C. Weiss, P. Karras, and A. Bernstein,
Hexastore: sextuple indexing for semantic web data management, PVLDB 1 (2008) 1008
(cit. on p. 27).

[77] T. Neumann and G. Weikum, The RDF-3X engine for scalable management of RDF data,
VLDB J. 19 (2010) 91 (cit. on p. 27).

[78] S. Gurajada, S. Seufert, I. Miliaraki, and M. Theobald,
“TriAD: a distributed shared-nothing RDF engine based on asynchronous message passing,”
International Conference on Management of Data, SIGMOD 2014, Snowbird, UT, USA, June
22-27, 2014, 2014 289 (cit. on p. 27).

[79] K. Lee and L. Liu, Scaling Queries over Big RDF Graphs with Semantic Hash Partitioning,
Proc. VLDB Endow. 6 (2013) 1894, issn: 2150-8097 (cit. on p. 27).

[80] M. Wylot and P. Cudré-Mauroux,
DiploCloud: Efficient and Scalable Management of RDF Data in the Cloud,
IEEE Trans. Knowl. Data Eng. 28 (2016) 659 (cit. on p. 27).

112

https://doi.org/10.1145/2566486.2568002
http://dx.doi.org/10.1007/s00778-008-0125-y
http://dx.doi.org/10.1007/s00778-009-0165-y
http://dx.doi.org/10.1109/TKDE.2015.2499202

[81] R. Harbi, I. Abdelaziz, P. Kalnis, N. Mamoulis, Y. Ebrahim, and M. Sahli,
Accelerating SPARQL queries by exploiting hash-based locality and adaptive partitioning,
The VLDB Journal—The International Journal on Very Large Data Bases 25 (2016) 355
(cit. on p. 27).

[82] A. Schätzle, M. Przyjaciel-Zablocki, A. Neu, and G. Lausen,
“Sempala: Interactive SPARQL Query Processing on Hadoop,”
The Semantic Web – ISWC 2014, ed. by P. Mika, T. Tudorache, A. Bernstein, C. Welty,
C. Knoblock, D. Vrandečić, P. Groth, N. Noy, K. Janowicz, and C. Goble,
Springer International Publishing, 2014 164, isbn: 978-3-319-11964-9 (cit. on p. 27).

[83] A. Schätzle, M. Przyjaciel-Zablocki, and G. Lausen,
“PigSPARQL: Mapping SPARQL to Pig Latin,”
Proceedings of the International Workshop on Semantic Web Information Management,
SWIM ’11, ACM, 2011 4:1, isbn: 978-1-4503-0651-5,
url: http://doi.acm.org/10.1145/1999299.1999303 (cit. on p. 27).

[84] R. Punnoose, A. Crainiceanu, and D. Rapp,
“Rya: A Scalable RDF Triple Store for the Clouds,”
Proceedings of the 1st International Workshop on Cloud Intelligence, Cloud-I ’12,
ACM, 2012 4:1, isbn: 978-1-4503-1596-8,
url: http://doi.acm.org/10.1145/2347673.2347677 (cit. on p. 28).

[85] V. Khadilkar, M. Kantarcioglu, B. Thuraisingham, and P. Castagna,
“Jena-HBase: A Distributed, Scalable and Efficient RDF Triple Store,” Proceedings of the
2012th International Conference on Posters &; Demonstrations Track - Volume 914,
ISWC-PD’12, 2012 85 (cit. on p. 28).

[86] N. Papailiou, I. Konstantinou, D. Tsoumakos, P. Karras, and N. Koziris,
“H2RDF+: High-performance distributed joins over large-scale RDF graphs,”
Proceedings of the 2013 IEEE International Conference on Big Data, 6-9 October 2013,
Santa Clara, CA, USA, 2013 255 (cit. on p. 28).

[87] K. Rohloff and R. E. Schantz, “High-performance, Massively Scalable Distributed Systems
Using the MapReduce Software Framework: The SHARD Triple-store,”
Programming Support Innovations for Emerging Distributed Applications, PSI EtA ’10,
ACM, 2010 4:1, isbn: 978-1-4503-0544-0,
url: http://doi.acm.org/10.1145/1940747.1940751 (cit. on pp. 28, 72, 76).

[88] D. Graux, L. Jachiet, P. Genevès, and N. Layaïda,
“A Multi-Criteria Experimental Ranking of Distributed SPARQL Evaluators,”
Big Data 2018 - IEEE International Conference on Big Data, IEEE, 2018 1,
url: https://hal.inria.fr/hal-01381781 (cit. on p. 29).

[89] A.-C. Ngonga Ngomo, S. Auer, J. Lehmann, and A. Zaveri,
“Introduction to Linked Data and Its Lifecycle on the Web,” Reasoning Web, 2014
(cit. on pp. 31, 49).

113

http://doi.acm.org/10.1145/1999299.1999303
http://doi.acm.org/10.1145/2347673.2347677
http://doi.acm.org/10.1145/1940747.1940751
https://hal.inria.fr/hal-01381781

Bibliography

[90] C. Stadler, J. Lehmann, K. Höffner, and S. Auer,
LinkedGeoData: A Core for a Web of Spatial Open Data, Semantic Web Journal 3 (2012) 333,
url: http://jens-lehmann.org/files/2012/linkedgeodata2.pdf
(cit. on pp. 39, 55).

[91] C. Bizer and A. Schultz, The Berlin SPARQL Benchmark,
Int. J. Semantic Web Inf. Syst. 5 (2009) 1 (cit. on pp. 39, 55).

[92] C. Batini and M. Scannapieco,
Data and Information Quality - Dimensions, Principles and Techniques,
Data-Centric Systems and Applications, Springer, 2016, isbn: 978-3-319-24104-3,
url: https://doi.org/10.1007/978-3-319-24106-7 (cit. on p. 50).

[93] A. Isaac and R. Albertoni, Data on the Web Best Practices: Data Quality Vocabulary,
W3C Note, https://www.w3.org/TR/2016/NOTE-vocab-dqv-20161215/: W3C, 2016
(cit. on p. 54).

[94] D. J. Abadi, A. Marcus, S. R. Madden, and K. Hollenbach,
“Scalable Semantic Web Data Management Using Vertical Partitioning,”
Proceedings of the 33rd International Conference on Very Large Data Bases, VLDB ’07,
VLDB Endowment, 2007 411, isbn: 9781595936493 (cit. on p. 63).

[95] C. Stadler, J. Unbehauen, P. Westphal, M. A. Sherif, and J. Lehmann,
“Simplified RDB2RDF Mapping,”
Proceedings of the 8th Workshop on Linked Data on the Web (LDOW2015), Florence, Italy,
2015, url: http://svn.aksw.org/papers/2015/LDOW_SML/paper-camery-
ready_public.pdf (cit. on p. 66).

[96] Y. Guo, Z. Pan, and J. Heflin, LUBM: A benchmark for OWL knowledge base systems,
J. Web Semant. 3 (2005) 158 (cit. on pp. 66, 75, 117).

[97] G. Aluç, O. Hartig, M. T. Özsu, and K. Daudjee,
“Diversified Stress Testing of RDF Data Management Systems,”
International Semantic Web Conference, 2014 (cit. on pp. 66, 75, 117).

[98] G. Wood, Ethereum: A secure decentralised generalised transaction ledger,
Ethereum project yellow paper 151 (2014) 1 (cit. on p. 88).

[99] D. Vrandečić and M. Krötzsch, Wikidata: A Free Collaborative Knowledgebase,
Commun. ACM 57 (2014) 78, issn: 0001-0782,
url: http://doi.acm.org/10.1145/2629489 (cit. on p. 95).

[100] S. Athanasiou, G. Giannopoulos, D. Graux, N. Karagiannakis, J. Lehmann, A.-C. N. Ngomo,
K. Patroumpas, M. A. Sherif, and D. Skoutas,
“Big POI data integration with Linked Data technologies,”
22nd International Conference on Extending Database Technology (EDBT), Lisbon, Portugal,
2019 477 (cit. on p. 97).

[101] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their compositionality,”
Advances in neural information processing systems, 2013 3111 (cit. on p. 97).

114

http://jens-lehmann.org/files/2012/linkedgeodata2.pdf
https://doi.org/10.1007/978-3-319-24106-7
http://svn.aksw.org/papers/2015/LDOW_SML/paper-camery-ready_public.pdf
http://svn.aksw.org/papers/2015/LDOW_SML/paper-camery-ready_public.pdf
http://dx.doi.org/10.1145/2629489
http://doi.acm.org/10.1145/2629489

[102] J. MacQueen, “Some methods for classification and analysis of multivariate observations,”
5th Berkeley Symposium on Mathematical Statistics and Probability, 1967 281 (cit. on p. 97).

[103] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al.,
A density-based algorithm for discovering clusters in large spatial databases with noise.,
Kdd 96 (1996) 226 (cit. on p. 97).

[104] J. D. Fernández, M. A. Martínez-Prieto, C. Gutiérrez, A. Polleres, and M. Arias,
Binary RDF Representation for Publication and Exchange (HDT),
Web Semantics: Science, Services and Agents on the World Wide Web 19 (2013) 22,
url: http://www.websemanticsjournal.org/index.php/ps/article/view/328
(cit. on p. 102).

[105] D. Calvanese, B. Cogrel, S. Komla-Ebri, R. Kontchakov, D. Lanti, M. Rezk,
M. Rodriguez-Muro, and G. Xiao,
Ontop: Answering SPARQL queries over relational databases, Semantic Web 8 (2017) 471
(cit. on p. 103).

[106] H. Thakkar, M. Dubey, G. Sejdiu, A.-C. Ngonga Ngomo, J. Debattista, C. Lange, J. Lehmann,
S. Auer, and M.-E. Vidal, LITMUS: An Open Extensible Framework for Benchmarking RDF
Data Management Solutions, 2016, arXiv: 1608.02800 [cs.PF] (cit. on p. 103).

[107] M. Röder, D. Kuchelev, and A.-C. Ngonga Ngomo,
HOBBIT: A platform for benchmarking Big Linked Data, Data Science Preprint (2019) 1,
issn: 2451-8492 (cit. on p. 103).

115

http://www.websemanticsjournal.org/index.php/ps/article/view/328
https://arxiv.org/abs/1608.02800
http://dx.doi.org/10.3233/DS-190021

APPENDIX A

SANSA Framework Release History

In the course of the thesis, the following releases of software components were produced (under the
Apache Licence 2.0).

• SANSA1 software component related releases2:

– SANSA v0.7 2020-01: SPARQL query engine over compressed RDF data. Refactoring
quality assessment metrics. Further alignment and development of the functionality on
the Flink module. Support for quality assessment over streaming RDF data. Bug fixes.

– SANSA v0.6 2019-06: Support for RDF compression techniques. Refactoring semantic-
based query engine. Support for ingestion of additional RDF formats. Align and perfrom
evaluations on the Sparklify query engine (see Section 6.1 of Chapter 6 for more details).
Bug fixes.

– SANSA v0.5 2018-12: Further improvements for Scalable RDF Quality Assessment.
Refactoring semantic-based partitioning and RDF Dataset Statistics. Bug fixes.

– SANSA v0.4 2018-06: Further support for Scalable RDF Quality Assessment. Support
for ingestion of additional RDF formats. Further improvements for semantic-based
partitioning. Support for graph-based partitioning. Query engine on top of semantic-based
partitioning. Bug fixes.

– SANSA v0.3 2017-12: Support for Scalable RDF Quality Assessment(see Chapter 5 for
more details). Support for ingestion of additional RDF formats. Support for semantic-based
partitioning (see Section 6.2 of Chapter 6 for more details).

– SANSA v0.2 2017-06: Support for Scalable RDF Dataset Statistics (see Chapter 4 for
more details).

– SANSA v0.1 2016-12: Initial SANSA release. SANSA website and guidelines. Support
for reading and writing RDF files in N-Triples format.

• Big Data Europe Platform3

1
https://github.com/SANSA-Stack

2 This list only includes components that are part of the thesis. The features of SANSA itself are more than those mentioned.
3
https://github.com/big-data-europe

117

https://github.com/SANSA-Stack
https://github.com/big-data-europe

Appendix A SANSA Framework Release History

– BDE v1 2017-11: Integrate SANSA framework with the Big Data Europe Platform. Build
the stack for the SC4: Smart Green and Integrated Transport on the Big Data Europe
Integrator Platform.

– BDE v1 2016-11: Dockerized Big Data Europe Components (e.g Apache Spark, Apache
Flink).

• DL-Learner Framework4

– DL-Learner v1.4.0 2019-09: Docker image for DL-Learner.

4
https://github.com/SmartDataAnalytics/DL-Learner

118

https://github.com/SmartDataAnalytics/DL-Learner

APPENDIX B

SPARQL Benchmark Queries

Wemake use of two well-known SPARQL benchmarks for our query engine evaluations (cf. Chapter 6):
the Waterloo SPARQL Diversity Test Suite (WatDiv) v0.6 [97] and Lehigh University Benchmark
(LUBM) v3.1 [96].

In this section, we list the queries used during our benchmarks.

B.1 LUBM SPARQL Queries

==Q1==
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>
SELECT ?X
WHERE {

?X rdf:type ub:GraduateStudent .
?X ub:takesCourse <http://www.Department0.University0.edu/GraduateCourse0> .

}

==Q2==
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>
SELECT ?X ?Y ?Z
WHERE {

?X rdf:type ub:GraduateStudent .
?Y rdf:type ub:University .
?Z rdf:type ub:Department .
?X ub:memberOf ?Z .
?Z ub:subOrganizationOf ?Y .
?X ub:undergraduateDegreeFrom ?Y

}

==Q3==
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>
SELECT ?X
WHERE {

?X rdf:type ub:Publication .
?X ub:publicationAuthor <http://www.Department0.University0.edu/AssistantProfessor0>

}

==Q4==
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>

119

Appendix B SPARQL Benchmark Queries

SELECT ?X ?Y1 ?Y2 ?Y3
WHERE {

?X rdf:type ub:Professor .
?X ub:worksFor <http://www.Department0.University0.edu> .
?X ub:name ?Y1 .
?X ub:emailAddress ?Y2 .
?X ub:telephone ?Y3

}

==Q5==
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>
SELECT ?X
WHERE {

?X rdf:type ub:Person .
?X ub:memberOf <http://www.Department0.University0.edu>

}

==Q6==
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>
SELECT ?X
WHERE {

?X rdf:type ub:Student
}

==Q7==
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>
SELECT ?X ?Y
WHERE {

?X rdf:type ub:Student .
?Y rdf:type ub:Course .
?X ub:takesCourse ?Y .
<http://www.Department0.University0.edu/AssociateProfessor0> ub:teacherOf ?Y

}

==Q8==
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>
SELECT ?X ?Y ?Z
WHERE {

?X rdf:type ub:Student .
?Y rdf:type ub:Department .
?X ub:memberOf ?Y .
?Y ub:subOrganizationOf <http://www.University0.edu> .
?X ub:emailAddress ?Z

}

==Q9==
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>
SELECT ?X ?Y ?Z
WHERE {

?X rdf:type ub:Student .
?Y rdf:type ub:Faculty .
?Z rdf:type ub:Course .
?X ub:advisor ?Y .
?Y ub:teacherOf ?Z .
?X ub:takesCourse ?Z

}

==Q10==

120

B.2 WatDiv SPARQL Queries

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>
SELECT ?X
WHERE {

?X rdf:type ub:Student .
?X ub:takesCourse <http://www.Department0.University0.edu/GraduateCourse0>

}

==Q11==
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>
SELECT ?X
WHERE {

?X rdf:type ub:ResearchGroup .
?X ub:subOrganizationOf <http://www.University0.edu>

}

==Q12==
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>
SELECT ?X ?Y
WHERE {

?X rdf:type ub:Chair .
?Y rdf:type ub:Department .
?X ub:worksFor ?Y .
?Y ub:subOrganizationOf <http://www.University0.edu>

}

==Q13==
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>
SELECT ?X
WHERE {

?X rdf:type ub:Person .
<http://www.University0.edu> ub:hasAlumnus ?X

}

==Q14==
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>
SELECT ?X
WHERE {

?X rdf:type ub:UndergraduateStudent
}

B.2 WatDiv SPARQL Queries

==C1==
SELECT ?v0 ?v4 ?v6 ?v7
WHERE {

?v0 <http://schema.org/caption> ?v1 .
?v0 <http://schema.org/text> ?v2 .
?v0 <http://schema.org/contentRating> ?v3 .
?v0 <http://purl.org/stuff/rev#hasReview> ?v4 .
?v4 <http://purl.org/stuff/rev#title> ?v5 .
?v4 <http://purl.org/stuff/rev#reviewer> ?v6 .
?v7 <http://schema.org/actor> ?v6 .
?v7 <http://schema.org/language> ?v8 .

}

==C2==
SELECT ?v0 ?v3 ?v4 ?v8
WHERE {

121

Appendix B SPARQL Benchmark Queries

?v0 <http://schema.org/legalName> ?v1 .
?v0 <http://purl.org/goodrelations/offers> ?v2 .
?v2 <http://schema.org/eligibleRegion> <http://db.uwaterloo.ca/~galuc/wsdbm/Country5> .
?v2 <http://purl.org/goodrelations/includes> ?v3 .
?v4 <http://schema.org/jobTitle> ?v5 .
?v4 <http://xmlns.com/foaf/homepage> ?v6 .
?v4 <http://db.uwaterloo.ca/~galuc/wsdbm/makesPurchase> ?v7 .
?v7 <http://db.uwaterloo.ca/~galuc/wsdbm/purchaseFor> ?v3 .
?v3 <http://purl.org/stuff/rev#hasReview> ?v8 .
?v8 <http://purl.org/stuff/rev#totalVotes> ?v9 .

}

==C3==
SELECT ?v0
WHERE {

?v0 <http://db.uwaterloo.ca/~galuc/wsdbm/likes> ?v1 .
?v0 <http://db.uwaterloo.ca/~galuc/wsdbm/friendOf> ?v2 .
?v0 <http://purl.org/dc/terms/Location> ?v3 .
?v0 <http://xmlns.com/foaf/age> ?v4 .
?v0 <http://db.uwaterloo.ca/~galuc/wsdbm/gender> ?v5 .
?v0 <http://xmlns.com/foaf/givenName> ?v6 .

}

==F1==
SELECT ?v0 ?v2 ?v3 ?v4 ?v5
WHERE {

?v0 <http://ogp.me/ns#tag> <http://db.uwaterloo.ca/~galuc/wsdbm/Topic13> .
?v0 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> ?v2 .
?v3 <http://schema.org/trailer> ?v4 .
?v3 <http://schema.org/keywords> ?v5 .
?v3 <http://db.uwaterloo.ca/~galuc/wsdbm/hasGenre> ?v0 .
?v3 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://db.uwaterloo.ca/~galuc/wsdbm/

ProductCategory2> .
}

==F2==
SELECT ?v0 ?v1 ?v2 ?v4 ?v5 ?v6 ?v7
WHERE {

?v0 <http://xmlns.com/foaf/homepage> ?v1 .
?v0 <http://ogp.me/ns#title> ?v2 .
?v0 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> ?v3 .
?v0 <http://schema.org/caption> ?v4 .
?v0 <http://schema.org/description> ?v5 .
?v1 <http://schema.org/url> ?v6 .
?v1 <http://db.uwaterloo.ca/~galuc/wsdbm/hits> ?v7 .
?v0 <http://db.uwaterloo.ca/~galuc/wsdbm/hasGenre> <http://db.uwaterloo.ca/~galuc/wsdbm/SubGenre22> .

}

==F3==
SELECT ?v0 ?v1 ?v2 ?v4 ?v5 ?v6
WHERE {

?v0 <http://schema.org/contentRating> ?v1 .
?v0 <http://schema.org/contentSize> ?v2 .
?v0 <http://db.uwaterloo.ca/~galuc/wsdbm/hasGenre> <http://db.uwaterloo.ca/~galuc/wsdbm/SubGenre60> .
?v4 <http://db.uwaterloo.ca/~galuc/wsdbm/makesPurchase> ?v5 .
?v5 <http://db.uwaterloo.ca/~galuc/wsdbm/purchaseDate> ?v6 .
?v5 <http://db.uwaterloo.ca/~galuc/wsdbm/purchaseFor> ?v0 .

}

==F4==
SELECT ?v0 ?v1 ?v2 ?v4 ?v5 ?v6 ?v7 ?v8
WHERE {

?v0 <http://xmlns.com/foaf/homepage> ?v1 .

122

B.2 WatDiv SPARQL Queries

?v2 <http://purl.org/goodrelations/includes> ?v0 .
?v0 <http://ogp.me/ns#tag> <http://db.uwaterloo.ca/~galuc/wsdbm/Topic13> .
?v0 <http://schema.org/description> ?v4 .
?v0 <http://schema.org/contentSize> ?v8 .
?v1 <http://schema.org/url> ?v5 .
?v1 <http://db.uwaterloo.ca/~galuc/wsdbm/hits> ?v6 .
?v1 <http://schema.org/language> <http://db.uwaterloo.ca/~galuc/wsdbm/Language0> .
?v7 <http://db.uwaterloo.ca/~galuc/wsdbm/likes> ?v0 .

}

==F5==
SELECT ?v0 ?v1 ?v3 ?v4 ?v5 ?v6
WHERE {

?v0 <http://purl.org/goodrelations/includes> ?v1 .
<http://db.uwaterloo.ca/~galuc/wsdbm/Retailer842> <http://purl.org/goodrelations/offers> ?v0 .
?v0 <http://purl.org/goodrelations/price> ?v3 .
?v0 <http://purl.org/goodrelations/validThrough> ?v4 .
?v1 <http://ogp.me/ns#title> ?v5 .
?v1 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> ?v6 .

}

==L1==
SELECT ?v0 ?v2 ?v3
WHERE {

?v0 <http://db.uwaterloo.ca/~galuc/wsdbm/subscribes> <http://db.uwaterloo.ca/~galuc/wsdbm/Website16661> .
?v2 <http://schema.org/caption> ?v3 .
?v0 <http://db.uwaterloo.ca/~galuc/wsdbm/likes> ?v2 .

}

==L2==
SELECT ?v1 ?v2
WHERE {

<http://db.uwaterloo.ca/~galuc/wsdbm/City13> <http://www.geonames.org/ontology#parentCountry> ?v1 .
?v2 <http://db.uwaterloo.ca/~galuc/wsdbm/likes> <http://db.uwaterloo.ca/~galuc/wsdbm/Product0> .
?v2 <http://schema.org/nationality> ?v1 .

}

==L3==
SELECT ?v0 ?v1
WHERE {

?v0 <http://db.uwaterloo.ca/~galuc/wsdbm/likes> ?v1 .
?v0 <http://db.uwaterloo.ca/~galuc/wsdbm/subscribes> <http://db.uwaterloo.ca/~galuc/wsdbm/Website2633> .

}

==L4==
SELECT ?v0 ?v2
WHERE {

?v0 <http://ogp.me/ns#tag> <http://db.uwaterloo.ca/~galuc/wsdbm/Topic96> .
?v0 <http://schema.org/caption> ?v2 .

}

==L5==
SELECT ?v0 ?v1 ?v3
WHERE {

?v0 <http://schema.org/jobTitle> ?v1 .
<http://db.uwaterloo.ca/~galuc/wsdbm/City13> <http://www.geonames.org/ontology#parentCountry> ?v3 .
?v0 <http://schema.org/nationality> ?v3 .

}

==S1==
SELECT ?v0 ?v1 ?v3 ?v4 ?v5 ?v6 ?v7 ?v8 ?v9
WHERE {

?v0 <http://purl.org/goodrelations/includes> ?v1 .

123

Appendix B SPARQL Benchmark Queries

<http://db.uwaterloo.ca/~galuc/wsdbm/Retailer633> <http://purl.org/goodrelations/offers> ?v0 .
?v0 <http://purl.org/goodrelations/price> ?v3 .
?v0 <http://purl.org/goodrelations/serialNumber> ?v4 .
?v0 <http://purl.org/goodrelations/validFrom> ?v5 .
?v0 <http://purl.org/goodrelations/validThrough> ?v6 .
?v0 <http://schema.org/eligibleQuantity> ?v7 .
?v0 <http://schema.org/eligibleRegion> ?v8 .
?v0 <http://schema.org/priceValidUntil> ?v9 .

}

==S2==
SELECT ?v0 ?v1 ?v3
WHERE {

?v0 <http://purl.org/dc/terms/Location> ?v1 .
?v0 <http://schema.org/nationality> <http://db.uwaterloo.ca/~galuc/wsdbm/Country8> .
?v0 <http://db.uwaterloo.ca/~galuc/wsdbm/gender> ?v3 .
?v0 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://db.uwaterloo.ca/~galuc/wsdbm/Role2> .

}

==S3==
SELECT ?v0 ?v2 ?v3 ?v4
WHERE {

?v0 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://db.uwaterloo.ca/~galuc/wsdbm/
ProductCategory9> .

?v0 <http://schema.org/caption> ?v2 .
?v0 <http://db.uwaterloo.ca/~galuc/wsdbm/hasGenre> ?v3 .
?v0 <http://schema.org/publisher> ?v4 .

}

==S4==
SELECT ?v0 ?v2 ?v3
WHERE {

?v0 <http://xmlns.com/foaf/age> <http://db.uwaterloo.ca/~galuc/wsdbm/AgeGroup0> .
?v0 <http://xmlns.com/foaf/familyName> ?v2 .
?v3 <http://purl.org/ontology/mo/artist> ?v0 .
?v0 <http://schema.org/nationality> <http://db.uwaterloo.ca/~galuc/wsdbm/Country1> .

}

==S5==
SELECT ?v0 ?v2 ?v3
WHERE {

?v0 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://db.uwaterloo.ca/~galuc/wsdbm/
ProductCategory3> .

?v0 <http://schema.org/description> ?v2 .
?v0 <http://schema.org/keywords> ?v3 .
?v0 <http://schema.org/language> <http://db.uwaterloo.ca/~galuc/wsdbm/Language0> .

}

==S6==
SELECT ?v0 ?v1 ?v2
WHERE {

?v0 <http://purl.org/ontology/mo/conductor> ?v1 .
?v0 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> ?v2 .
?v0 <http://db.uwaterloo.ca/~galuc/wsdbm/hasGenre> <http://db.uwaterloo.ca/~galuc/wsdbm/SubGenre90> .

}

==S7==
SELECT ?v0 ?v1 ?v2
WHERE {

?v0 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> ?v1 .
?v0 <http://schema.org/text> ?v2 .
<http://db.uwaterloo.ca/~galuc/wsdbm/User52828> <http://db.uwaterloo.ca/~galuc/wsdbm/likes> ?v0 .

}

124

APPENDIX C

List of Publications

• Conference Papers (peer reviewed)

1. Gezim Sejdiu; Anisa Rula; Jens Lehmann; and Hajira Jabeen, “A Scalable Framework for
Quality Assessment of RDF Datasets,” in Proceedings of 18th International Semantic Web
Conference (ISWC), 2019. URL: http://jens-lehmann.org/files/2019/iswc_
dist_quality_assessment.pdf

2. Claus Stadler; Gezim Sejdiu; Damien Graux; and Jens Lehmann, “Sparklify: A Scalable
Software Component for Efficient evaluation of SPARQL queries over distributed RDF
datasets,” in Proceedings of 18th International Semantic Web Conference (ISWC), 2019.
URL: http://jens-lehmann.org/files/2019/iswc_sparklify.pdf

3. Gezim Sejdiu; Damien Graux; Imran Khan; Ioanna Lytra; Hajira Jabeen; and Jens
Lehmann, “Towards A Scalable Semantic-based Distributed Approach for SPARQL query
evaluation,” 15th International Conference on Semantic Systems (SEMANTiCS), Research
& Innovation , 2019. URL:https://gezimsejdiu.github.io/publications/semantic_
based_query_paper_SEMANTICS2019.pdf

4. Hajira Jabeen; Eskender Haziiev;Gezim Sejdiu; and Jens Lehmann. "DISE: ADistributed
in-Memory SPARQL Processing Engine over Tensor Data". In 14th IEEE International
Conference on Semantic Computing (ICSC’20), 2020. URL: http://jens-lehmann.
org/files/2020/icsc_dise.pdf

5. Natanael Arndt; Sebastian Zänker; Gezim Sejdiu; and Sebastian Tramp. "Jekyll RDF:
Template-Based Linked Data Publication with Minimized Effort and Maximum Scala-
bility". In 19th International Conference on Web Engineering (ICWE 2019), of ICWE
2019, Daejeon, Korea, June 2019. URL: https://svn.aksw.org/papers/2019/ICWE_
JekyllRDF/public.pdf

6. GezimSejdiu; Ivan Ermilov; Jens Lehmann; andMohamedNadjib-Mami, “DistLODStats:
Distributed Computation of RDF Dataset Statistics,” in Proceedings of 17th International
Semantic Web Conference (ISWC), 2018. URL: http://jens-lehmann.org/files/
2018/iswc_distlodstats.pdf

7. Hajira Jabeen; Rajjat Dadwal; Gezim Sejdiu; and Jens Lehmann, "Divided we stand
out! Forging Cohorts fOr Numeric Outlier Detection in large scale knowledge graphs

125

http://jens-lehmann.org/files/2019/iswc_dist_quality_assessment.pdf
http://jens-lehmann.org/files/2019/iswc_dist_quality_assessment.pdf
http://jens-lehmann.org/files/2019/iswc_dist_quality_assessment.pdf
http://jens-lehmann.org/files/2019/iswc_dist_quality_assessment.pdf
http://jens-lehmann.org/files/2019/iswc_sparklify.pdf
http://jens-lehmann.org/files/2019/iswc_sparklify.pdf
http://jens-lehmann.org/files/2019/iswc_sparklify.pdf
http://jens-lehmann.org/files/2019/iswc_sparklify.pdf
https://gezimsejdiu.github.io/publications/semantic_based_query_paper_SEMANTICS2019.pdf
https://gezimsejdiu.github.io/publications/semantic_based_query_paper_SEMANTICS2019.pdf
https://gezimsejdiu.github.io/publications/semantic_based_query_paper_SEMANTICS2019.pdf
https://gezimsejdiu.github.io/publications/semantic_based_query_paper_SEMANTICS2019.pdf
http://jens-lehmann.org/files/2020/icsc_dise.pdf
http://jens-lehmann.org/files/2020/icsc_dise.pdf
http://jens-lehmann.org/files/2020/icsc_dise.pdf
http://jens-lehmann.org/files/2020/icsc_dise.pdf
https://svn.aksw.org/papers/2019/ICWE_JekyllRDF/public.pdf
https://svn.aksw.org/papers/2019/ICWE_JekyllRDF/public.pdf
https://svn.aksw.org/papers/2019/ICWE_JekyllRDF/public.pdf
https://svn.aksw.org/papers/2019/ICWE_JekyllRDF/public.pdf
https://svn.aksw.org/papers/2019/ICWE_JekyllRDF/public.pdf
http://jens-lehmann.org/files/2018/iswc_distlodstats.pdf
http://jens-lehmann.org/files/2018/iswc_distlodstats.pdf
http://jens-lehmann.org/files/2018/iswc_distlodstats.pdf
http://jens-lehmann.org/files/2018/iswc_distlodstats.pdf
http://jens-lehmann.org/files/2018/ekaw_conod.pdf
http://jens-lehmann.org/files/2018/ekaw_conod.pdf
http://jens-lehmann.org/files/2018/ekaw_conod.pdf

Appendix C List of Publications

(CONOD)," in 21st International Conference on Knowledge Engineering and Knowledge
Management (EKAW’2018), 2018. URL: http://jens-lehmann.org/files/2018/
ekaw_conod.pdf

8. Jens Lehmann; Gezim Sejdiu; Lorenz Bühmann; Patrick Westphal; Claus Stadler;
Ivan Ermilov; Simon Bin; Nilesh Chakraborty; Muhammad Saleem; Axel-Cyrille
Ngomo Ngonga; and Hajira Jabeen, “Distributed Semantic Analytics using the SANSA
Stack,”; in Proceedings of 16th International Semantic Web Conference - Resources
Track (ISWC’2017), 2017. URL: http://svn.aksw.org/papers/2017/ISWC_SANSA_
SoftwareFramework/public.pdf

9. Ivan Ermilov; Axel-Cyrille Ngonga Ngomo; Aad Versteden; Hajira Jabeen; Gezim
Sejdiu; Giorgos Argyriou; Luigi Selmi; Jürgen Jakobitsch; and Jens Lehmann, “Managing
Lifecycle of Big Data Applications,”; in KESW, 2017. URL: https://svn.aksw.org/
papers/2017/KESW_BDE_Workflow/public.pdf

10. Sören Auer; Simon Scerri; Aad Versteden; Erika Pauwels; Angelos Charalambidis;
Stasinos Konstantopoulos; Jens Lehmann; Hajira Jabeen; Ivan Ermilov; Gezim Sejdiu;
Andreas Ikonomopoulos; Spyros Andronopoulos; Mandy Vlachogiannis; Charalambos
Pappas; Athanasios Davettas; Iraklis A. Klampanos; Efstathios Grigoropoulos; Vangelis
Karkaletsis; Victor Boer; Ronald Siebes; Mohamed Nadjib Mami; Sergio Albani; Michele
Lazzarini; Paulo Nunes; Emanuele Angiuli; Nikiforos Pittaras; George Giannakopoulos;
Giorgos Argyriou; George Stamoulis; George Papadakis; Manolis Koubarakis; Pythagoras
Karampiperis; Axel-CyrilleNgongaNgomo; andMaria-EstherVidal, “TheBigDataEurope
Platform–Supporting theVarietyDimension ofBigData,” in 17th International Conference
on Web Engineering (ICWE2017), 2017. URL: http://jens-lehmann.org/files/
2017/icwe_bde.pdf

• Demo & Poster Papers (peer reviewed)

11. Claus Stadler; Gezim Sejdiu; Damien Graux; and Jens Lehmann. "Querying large-scale
RDF datasets using the SANSA framework". In Proceedings of 18th International Semantic
Web Conference (ISWC), Poster & Demos, 2019. URL: https://gezimsejdiu.github.
io/publications/sansa-sparklify-ISWC-demo.pdf

12. Danning Sui; Gezim Sejdiu; Damien Graux; and Jens Lehmann. "The Hubs and
Authorities Transaction NetworkAnalysis using the SANSA framework". In 15th In-
ternational Conference on Semantic Systems (SEMANTiCS), Poster & Demos, 2019.
URL: http://tiny.cc/4ukxcz

13. Rajjat Dadwal; Damien Graux; Gezim Sejdiu; Hajira Jabeen; and Jens Lehmann.
"Clustering Pipelines of large RDF POI Data" in Proceedings of 16th Extended Semantic
WebConference (ESWC), Poster&Demos, 2019. URL:https://gezimsejdiu.github.
io/publications/piping-clustering-eswc19-poster.pdf

14. Gezim Sejdiu; Ivan Ermilov; Jens Lehmann; and Mohamed-Nadjib Mami, “STATisfy
Me: What are my Stats?,” in Proceedings of 17th International Semantic Web Conference
(ISWC), Poster & Demos, 2018. URL: http://jens-lehmann.org/files/2018/
iswc_statisfy_pd.pdf

126

http://jens-lehmann.org/files/2018/ekaw_conod.pdf
http://jens-lehmann.org/files/2018/ekaw_conod.pdf
http://jens-lehmann.org/files/2018/ekaw_conod.pdf
http://jens-lehmann.org/files/2018/ekaw_conod.pdf
http://svn.aksw.org/papers/2017/ISWC_SANSA_SoftwareFramework/public.pdf
http://svn.aksw.org/papers/2017/ISWC_SANSA_SoftwareFramework/public.pdf
http://svn.aksw.org/papers/2017/ISWC_SANSA_SoftwareFramework/public.pdf
http://svn.aksw.org/papers/2017/ISWC_SANSA_SoftwareFramework/public.pdf
https://svn.aksw.org/papers/2017/KESW_BDE_Workflow/public.pdf
https://svn.aksw.org/papers/2017/KESW_BDE_Workflow/public.pdf
https://svn.aksw.org/papers/2017/KESW_BDE_Workflow/public.pdf
https://svn.aksw.org/papers/2017/KESW_BDE_Workflow/public.pdf
http://jens-lehmann.org/files/2017/icwe_bde.pdf
http://jens-lehmann.org/files/2017/icwe_bde.pdf
http://jens-lehmann.org/files/2017/icwe_bde.pdf
http://jens-lehmann.org/files/2017/icwe_bde.pdf
https://gezimsejdiu.github.io/publications/sansa-sparklify-ISWC-demo.pdf
https://gezimsejdiu.github.io/publications/sansa-sparklify-ISWC-demo.pdf
https://gezimsejdiu.github.io/publications/sansa-sparklify-ISWC-demo.pdf
https://gezimsejdiu.github.io/publications/sansa-sparklify-ISWC-demo.pdf
https://gezimsejdiu.github.io/publications/sansa-hubs-and-authorities-transaction-semantics19-poster.pdf
https://gezimsejdiu.github.io/publications/sansa-hubs-and-authorities-transaction-semantics19-poster.pdf
http://tiny.cc/4ukxcz
https://gezimsejdiu.github.io/publications/piping-clustering-eswc19-poster.pdf
https://gezimsejdiu.github.io/publications/piping-clustering-eswc19-poster.pdf
https://gezimsejdiu.github.io/publications/piping-clustering-eswc19-poster.pdf
http://jens-lehmann.org/files/2018/iswc_statisfy_pd.pdf
http://jens-lehmann.org/files/2018/iswc_statisfy_pd.pdf
http://jens-lehmann.org/files/2018/iswc_statisfy_pd.pdf
http://jens-lehmann.org/files/2018/iswc_statisfy_pd.pdf

15. Damien Graux; Gezim Sejdiu; Hajira Jabeen; Jens Lehmann; Danning Sui; Dominik
Muhs; and Johannes Pfeffer, “Profiting from Kitties on Ethereum: Leveraging Blockchain
RDF with SANSA,” in 14th International Conference on Semantic Systems, Poster & De-
mos, 2018. URL: http://jens-lehmann.org/files/2018/semantics_ethereum_
pd.pdf

16. Ivan Ermilov; Jens Lehmann; Gezim Sejdiu; Lorenz Bühmann; Patrick Westphal; Claus
Stadler; Simon Bin; Nilesh Chakraborty; Henning Petzka; Muhammad Saleem; Axel-
Cyrille Ngomo Ngonga; and Hajira Jabeen, “The Tale of Sansa Spark,” in Proceedings of
16th International Semantic Web Conference, Poster & Demos, 2017 (Best Demo Award).
URL: http://jens-lehmann.org/files/2017/iswc_pd_sansa.pdf

• Miscellaneous Papers

17. Damien Graux; Gezim Sejdiu; Claus Stadler; Giulio Napolitano; and Jens Lehmann.
"MINDS: a translator to embed mathematical expressions inside SPARQL queries".
Technical Report University of Bonn, Smart Data Analytics, 2018. URL: https://
smartdataanalytics.github.io/minds/MINDS_v0.1_report.pdf

18. Pieter Heyvaert; David Chaves-Fraga; Freddy Priyatna; Anastasia Dimou; Juan Sequeda;
Hajira Jabeen; Damien Graux; Gezim Sejdiu; Mohammed; Saleem; and Jens Lehmann.
"Preface for the Knowledge Graph Building and Large Scale RDF Analytics Workshops".
In Joint Proceedings of the 1st International Workshop on Knowledge Graph Building
and 1st International Workshop on Large Scale RDF Analytics co-located with 16th
Extended Semantic Web Conference (ESWC 2019), 2019. URL: http://ceur-ws.org/
Vol-2489/xpreface.pdf

19. Jens Lehmann; Gezim Sejdiu; and Hajira Jabeen. "Distributed Knowledge Graph Pro-
cessing in SANSA". HPI Future SOC Lab: Proceedings 2017, 130, 21. URL: https://
scholar.google.com/scholar?oi=bibs&cluster=6701703243740603519&btnI=
1

20. Harsh Thakkar; Mohnish Dubey; Gezim Sejdiu; Axel-Cyrille Ngonga Ngomo; Jeremy
Debattista; Christoph Lange; Jens Lehmann; Sören Auer; and Maria-Esther Vidal,
“LITMUS: An Open Extensible Framework for Benchmarking RDF Data Management
Solutions,” , 2016. URL: http://arxiv.org/pdf/1608.02800

127

http://jens-lehmann.org/files/2018/semantics_ethereum_pd.pdf
http://jens-lehmann.org/files/2018/semantics_ethereum_pd.pdf
http://jens-lehmann.org/files/2018/semantics_ethereum_pd.pdf
http://jens-lehmann.org/files/2018/semantics_ethereum_pd.pdf
http://jens-lehmann.org/files/2017/iswc_pd_sansa.pdf
http://jens-lehmann.org/files/2017/iswc_pd_sansa.pdf
https://smartdataanalytics.github.io/minds/MINDS_v0.1_report.pdf
https://smartdataanalytics.github.io/minds/MINDS_v0.1_report.pdf
https://smartdataanalytics.github.io/minds/MINDS_v0.1_report.pdf
http://ceur-ws.org/Vol-2489/xpreface.pdf
http://ceur-ws.org/Vol-2489/xpreface.pdf
http://ceur-ws.org/Vol-2489/xpreface.pdf
https://scholar.google.com/scholar?oi=bibs&cluster=6701703243740603519&btnI=1
https://scholar.google.com/scholar?oi=bibs&cluster=6701703243740603519&btnI=1
https://scholar.google.com/scholar?oi=bibs&cluster=6701703243740603519&btnI=1
https://scholar.google.com/scholar?oi=bibs&cluster=6701703243740603519&btnI=1
https://scholar.google.com/scholar?oi=bibs&cluster=6701703243740603519&btnI=1
http://arxiv.org/pdf/1608.02800
http://arxiv.org/pdf/1608.02800
http://arxiv.org/pdf/1608.02800

List of Figures

1.1 Thesis Contributions. Four are the main contributions of this thesis: (1) a scalable
distributed approach for evaluation of RDF dataset statistics; (2) a scalable framework
for quality assessment of RDF datasets; (3) a scalable framework for SPARQL
evaluation of large RDF data; (4) a comprehensive, open-source RDF processing and
analytics stack for distributed in-memory computing with the real use cases where the
thesis results are applicable. 5

2.1 Semantic Web Stack. The Semantic Web Stack, also known as Semantic Web
Cake or Semantic Web Layer Cake, illustrates the architecture of the Semantic Web,
according to W3C. 12

2.2 Sample RDF Graph representation. Small knowledge base about ’Gezim Sejdiu’
represented as a graph. 13

2.3 MapReduce dataflow. A MapReduce dataflow illustrated with the "Character Count"
example. 19

2.4 Spark Architecture Diagram. A Spark Cluster Mode Overview. 20

4.1 RDD lineage of a Criterion execution. It consists of three steps: (1) saving RDF
data into a scalable storage, (2) parsing and mapping RDF into the main dataset (RDD
of triples), and (3) performing statistical criteria evaluation on the main dataset. . . . 34

4.2 Overview of DistLODStats’s abstract architecture. It is composed of three steps:
First, it reads RDF data from HDFS and converts them into RDD of triples. Second,
this latter undergoes a Filtering operation applying the Rule’s Filter and producing
a new filtered RDD. Third, the filtered RDD will serve as an input to the next step:
Computing where the rule’s action and/or post-processing are effectively applied. As
a result, a statistical representation is generated. 38

4.3 Speedup performance evaluation of DistLODStats. Reports speedup performance
analysis for large-scale RDF datasets for DistLODStats on local mode and cluster
mode, respectively. All results illustrate consistent improvement for each dataset when
running on a cluster. The geometric mean of the speedup is 7.4x. 41

4.4 Sizeup performance evaluation of DistLODStats. The analysis keeps the number
of nodes in a cluster constant (5 worker nodes) and grows the size of datasets (BSBM)
to measure whether our approach can deal with larger datasets. We see that the
execution time cost grows linearly and is near-constant when the size of the dataset
increases. It stays near-constant as long as the data fits in memory which demonstrates
one of the advantages of utilizing an in-memory approach in performing the statistics
computation. 42

129

List of Figures

4.5 Scalability performance evaluation on DistLODStats. The analysis keeps the size
of the dataset constant (BSBM50GB) and varies the number of workers on the cluster.
The number of workers varies from 1, 2, 3, and 4 to 5. We can see that as the number
of workers increases, the execution time cost is super-linear on BSBM50GB dataset. . 43

4.6 Speedup Ratio and Efficiency of DistLODStats. The speedup performance trend
is consistent as the number of workers increases. Efficiency increased only up to the
4th worker for BSBM50GB dataset. The results imply that DistLODStats can achieve
near-linear or even superlinear scalability in performance. 44

4.7 Overall Breakdown by Criterion Analysis (log scale). The execution time is longer
when there is data movement in the cluster compared to when data is processed
without movement. There are some criteria that are quite efficient to compute even
with data movement e.g. 22, 23. This is because data is largely filtered before the
movement. 45

4.8 STATisfy overview architecture. Main services of STATisfy: Client – will create
a remote Spark cluster for initialization, and submit jobs through REST APIs. Livy
REST Server – it will then discover this job and sent through Remote Procedure
Call (RCP) to SparkSession, where the code will be initialized and executed using
DistLODStats. 46

5.1 Overview of distributed quality assessment’s abstract architecture. Main compo-
nents of DistQualityAssessment: 1) Definitions – defining quality metrics parameters,
2) Retrieving the RDF data, 3) Parsing and mapping RDF data into the main dataset
(RDD of triples), and 4) Quality metric evaluation. 53

5.2 Sizeup performance evaluation of DistQualityAssessment. The analysis fixes the
number of nodes to 6 and grows the size of datasets to measure whether DistQual-
ityAssessment can deal with larger datasets. We see that the execution time increases
linearly and is near-constant when the size of the dataset increases. As expected, it
stays near-constant as long as the data fits in memory. 58

5.3 Node scalability performance evaluation of DistQualityAssessment. The analysis
keeps the size of the dataset constant (BSBM200GB) and varies the number of workers
on the cluster. The number of workers varies from 1, 2, 3, 4 and 5 to 6. We can see
that as the number of workers increases, the execution time cost-decrease is almost
linear. It decreases about 14 times (from 433.31 minutes down to 28.8 minutes) as
cluster nodes increase from one to six worker nodes. The results shown here imply
that our approach can achieve near-linear scalability in performance in the context of
speedup. 59

5.4 Effectiveness of DistQualityAssessment. The speedup performance trend shows
that it achieves almost linear speedup and even superlinear in some cases. The speedup
grows faster than the number of worker nodes due to the computation task for the
metric being computationally intensive, and the data does not fit in the cache when
executed on a single node but fits into several machines when the workload is divided
amongst the cluster for parallel evaluation. 60

130

List of Figures

5.5 Overall analysis of by metric in the cluster mode (log scale). It shows that the
execution is sometimes a little longer when there is a shuffling involved in the cluster
compared to when data is processed without movement e.g. Metric L2 and L1. Metric
SV3 and CN2 are the most expensive ones in terms of runtime. This is due to the
extra overhead caused by extracting the literals for objects and checking the lexical
form of its datatype. 61

6.1 Sparklify Architecture Overview. It consists of four main components: Data mod-
eling – data ingestion and data partitioning (using the extensible VP), Mappings/Views
– the relational-to-RDF mapping, Query Translator – SQL query generator from the
SPARQL query, and Query Evaluator - SQL query evaluated directly into the Spark
SQL engine. 65

6.2 Sizeup analysis (on Watdiv dataset). The analysis keeps the number of nodes
constant i.e. 6 worker nodes and grow the size of the dataset (Watdiv) in order to
measure whether the approaches chosen for evaluation can deal with larger datasets.
As depicted, the execution time for Sparklify grows linearly as compared with
SPARQLGX-SDE, and keep staying near-linear when the size of the dataset increases. 69

6.3 Node scalability (onWatdiv-100M). The analysis varies the number of worker nodes
e.g. from 1, 3, to 6 worker nodes and keeps the size of the dataset constant i.e.
Watdiv-100M. It shows that as the number of nodes increases, the runtime cost for
Sparklify decreases linearly. It decreases about 0.6 times (from 2547.26 seconds down
to 1588.4 seconds) as worker nodes increase from one to three nodes. 70

6.4 Overall analysis of queries on the Watdiv-100M dataset (cluster mode). This
analysis gives more insights about running Watdiv queries onWatdiv-100M dataset in
a cluster mode on both approaches, Sparklify and SPARQLGX-SDE. The findings
show that SPARQLGX-SDE performance decreases as the number of triple patterns
involved in the query increase. In contrast to SPARQLGX-SDE, Sparklify seems to
perform well when there are more triple patterns involved (i.e. QC, QF and QS) but
slightly worst when there are linear queries (see QL) evaluated. 71

6.5 Semantic-based System Architecture Overview. It consists of three main facets:
Data Storage Model – model and partition the data using the semantic-based approach,
SPARQL Query Fragments Translator – the process of generating the Scala code in
the format of Spark RDD operations, and Query Evaluator – the SPARQL evaluation
using the Spark RDD executable code (generated from the previous step). 72

6.6 Sizeup analysis (on LUBM dataset). The analysis keeps the number of nodes
constant i.e. 5 worker nodes and increases the size of the datasets to measure whether
a semantic-based approach deals with larger datasets. The query execution time for
our approach grows linearly when the size of the datasets increases. This shows the
scalability of our approach as compared to SHARD, in the context of the sizeup.
SHARD suffers from the expensive overhead of MapReduce joins which impacts its
performance, as a result, it is significantly worse than other systems. 78

131

List of Figures

6.7 Node scalability (on LUBM-1K). The analysis increases the number of worker nodes
and keeps the size of the dataset constant. We vary them from 1, 3 to 5 worker nodes.
As the number of nodes increases, the runtime cost of our query engine decreases
linearly as compared with the SHARD, which keeps staying constant. SHARD
performance stays constant (high) even when more worker nodes are added. This
trend is due to the communication overhead SHARD needs to perform between map
and reduce steps. The execution time of our approach decreases about 1.7 times (from
1,821.75 seconds down to 656.85 seconds) as the worker nodes increase from one to
five nodes. 79

6.8 Overall analysis of queries on the LUBM-1Kdataset (clustermode). This analysis
depicts some of LUBM queries (Q1, Q5, Q14) run on a LUBM-1K dataset in a cluster
mode on all the systems. Overall, our approach performs better compared to the
Hadoop-based system, SHARD due to the use of the Spark framework which leverages
the in-memory computation for faster performance. However, the performance declines
as compared to other approaches that use vertical partitioning (e.g., SPARQLGX-SDE
on RDD and Sparklify on Spark SQL). This is due to the fact that our approach
performs de-duplication of triples that involves shuffling and incurs network overhead. 80

7.1 Overview of the SANSA stack. The SANSA framework combines distributed
analytics and semantic technologies into a scalable semantic analytics stack. 85

7.2 SANSA-Notebooks architecture. An interactive toolkit on top of dockerizedHadoop-
Spark-Workbench with Apache Zeppelin. 87

7.3 SANSA Notebooks example. RDF-Stats Spark application running in SANSA-
Notebooks with statistics visualization. 87

7.4 Hubs and Authorities analysis workflow. The architecture overview for gaining
insight about Hubs and Authorities using the SANSA framework. 89

7.5 PageRank Score Distribution of Top-50 Accounts. 90
7.6 Category Distribution of Top-50 Accounts. 90
7.7 Transaction Network of Top Hubs and Authorities. 91
7.8 Leveraging Blockchain RDF Data with SANSA: CryptoKitties as a Use Case. . . 92
7.9 Transport pilot initialization workflow. The SC4 initialization pipeline including

different BDE dockerized components. 94
7.10 A Semantic-Geo Clustering flow. It consists of five main components: data pre-

processing, SPARQL filtering, word embedding, semantic clustering, and geo-clustering. 96
7.11 Visualizations (on a map) of the Semantic-Geo clustering pipeline steps. Visual-

izations of a zoom over a particular Austrian region with K-means results of POIs
(left) and geographical clustering with relevant AOIs (right). 97

132

List of Tables

4.1 Definition of Spark rules (using Scala notation) per criterion. A list of statistical
criteria following the Rule (Filter->Action) -> Postproc paradigm using the Spark/Scala
notation. 36

4.2 Complexity and data shuffling breakdown by statistical criterion. Notation con-
ventions: n = number of triples; V = number of vertices; E = number of edges. 37

4.3 Dataset summary information (nt format). Lists dataset characteristics used on the
evaluation of the DistLODStats. The size (in GB) and the number of triples are given. 40

4.4 Distributed Processing on Large-Scale Datasets. Reports the performance analysis
of the speedup gained by DistLODStats as compared with the original centralized
version. The experiments were run on four datasets (DBpediaen, DBpediade,
DBpedia f r , and LinkedGeoData) in a local environment on a single instance with
two configurations: (1) files of the dataset are considered separately, and (2) one big
file–all files concatenated. 40

5.1 Quality Assessment Pattern. A reusable template for quality metric implementation
composed of transformations and actions. 51

5.2 Definition of selected metrics following QAP. List of few selected quality metrics
defined against proposed QAP. 52

5.3 Dataset summary information (nt format). Lists dataset information used on the
evaluation of the DistQualityAssessment. The size (in GB) and the number of triples
are given. 56

5.4 Performance evaluation on large-scale RDF datasets. A speedup analysis gained
by DistQualityAssessment as compared with Luzzu. The experiments were run on five
datasets (DBpediaen, DBpediade, DBpedia f r , LinkedGeoData and BSBM200GB).
Luzzu was run in a local environment on a single machine with two strategies: (1)
streaming the data for each metric separately, and (2) one stream/load – all metrics
evaluated just once. 57

6.1 Summary information of used datasets (nt format). Lists dataset characteristics
used on the evaluation. The size (in GB) and the number of triples are given. 67

6.2 Performance analysis on large-scale RDF datasets. Comparison analysis of Spark-
lify as compared with SPARQLGX’s direct evaluator named SDE. The loading time
for partitioning and query execution time is reported. 68

6.3 Dataset characteristics (nt format). Lists dataset information used on the evaluation.
The size (in GB) and the number of triples are given. 76

133

List of Tables

6.4 Performance analysis on large-scale RDF datasets. A comparison of our ap-
proach with SHARD – the original approach implemented on Hadoop MapReduce,
SPARQLGX’s direct evaluator SDE, and Sparklify w.r.t query execution time. . . . 77

134

Acronyms

AET Algebra Expression Tree. 66

AOI Areas of Interest. 7, 95, 97, 98

API Application Programming Interface. 21, 47, 53, 81, 84, 85, 87, 95, 96

BGP Basic Graph Pattern. 17, 73, 74, 103

BSP Bulk Synchronous Parallel. 2

CLI Command Line Interface. 45

DAG Directed Acyclic Graph. 33

DSL Domain Specific Language. 26

ETH Ether. 89, 91

ETL Extract, Transform, Load. 21

GFS Google File System. 18

HDFS Hadoop Distributed File-System. 11, 18, 21, 27, 29, 34, 39, 53, 55, 65, 67, 72, 75, 85–87, 94

HDT Header, Dictionary, Triples. 102

IRI International Resource Identifiers. 66

LOD Linked Open Data. 2, 26

LQML Quality Metric Language. 26

OWL Web Ontology Language. 26, 63, 85, 86, 88

POI Points Of Interests. 7, 95–98

RCP Remote Procedure Call. 47

RDD Resilient Distributed Dataset. 4, 20, 21, 29, 31–35, 37, 38, 47, 49, 52–55, 61, 65, 72–74, 76, 79,
87–89

135

Acronyms

RDF Resource Description Framework. 1–16, 23–29, 31, 32, 34, 35, 39, 41, 45, 47, 49–57, 61, 63–67,
72, 73, 80, 81, 84–90, 92, 93, 95–104, 115

RDFS Resource Description Framework Schema. 24, 63, 86, 88

RDG Resilient Distributed Graph. 21

SPARQL SPARQL Protocol And RDF Query Language. 1, 3, 4, 6, 7, 9–12, 16, 17, 23–29, 33, 39,
55, 63, 64, 66, 67, 70, 71, 73–76, 78, 80, 81, 85, 86, 89, 96, 98, 99, 101, 103, 104, 115, 117

URI Unique Resource Identifiers. 11–14, 17, 24, 28, 57, 66

VP Vertical Partitioning. 28, 29, 65–67

W3C World Wide Web Consortium. 1, 11, 12, 16, 63, 66, 80, 85

WWW World Wide Web. 11

XML Extensible Markup Language. 15, 16

136

	Introduction
	Problem Definition and Challenges
	Challenge 1: Scalable Computation of RDF Dataset Statistics
	Challenge 2: Quality Assessment of RDF Dataset at Scale
	Challenge 3: Efficient and Scalable SPARQL Query Evaluation

	Research Questions
	Thesis Overview
	Contributions
	List of Publications

	Thesis Outline

	Preliminaries
	Semantic Technologies
	RDF Data
	SPARQL

	Hadoop Ecosystem
	Apache Hadoop and MapReduce
	Apache Spark

	Related Work
	RDF Dataset Statistics Systems
	RDF Quality Assessment Frameworks
	SPARQL Query Evaluators

	Large-Scale RDF Dataset Statistics
	A Scalable Distributed Approach for Computation of RDF Dataset Statistics
	Main Dataset Data Structure
	Distributed LODStats Architecture
	Algorithm
	Complexity Analysis
	Implementation
	Evaluation

	STATisfy: A REST Interface for DistLODStats
	System Design Overview

	Summary

	Quality Assessment of RDF Datasets at Scale
	A Scalable Framework for Quality Assessment of RDF Datasets
	Quality Assessment Pattern
	System Overview
	Implementation

	Evaluation
	Experimental Setup
	Results

	Summary

	Scalable RDF Querying
	Sparklify: A Scalable Software for SPARQL Evaluation of Large RDF Data
	System Architecture Overview
	Evaluation

	A Scalable Semantic-Based Distributed Approach for SPARQL Query Evaluation
	System Architecture Overview
	Distributed Algorithm Description
	Evaluation

	Summary

	Implementation and Use Cases
	The SANSA framework
	Architecture Overview
	SANSA-Notebooks: Developer friendly access to SANSA

	Leveraging Blockchain RDF Data Using the SANSA Framework
	The Hubs and Authorities Transaction Network Analysis
	Profiting From Kitties on Ethereum

	Mining Big Data Applications Logs Using the SANSA Framework
	Scalable Integration of Big POI Data Using the SANSA Framework
	Proposed Solution: Architecture Overview

	Summary

	Conclusion and Future Directions
	Review of the Contributions
	Limitations and Future Directions
	Closing Remarks

	Bibliography
	SANSA Framework Release History
	SPARQL Benchmark Queries
	LUBM SPARQL Queries
	WatDiv SPARQL Queries

	List of Publications
	List of Figures
	List of Tables

