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Abstract

Over the past decade, knowledge graphs (KGs) have become popular for capturing structured domain
knowledge. Knowledge graphs particularly allow the effortless integration of heterogeneous data into
a coherent model. Besides applications in data integration, KGs are at the center of many artificial
intelligence studies as an expressive data model for representation learning purposes. Knowledge
graph embedding (KGE) methods produce a latent representation of KGs entities showing applicability
potential for solving downstream tasks, including link prediction and node classification. KGE also
supports Named Entity Resolution in NLP tasks and is applied in Question Answering Systems.
Existing KGE models have achieved excellent results over simple knowledge graphs, where they
contain only a few relation patterns that leak into each other. Besides, in simple knowledge graphs,
the amount of entities with similar neighbors is lower, and the structure of the subgraphs is unique,
so their entities are more easily distinguished. This work dives more into the study of KGE for
complex knowledge graphs. In such KGs, distinct relation patterns show up significantly more, and
similar substructures repeat over the network on a larger scale. Therefore, recognizing unique entities
with limited knowledge about the direct neighbors and the limited recognition of relation patterns is
remarkably more difficult. Complex knowledge graph embedding provides several challenges, such as
understanding learning distinct relation patterns and graphical features of nodes. The lack of suitable
datasets that emulate the difficulty of more complex knowledge graphs further adds to research gaps.
Hence, in this thesis, we focus on the research objective of laying the foundations for the advancement
of the state-of-the-art to better embed complex knowledge graphs by providing techniques to solve
various challenges and resources to fill the research gaps.

First, to effectively target the complex KGE challenge, we propose a multi-objective method that
allows learning several relation patterns of knowledge graphs. Multiple Distance Embedding (MDE)
generalizes over several distance-based models and proposes combined learning objectives that extract
more knowledge from KGs as the base training data. Our solution is based on the principle that
we can collectively train and predict using contradicting distance terms by learning independent
embedding vectors for each of the terms. We demonstrate that MDE allows modeling relations with
(anti)symmetry, inversion, and composition patterns. Our empirical investigation shows the on-par
and better performance of MDE relative to the state-of-the-art methods in the link prediction task and
its effectiveness in learning individual relation patterns.

We then propose a novel KGE method named Graph Feature Attentive Neural Network (GFA-NN)
that computes graphical features of entities. This method addresses the limitation of embedding
models that consider only the local graph structure related to an entity and have difficulty distinguishing
similar graph substructures. Consequently, the resulting embeddings of GFA-NN are attentive to
two types of global network features. First, nodes’ relative centrality is based on the observation that
some entities are more “prominent” than others. The second is the relative position of entities in the
graph. GFA-NN computes several centrality values per entity, generates a random set of reference
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entities, and computes a given entity’s shortest path to each entity in the reference set. It then learns
this information by optimizing the objectives specified on each feature. We investigate GFA-NN on
several link prediction benchmarks in the inductive and transductive settings. We demonstrate that
GFA-NN improves the state-of-the-art records of KGE solutions, especially on large-scale and more
complex knowledge graphs. We next construct 96 datasets replicating 16 different relation pattern
circumstances and four different inductive and transductive test settings. This effort addresses the
gap of missing a leak-free link prediction benchmark of embedding methods on complex knowledge
graphs. Our analysis of state-of-the-art models over these datasets provides a better insight into the
suitable parameters for each situation, optimizing the KG-embedding-based systems. In addition, to
provide reproducible KGE Benchmarking, we create an evaluation Framework based on dockerized
test environments. We further developed an application component as the last step of an End-to-End
machine learning workflow to overcome the challenges of real-world Link Prediction using knowledge
graph embedding. The proposed approaches mentioned in this thesis and the published resources are
available at https://github.com/afshinsadeghi/GFA-NN and in https://github.com/mlwin-de/

are released under the umbrella MLwin project.
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CHAPTER 1

Introduction

Most of these difficulties disappear when we
consider one-one immersions 𝑓 : 𝑃 −→ 𝑀

which are homeomorphisms onto their
image. Such an immersion is called
imbedding (embedding for the English).

[1], p. 49, The suggestion of the term
“embedding” to use in the mathematical

context by Michael Spivak.

Nature offers us data often in the form of a graph. The nesting of the human population on earth is
in a form graph made of roads as edges that connect cities. The river branches joining and pouring
into oceans make graphs where the join points are nodes of the graphs. Biological molecules like
DNA and cell components make a graph structure whose molecules are the nodes. Similarly, social
interactions like friendships and work collaborations generate social graphs, and the links among
neurons in the brain make a large biological graph.

We generally characterize the network data using multi-relational graphs known as knowledge
graphs. Knowledge graphs can well present the integration of data originating from different sources.
An example of a knowledge graph is DBpedia [2], which is extracted from the interlinked facts
in Wikipedia. It holds relations between the concepts in the encyclopedia in the shape of a graph.
The Facebook social network is another knowledge graph that holds the network of friendships and
people’s interests. Knowledge graphs can involve a large number of entities. DRKG [3] is a biological
knowledge graph that consists of approximately 5.7 million facts representing gene, drug, and disease
interactions to target COVID-19.

To let machine learning algorithms intake this interconnected network of concepts as input to
perform prediction/classification tasks, we need to derive representations of the semantic interactions
of the graph entities in the first place. This requirement has recently led to the rise of a rapidly growing
branch in the machine learning field. Graph theory calls these algorithms “representation” learning
algorithms because they extract representations for graph elements such that the representations lay in
the vector space. Viewing the same concept from the perspective of Algebra, we call the injective
mapping of nodes and edges into vector or tensor space “embedding”. We call the constructs made by
such algorithms “embeddings” as well. The algorithms that encode embedding weights to represent
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Chapter 1 Introduction

knowledge graphs are known as knowledge graph embedding (KGE) methods or knowledge graph
representation methods.

We consider both notions of graph embedding and graph representation learning in this study. We
use the first term when we intend to highlight the act of mapping graph elements and the encoding
process of the hidden information in knowledge graph relations. We utilize the latter in cases where
we emphasize the representation of the nodes and the graph topology and when we want to highlight
an actual concept that a node denotes.

KGE methods have vast applications. For example, they are commonly used in Natural Language
Processing (NLP) in Relation Extraction (RE) tasks and Question Answering (QA) systems. In
chemistry, they are applied in drug discovery [4], and in physics, they are used to simulate rich
materials [5]. These methods are used as a recommender system as well; for example, in online retail
platforms, as a product recommendation system, they suggest likely to purchase items to customers [6].
Any of these applications query the learned representations from graphs.

This study focuses on investigating and finding solutions for challenges related to learning effective
representations for complex knowledge graphs. Before proceeding to the research objective of this
thesis, it is essential to obtain a grasp of “complex knowledge graphs” and the “challenges related to
learning effective KG representations”. In the following, we clarify them in the context of a general
End-to-End workflow that applies machine learning methods over knowledge graphs. Figure 1.1
illustrates the two aspects of this workflow.

The first facet of this workflow is a knowledge graph embedding method as a machine learning
algorithm. The learning algorithm engages in the three steps of the workflow and is the system’s
primary component. The generic knowledge graph embedding workflow involves steps for Modeling
and Training, Evaluation and Experiment, and Deployment. In the Modeling step of such flow, a
KGE models relations in a knowledge graph with a mathematical formulation. The Training phase
generates vectors or embeddings that comply with the mathematical modeling. The Evaluation and
Experiment step evaluates these generated embeddings against benchmark datasets structurally similar
to the primary input knowledge graph and mimics the original KG features. The Train and Evaluation
steps are repeated to discover appropriate hyperparameters for the model to work optimally on the
target knowledge graph. Finally, the Deploy step puts the model to work on the input knowledge
graph. Generally, knowledge graph embedding methods are directly deployed in one of these directions:

■ Link Prediction, in which it determines if there is a specific relation between two given entities.

■ Entity Classification, in which it determines to which class an entity belongs.

■ Triple Classification, in which it denotes the truth value of an unknown triple, i.e., to clarify
whether it is a true triple.

■ Entity Resolution, in which determines when references to real-world entities are equivalent, i.e.,
to resolute if they are the same.

The scope of experiments in this study is limited to evaluations in the Link Prediction category,
which is the most prominent branch among the four deployment directions. Link prediction on
knowledge graphs can be complex and ambiguous. The training data of KGE models are unlabeled.
Therefore all the samples are positive, and they miss samples labeled as untrue (negative samples).

2



e2e1

e4

Coastal
Is_aIs_a
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Has_resident
Lives_in
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End-to-End Knowledge
Graph Embedding
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Figure 1.1: Introducing the two facets of an End-to-End machine learning workflow deploying KGE-based
services.

Consequently, a positive triple gets ranked against randomly generated negative samples that are never
really known to be untrue due to the open-world assumption in knowledge graphs. Furthermore, when
a KGE is applied to an inductive link prediction task, the challenges of the inductive setting are added
to previously mentioned complexities. In such a case, the inductive test requires link predictors to
estimate relations for entities unknown to the system.

The second aspect of the workflow is the knowledge graph available for the task. Complex knowledge
graphs involve various independently existing relation patterns. A relation pattern in a knowledge
graph characterizes a logical connection between the semantics of comprised relations. For example,
a relation 𝑟 is symmetric if ∀𝑥, 𝑦 𝑟 (𝑥, 𝑦) ⇒ 𝑟 (𝑦, 𝑥), where 𝑥, 𝑦 are entities. To understand the ability
of a KGE system to approximate the triples in a knowledge graph correctly, we must consider that a
KGE is bounded in its ability to learn relational patterns [7]. Therefore, the research community looks
forward to more generic models covering diverse relation patterns.
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Chapter 1 Introduction

Next to the intricacy of relation patterns, the knowledge graph structure and graphical specifications,
the ratio of hidden relations, and the scale are among many factors that determine a model’s fitness
for a knowledge graph. With the introduction of very heterogeneous large-scale KGs, an embedding
model can face many hidden relation patterns in one KG: Wikidata, YAGO, and DBpedia, which
include data from millions of topics, present samples of complex large-scale knowledge graphs with
numerous relation patterns. Therefore, it is essential to consider both the KGE element and the intake
knowledge graph while designing a KGE system from a machine learning design perspective.

From the Scientific Methodology aspect, the scope of this work lies within the class of narrow
Artificial Intelligence (AI) approaches, given that we base our study on statistical relational learning
and optimization methods. In this line of research, to propose KGE algorithms and experiments that
are data-independent, we consider a version of the algorithms and experiments that only regard data
in the form of the triple-based relational facts. Nevertheless, the proposed KGE algorithms allow
learning upon multi-modal data representations in application. For example, they effortlessly let the
extension to encoding multi-modal graphs that involve entities designating data in textual, visual, or
auditory form. Similarly, we disregard the embedding for knowledge graphs with hyper relations from
the scope of this study, provided that our research is easily extendable in this direction.

1.1 Motivation

Theoretically, knowledge graphs are heterogeneous and extendable to contain facts about everything.
The flexibility of knowledge graphs makes them suitable for representing complex facts and relations
patterns. For instance, their network structure allows them to contain a set of relations as elaborate as
a movie scenario [8] or as complicated as a mathematical formulation [9].

Predicting Links in complex knowledge graphs is a challenge for embedding models. Considering
the knowledge graph at the top of Figure 1.1, suppose that the orange edge is missing from the set of
available triples, and we are in the Deploy phase of the workflow for the link prediction task; we ask:

“Knowing that e5 indicates Boris Johnson, where does he live in?”

To answer this question using a trained embedding model, we first fetch the embedding weights
representing e5 and the relation Lives_in. Then we test the existence of the triples in shape (e5,
Lives_in, ?), where we replace ? with all entities and let the embedding model estimate their score.
We rank these scores, and if the embedding model has appropriately estimated the triple (e5, Lives_in,
London), it produces the best score for this triple among all triples with third entity values other than
London. Assuming that the sequence of Is_a, Has_resident, Lives_in relations exist in the knowledge
graph in places other than those depicted in the Figure, and the model has already faced such a pattern
in the Modeling and Training phase. This sequence of relations creates a composition relation pattern.
If the model is able to encode the composition relation pattern, it would predict other Lives_in relations
whenever it faces Is_a and Has_resident in the knowledge graph.

A valuable aspect of knowledge graphs is the set of node global graphical features. The embedding
of these features possibly helps to encode complex knowledge graphs better. For example, in Figure 1.1,
when an embedding model attempts to generate a representation for e1 and 𝑒2 (Naples) based on
their neighbors, it has a challenge creating distinctive embeddings because the neighbors are similar.
Conversely, a model would easily separate them if it considers their different distances to the node e3.
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1.2 Problem Statement and Challenges

Current Knowledge graph embedding methods have already made significant progress in predicting
hidden relations and learning the implicit relation patterns. However, these models achieve high
accuracy in the link prediction task in the limited evaluations, based on a knowledge graph subsets
with a limited setting. Considering the rising complexity and the extensiveness of the knowledge
graphs, the objective of this work is to make highly effective algorithms for learning embeddings
such that they handle the challenges of learning knowledge graphs in real-world complexity. We,
therefore, need to reflect such complexity in the evaluation of our approaches as well. It is crucial
that the Evaluation and Experiment phase of the workflow has already properly curated subsets of the
Knowledge graph such that the model gets tested against individual relation patterns existing in the
knowledge graph. Otherwise, we create a model that we are unaware of its deficiencies. It is also
equally important that the evaluations on different relational modelings be performed in a stable and
reproducible setup. Otherwise, the most proper model for embedding a knowledge graph would never
be discovered.

Principally, a study is genuinely fruitful if it serves end-users in a real-world case. The lower right
corner of Figure 1.1 states the last step of the End-to-End workflow as the Deployment and delivery.
It would be beneficial to assess the application of this study in a real-world subject and review its
benefits to the End User.

1.2 Problem Statement and Challenges

This Section presents the problem definition of this thesis work, followed by Challenges posed in this
problem direction. To provide a clearer insight, we break down each Challenge with an example.
Considering the End-to-End workflow of the machine learning applications on knowledge graphs
depicted in Figure 1.1, the Research Problem of the thesis asks:

Research Problem Definition

How do we generate effective embeddings for complex knowledge graphs that effectively predict
hidden links?

Based on the motivation described in Section 1.1, we identify five fundamental challenges to be
tackled toward a solution for our research Problem.

Challenge 1: Learning representation of several relation patterns as the different aspects of
knowledge graphs with minimal limitation on the learning capability.

Figure 1.2 displays a magnified version of the knowledge graph from Figure 1.1. In the top left corner,
the orange relation Lives_in is involved in a composition relation pattern with Is_a and Has_resident.
Consequently, a knowledge graph embedding model capable of predicting composition patterns can
estimate the existence of this link based on the two Is_a and Has_resident relations in the Graph. The
Embedding task for knowledge graphs with complicated relation patterns is challenging. Likewise,
the augmentation of relation pattern types in distinct locations elevates the complexity of knowledge
graphs. Furthermore, such challenges become more frequent in large-scale knowledge graphs.
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e2e1

e4

Coastal
Is_aIs_a

Landmark_typeLandmark_type

ItalyUS

Located_in
Located_in

e3
Naples Naples

City

e5
Has_resident

City_dweller

Has_resident
Lives_in

e6

Is_a

London

Figure 1.2: A knowledge graph consisting of information about the city Naples in Florida (US) and Naples in
Italy is represented by nodes e1 and e2. The Challenges and Research Questions of the thesis are illustrated
together in this example.

Recently a new wave of knowledge graph embedding methods has been raised that consider relation
patterns in knowledge graphs [10, 11]. However, these methods are limited to only one function to
implicitly learn these patterns alongside the relations. In most of these methods, the score function
only allows limited encoding of a few relation patterns, hindering the other patterns. For example,
DistMult [12] is an embedding model that multiplies the embedding vectors of a triple element by the
element as the score function:

𝑆𝐷𝑖𝑠𝑡𝑀𝑢𝑙𝑡 = ⟨ℎ, 𝑟, 𝑡⟩ (1.1)

in which the relation and entities of a triple are in the form of (ℎ, 𝑟, 𝑡). Since the multiplication
of real numbers is symmetric, DistMult can not distinguish displacement of head relation and tail
entities, and therefore, it can not model anti-symmetric relations. ComplEx [13] solves the issue of
DistMult by replacing the tail vector in the score with its complex conjugate. With the introduction of
complex-valued embeddings instead of real-valued tail to DistMult, the score of a triple in ComplEx
becomes 𝑅𝑒(ℎ⊤𝑑𝑖𝑎𝑔(𝑟) 𝑡) where 𝑡 means the conjugate of t and 𝑅𝑒(.) indicates the real part of a
complex weight. This extension enables the ComplEx to allow non-symmetric relations; however, it
becomes inefficient in encoding composition rules.
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1.2 Problem Statement and Challenges

The score of TransE [14] unlike to ComplEx does not have this issue. Its score function consists of:

𝑆𝑇𝑟𝑎𝑛𝑠𝐸 =∥ ℎ + 𝑟 − 𝑡 ∥ 𝑝 (1.2)

where ∥ . ∥ 𝑝 is the 𝑝-norm. It does not limit the learning of the composition pattern; nevertheless, it
forces the reflexive relations to become symmetric and transitive. Therefore, it can not effectively
learn a combination of these relation patterns when one of these three patterns does not apply.

As the first Challenge to target in this study, a KGE method is required to solve these barriers, i.e., a
KGE that allows training at least several crucial relation patterns. Targeting this Challenge is essential
in order to embed knowledge graphs effectively. In addition to allowing the learning of variant relation
patterns, such a KGE model is desired to allow the incorporation of future formulations for newly
discovered relation patterns.

Challenge 2: Knowledge graph representation methods disregard the primary network
features in their embedding and only consider relational learning

Besides the relational patterns that exist in knowledge graphs and are often overlooked in KGE models,
an elementary yet highly neglected feature of knowledge graphs that is crucial for the KGE task is the
graphical properties.

The traditional information extraction method in knowledge graphs embedding approaches local
relational capturing; They learn the presence of a relationship between an entity and its hop-1
neighborhood. This learning technique ignores the notion that entities at a distance can nevertheless
influence an entity’s role in the whole graph. Figure 1.2 depicts an example in which the objective is
to learn embeddings for e1 and e2 entities in the KG. The conventional relational learning approaches
struggle to distinguish between the two concepts representing the cities named Naples because e1
and e2 have nearly identical neighbors, except that one of the cities is located in Florida (US), and
the other one is not. However, we can easily differentiate e1 and e2 if we compare their eigenvector
centrality; Because e1 is neighbor to the US entity, with a substantial eigenvector centrality, e1 has a
greater centrality than e2. Similarly, the shortest path of e1 and e2 to e3, a member from the set of
reference nodes 𝑆, is different.

Subjectively, if a KGE recognizes the centrality and distance to e3 as meta-information, it more
accurately models and ranks e1 and e2. Therefore, we hypothesize that considering such features
enables a method to learn more than a traditional relational learning KGE approach and this extra
metadata improves the ranking efficiency. Even a tiny improvement in the ability of a KGE model to
distinguish entities significantly impacts its ranking efficiency over large knowledge graphs where one
entity is compared to millions of other entities in this task. Thus, such improvement in a KG learning
approach is crucial in real-world applications.

Because any knowledge graph is a graph in nature, and network properties are a type of information
affiliated with any graph, the ubiquitous graphical features are derivable from any knowledge graph.
Consequently, regarding such information besides the relational information in training not only does
not limit the applicability of a learning method but also allows it to apprehend more from knowledge
graphs.

As the second Challenge to consider in this study, we require generalizing KGE models to embody
the graph features of KGs such as node centrality and positional indicators, e.g., the degree, Katz, or
eigenvalue centrality of entities in the graph.
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Furthermore, given that the downstream applications of KGE methods require trained vectors
(representation weights) as the input, a graph feature-aware embedding method also is desired to
produce embedding vectors, similar to the conventional embedding methods.

Challenge 3: Lack of a standard framework to generate reproducible test experiments for
knowledge graph representation learning methods.

A challenge of the current benchmarks and link prediction evaluations for the KGE models is that they
engage tests in different environmental settings, and comparing methods with changing parameters
could favor one or another method. Therefore current studies for knowledge graph embedding have
difficulty in generating reproducible experiments. This problem has been highlighted in recent link
prediction tests where the small granularity of 0.001 from the unit of measurement distinguishes a
better method [15]. A framework is required to generate reproductive evaluations in an unbiased
environment with fixed settings. Therefore we define the lack of such a framework as the third
Challenge to consider.

Challenge 4: The lack of the means to estimate the efficiency of knowledge graph
embedding methods on relation patterns.

Current link prediction evaluations of KGE methods are not precisely testing the performance of a
method. These evaluations rely on test datasets with a leakage problem, i.e., they include triples with
a relation pattern that leaks into other relation patterns. This Challenge raises the issue of accuracy
because, in a test on a relation involving two patterns, it is never clear whether the model is capable of
learning both patterns or just one of them. This flaw makes it impossible to accurately test how well
a model can predict a specific type of relation pattern. As a result of this gap, current benchmarks
are ineffective in their goal of testing the competency of KGE methods. This Challenge is crucial
in the study of knowledge graph embedding. Because to choose the best fitting KGE for different
applications, it is essential to know which model best covers the relation patterns of a target knowledge
graph.

The top left nodes in Figure 1.2 illustrate a case where the relation Lives_in is confirmed by both
composition and inverse relation patterns. The composition relation on Is_a and Has_resident (green
links) and Lives_in lead to learning of Lives_in in a model capable of learning composition patterns.
However, if a model is capable of learning inverse relations, it also extracts the existence of Lives_in
between e5 and e4 from the relation Has_residence. This case is an example of the existence of dual
and more relation patterns in one link creating confusion and inaccuracy in the evaluations for the link
prediction task.

This problem is omnipresent in the prominent link prediction datasets, including FB15k, WN18,
WN18RR, and FB15k237. For example, WN18RR resolves the data leak of WN18 from the existing
inverse relations beside other relation types. However, our observation shows that WN18RR still leaks
composition pattern relations into Anti-Symmetric relations. The leakage problem of KGE evaluation
datasets is the fourth Challenge we consider targeting in this study. A new group of leak-free datasets
must be developed for different relation patterns. Furthermore, a new test study based on the new
evaluation datasets must be conducted, and its results must be compared to the evaluation results on
the current datasets. The target of these experiments must put the KGE methods under the test of the
link prediction, which is one of the main evaluation types of knowledge graph embedding methods.
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1.3 Research Questions

RQ1: RQ2: RQ4: RQ5: 
Knowledge 

Graph

Modeling & Training

End User

Deploy

RQ3: 

Evaluation & Experiment

Figure 1.3: Demonstrating the connection of Research Questions to the machine learning End-to-End workflow
involving link prediction on knowledge graphs.

A similar link prediction benchmark study is also missing in the inductive setting. Therefore,
inductive test datasets and a set of relation patterns test experiments in the inductive setting are
also required. The result of these experiments must be described via precise mathematical metrics,
including AUC-PR, which is more informative than Hit reports for the inductive setting experiments.

Challenge 5: Demonstrating the capability of a KGE method that allows relation pattern
encoding up to the Deploy phase of the End-to-End machine learning workflow involving a
real-world input knowledge graph.

To get an insight into the usability of this study, we require to put a KGE that targets allowing relation
patterns into a real-world test. The test requires the approach to be within a complete End-to-End
workflow, as depicted in the Figure 1.1. As the fifth Challenge to target, this study must involve
a real-world knowledge graph and show whether the relation pattern-aware embedding method is
effective in such a scenario. The performance of the relation pattern aware method should be compared
to a traditional KGE method as the Gold Standard method.

1.3 Research Questions

Based on the challenges, we derive the following research questions, which are addressed one by one
in the succeeding chapters of the thesis. Figure 1.3 presents the connection of extracted Research
Questions to the machine learning End-to-End workflow involving link prediction on knowledge
graphs.
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Chapter 1 Introduction

Research Question 1 (RQ1)

Does combining multiple distance-based scores targeting different relation patterns generate more
effective embeddings of knowledge graphs?

With the recent decade’s progress in knowledge graph embedding methods, new formulations for
score functions are being developed that target a new subset of relational patterns. This research
question inquires about a way to benefit various evolved models and cover the learning for all the
known supported relation patterns. Simply putting the score of these models together generates
conflicting formulations with limited or no learning power. We investigate how to remove this barrier
practically such that we do not limit the efficiency of participating scores. A branch of KGE methods
that are thoroughly studied formulate relations in knowledge graphs with geometric distances, such as
TransE. This study should improve such distance-based embeddings and target modeling of different
relation patterns. Such a generalization method of embedding scores should practically be evaluated
to uphold this research question.

Research Question 2 (RQ2)

Does learning network features of knowledge graphs improve the efficiency of KG embedding?

In this question, we study the encoding of graphical features alongside the semantic relations inside
knowledge graphs. The network features extracted from Knowledge graphs often exhibit valuable
context information of entities, like their connectivity and centrality, which is commonly ignored in
knowledge graph embedding methods. We investigate how a solution for the first research question
would be able to learn graph features together with relations as a multi-modal learning approach.
However, this information is numerical and relative to nodes in a graph. The task of learning graph
features generates further challenges to the problem of multiple relation pattern learning that we target
in the first research question. In contrast to the previous RQ, mathematical formulation for different
graph features is a prerequisite, and a method of continuous feature modeling integration is to be
found to address this research problem.

Research Question 3 (RQ3)

How can we make the experiments of embedding models reproducible?

The setup of the evaluations for KGE methods requires fair comparisons. Remarkably, the link
prediction studies suffer from reproducibility problems, i.e., these methods are tested in different
execution environments, e.g., with different running environments and software versions and hyper-
parameters that change their outcomes. Therefore, a test generation system is required to create tests
with preset hyper-parameters, test sets, and executions. The generated test experiments are required to
be unalterable images that allow being restored and repeated at any time.
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1.4 Thesis Overview

Research Question 4 (RQ4)

How can we accurately recognize a more effective embedding method on a specific relation pattern?

New benchmark experiments based on a new relation pattern leak-free dataset are required to
address the relation pattern leakage problem in the current link prediction studies, wherein each
test dataset only includes one relation pattern. The new dataset must be extracted from the existing
experiment datasets to keep the evaluations based on this dataset comparable to old studies. This
question also holds for inductive setting tests because, similarly, the datasets and benchmarks are
missing for inducive relation pattern specific benchmarking.

Answering this question illuminates the competency question of different KGEs per relation pattern
in inductive and transductive settings. In addition, it would let us understand better if a method is
preferable for an application because it more accurately models a target knowledge graph given the
relation patterns present in that KG.

Research Question 5 (RQ5)

Does a KGE method that allows the encoding of relation patterns tackle a real-world link prediction
task more effectively than a commonly applied KGE?

The studies of KGE methods examine them over curated subsets of the existing knowledge graphs.
Furthermore, they do not investigate the meaning of the link predictions. Therefore such studies
inevitably do not entirely cover the challenges involved in real-world applications. RQ5 demands
a real-world challenge of knowledge graph embedding approaches in the deployment phase. It
specifically focuses on a KGE that allows relation patterns. It asks how such a method solves link
prediction challenges more effectively than a mainstream KGE method.

A KGE method solving a link prediction challenge manifests in the real world as a recommender
system on networks of data where the KGE model gives plausible suggestions to users. This study must
investigate the steps required to perform this task and report the deployment workflow. The study’s
evaluation should deliver a qualitative analysis of the suggested links. In addition, it must provide a
quantitative measure of the model’s performance and compare it with a gold-standard approach.

1.4 Thesis Overview

Figure 1.4 illustrates a concise yet descriptive overview of the achieved outcomes during the conducted
research. The middle section highlights the key research contributions of the thesis connected to the
targeted research questions on the left side of the diagram. The right side of the diagram provides
references to scientific articles addressing these contributions published throughout the whole study.
In the following, we describe these contributions in detail.
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Figure 1.4: Contributions to the Research Questions.

1.4.1 Contributions

Contributions for RQ1

An approach for multiple distance knowledge graph embedding that targets allowing the encoding
of several relation patterns in the embedding task.

To address Research Question RQ1, we suggest an approach to generalize the existing distance-based
KGE methods to target different relation patterns simultaneously. We call this approach multiple
distance learning, which comprises multiple desired objectives that allow learning of relation patterns
individually. We formulate this novel multi-objective embedding model (MDE) by suggesting several
distance-based embedding scores. We define a learning strategy to corporate these scores to benefit
the effective learning of a particular pattern in each score while they do not inhibit each other. For
example, one of the score sub-functions of this formulation does not produce a significant value to
exemplify recognizing relations with “Composition relation pattern”. However, another sub-function
is involved in the formulation specified to acknowledge such triples. Therefore, the overall output of
the MDE score yet recognizes such relations. We extend this approach to several functions for different
relation patterns and show that MDE allows the effective combination of these learning functions.
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1.4 Thesis Overview

We put MDE under the test and show the efficiency of our method in comparison to the state-of-the-
art in the link prediction task. We empirically demonstrate that the suggested approach lies within
the best embedding methods. In addition, we define limit-based margin ranking loss that improves
the efficiency of embedding methods by better handling the unbalanced set of positive and negative
samples. We further investigate in this direction and define an algorithm to continuously find the fine
limits to be used in this loss function.

Contributions for RQ2

We propose a neural network knowledge graph learning approach that learns representations for
local relations of a knowledge graph and its inherited global graph features using a mathematical
formulation for each learning feature.

In an attempt to revise the current KGE mechanism to address global network features without
sacrificing the capacity to learn from the relational data, we propose a generalization of KGE
approaches that takes advantage of the mathematical specification of graph characteristics.

We extract and normalize the network features and include these features as the numerical information
about the nodes in the graph embedding. These features show the importance of nodes in graphs, such
as degree centrality. We also consider the relative position of entities which indicates their closeness.
This method generates a unified knowledge representation for entities in terms of embedding weights
based on these properties. We evaluate this method and show how it outperforms state-of-the-art KGE
models in the link prediction task. This method demonstrates competitive efficiency in the inductive
link prediction setting as well. We especially highlight the significant efficiency improvement of this
model over the best link prediction methods on a large-scale knowledge graph.

Contributions for RQ3

We develop a framework for the fair and reproducible link prediction evaluations of knowledge
graph embedding methods.

We make a framework to generate execution environments that include the link prediction test for
KGE models, focusing on generating fair experiments. These execution environments are entirely
independently executable fixed Docker images. These images include a fixed execution environment,
trained models with preset hyper-parameters, link prediction test modules, and fixed test sets to
produce reproductive evaluation studies. This framework and its instruction are publicized on Github,
and its source code and material are openly available to researchers.
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Figure 1.5: The position of the our Contributions in relation to steps in an End-to-End workflow for machine
learning models involving link prediction on knowledge graphs.

Contributions for RQ4

We develop a new benchmark for the link prediction task that targets investigating KGE models on
a single relation pattern basis. In addition, we apply it integrated into a framework that generates fixed
test environments to perform reproducible link prediction evaluation of KGE models.

To investigate the competency and weakness of different models on the patterns precisely, we
generate a set of knowledge graphs that consists of only one of the relation patterns. We study the
behavior of several state-of-the-art KGE methods on each of the individual patterns. We specify this
study to investigate four classes of experiments for link prediction in the degrees of inductive and
transductive test entities. The four branches of generated experiment settings include fully Transductive
setting, head-or-tail inductive triple setting, percentage-based semi-inductive setting, and entirely
inductive setting.

The generated experiments involve 96 link prediction tests, each test including train and test and
validation datasets. We particularly prune the test and validation datasets to include only one intended
relation pattern, and we extract the datasets in such a way that the related training set includes triples
associated with those in the test and validation datasets.

We analyze the result of state-of-the-art KGE methods on different relation patterns in various
settings. In addition, we apply the generated benchmark to verify the effect of blended learning of
graph features and relational learning from triples from contribution to RQ2. We demonstrate its
efficiency compared to the methods that only apply traditional structural machine learning. At the
center of this study, we highlight how effectively it improves the ranking performance of the MDE
method that resulted from the study contributed to RQ1.
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1.4 Thesis Overview

Contributions for RQ5

We develop a workflow demonstrating the MDE method’s deployment to support the social good.
This pipeline includes a multi-distance embedding model that performs link recommendations on
the Twitter knowledge graph. This element connects physicians to the latest medical study results
meaningfully relevant to them.

We create a pipeline to extract a subset of the Twitter social knowledge graph and study and
demonstrate the model’s usefulness in real-world applications. We showcase the model by presenting it
in a scenario where it serves society and individuals regardless of their knowledge of machine learning.
Our study explains all the steps of the link prediction task in this scenario, from data extraction to
the prediction of links, and showcases suggesting research study results for physicians in two stages.
We propose a measure to quantitatively evaluate the engaging links for physicians estimated by a
KGE, and we also present an analysis that qualitatively investigates suggested links by this measure.
We evaluate our proposed MDE model that allows encoding several relation patterns (from the RQ1
contribution), and we compare its effectiveness in link suggestion with TransE as a gold standard. We
finally highlight the significant improvement of MDE over the gold standard model in this real-world
application.

1.4.2 Publications

This thesis builds upon the following publications, which provide a basis for many of the figures, ideas,
and results presented in the subsequent chapters:
■ Afshin Sadeghi, Hirra Abdul Malik, Diego Collarana, Jens Lehmannn. Relational Pattern

Benchmarking on the Knowledge Graph Link Prediction Task. Conference on Neural Information
Processing Systems (NeurIPS) 2021. The initial study for this paper is partially covered by Hirra
Abdul Malik as a part of her master thesis, where the related generated datasets did not end up in the
paper due to overlooked relation pattern leaks in the code development. Besides contributing to the
research investigation, Afshin Sadeghi performed the code implementation and dataset generation
for the paper in a separate effort. Therefore the code, the produced datasets, and paper experiments
are different from those in the master thesis. Hirra Abdul Malik assisted in the execution of the final
experiments as well.

■ Afshin Sadeghi, Diego Collarana, Damien Graux, Jens Lehmann. Embedding Knowledge Graphs
Attentive to Positional and Centrality Qualities. In Proceedings of the European Conference on
Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD)
2021, 548–564.

■ Afshin Sadeghi, Xhulia Shahini, Martin Schmitz, Jens Lehmann BenchEmbedd: A FAIR Bench-
marking tool for Knowledge Graph Embeddings. Demo track SEMANTiCS 2021. This paper is
mainly collaborated by Xhulia Shahini in implementation and is partially collaborated by Martin
Schmitz for the deployment setup.
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■ Afshin Sadeghi, Damien Graux, Hamed Shariat Yazdi, Jens Lehmann. MDE: Multiple Distance
Embeddings for Link Prediction in Knowledge Graphs. In Proceedings of the 24th European
Conference on Artificial Intelligence (ECAI) 2020, 1427–1434.

■ Afshin Sadeghi, Jens Lehmann. Linking Physicians to Medical Research Results via Knowledge
Graph Embeddings and Twitter. The 4th Workshop on Data Science for Social Good - SoGood
2019. In Proceedings of the European Conference on Machine Learning and Principles and Practice
of Knowledge Discovery in Databases (ECML/PKDD 2019) 2019, 622–630.

1.5 Thesis Structure

The thesis consists of nine chapters. Chapter 1 covers the main research problem and motivates
the conducted study, proposes the research questions and scientific contributions that address the
research questions, and concludes with a list of published scientific papers that formally express those
contributions.

Chapter 2 initially presents fundamental concepts and preliminary topics in knowledge graph
embedding, relational pattern learning, and multi-objective optimization. These elements are essential
for comprehending the research subject and the methodologies we have chosen to address it. Chapter 3
covers state-of-the-art community efforts in the related domains, e.g., knowledge graph embedding
models, how different models deal with relational patterns, and benchmarks aimed at learning
representations capable of encoding relation patterns, as well as assessment methodologies for such
models.

In Chapter 4, we define a key concept for the thesis, i.e., multiple distances for knowledge graph
learning, and describe a methodology for creating such models. Chapter 5 dives deeper into knowledge
graph representation learning by considering the specific aspects of graphs in the multiple-distance
KG embedding and shows how to effectively build a neural network learning approach on top of the
multiple objectives.

Chapter 6 focuses on the relational pattern benchmarking for the link prediction task. By constructing
a new set of leak-free datasets for various relation patterns, the presented study in this Chapter attempts
to tackle the data leak problem of the current benchmarks and tries to provide a clearer image of the
capabilities of KGE models in inductive and transductive test scenarios.

Chapter 7 describes our effort to improve the quality of KGE evaluations. Highlighting the need for
fair and reproducible experiments, this Chapter demonstrates the Benchembdd framework we created
that generates reproducible link prediction experiments.

In Chapter 8, using the results from the previous parts, we present and discuss a real-world
application of KGE methods in Social Good using real-world data.

Finally, this thesis concludes with Chapter 9, in which we revisit the research questions and present
possible future directions from two perspectives: research and applications. A summary at the start of
each Chapter provides pertinent information about the topics covered.
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CHAPTER 2

Preliminaries

2.1 Knowledge Representation in Networks

Knowledge graphs (KGs) encode facts about the world in a graph data structure where entities,
represented as nodes, connect via relationships, which act as edges. A knowledge graph contains
both schema and instance data. It provides a comprehensive representation of knowledge that spans
multiple sources, domains, and levels of granularity. A knowledge graph can be open to the public,
like DBpedia, or be private. An advantage of the information in the form of a knowledge graph is that
it facilitates the integration of data collected from different resources.

Knowledge Graph

Knowledge graph is a network of concepts, classes, properties, relationships, and concept
descriptions. It uses a relation-based knowledge representation formalism, most commonly RDF, RDF
Schema, or OWL.

In contrast to tabular data, two entities can connect with different types of relations in a knowledge
graph. Moreover, the network structure allows an abundant number of relations per entity. These
generous benefits of KGs make them fit for a wide range of applications, such as integrating data in
the industry and representing interactions in different fields, such as scientific communications.

Typically, millions of entities in a knowledge graph are linked to one another to produce a
comprehensive and large-scale [16] dataset. DBpedia, YAGO, and Freebase are examples of well-
known knowledge graphs. These networks represent the connection of knowledge brought together
from various domains. The heterogeneous nature of knowledge graphs is highly beneficial in Machine
Learning. Moreover, it allows models to work with human knowledge and language. For example,
knowledge graph-based language models participate in question-answering tasks in the Natural
Language Processing field.
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Chapter 2 Preliminaries

Mathematical Formalization: Knowledge Graph

To formulate knowledge graphs mathematically, we label it as 𝐾𝐺, comprised of two sets; The set
of entities 𝑒 ∈ E and a set of relations 𝑟 ∈ R. To comply with the open-world assumption (OWA), we
assume KG as a subset of all true facts KG ⊂ b.

Two entities and a relation construct a triple to represent a fact in a knowledge graph. We represent
a triple by (ℎ, 𝑟, 𝑡) in which ℎ is the head entity and 𝑡 is the tail entity, and 𝑟 is a relation. In Graph
theory, we presume KG as a multi-relational graph. An entity in this formulation is equivalent to
a node in graph theory, and an edge represents a relation. In this study, we use Node and Entity
interchangeably. When we use the term “Node", we emphasize its graphical properties, and when we
use the term “Entity”, we highlight the concept that entity represents.

2.2 Learning Representations for Knowledge Graphs

Graph Representation Learning methods are approaches that generate weights representing data
in the form of a graph. Modeling relations in a knowledge graph produces learning weights that
represent entities or predicates. Some studies name the latent representations for knowledge graphs as
embeddings and the representation methods on knowledge graphs as knowledge graph embedding
methods (KGE). In general, graph embedding methods studies focus on how to map the concepts in
knowledge graphs into latent space effectively.

The representations produced by these methods present a knowledge graph at different levels;
Often, KGE methods generate node and edge representations, while some graph learning methods
synthesize weights for a sub-graph or a whole graph. In this study, our scope is limited to those
methods representing facts consisting of nodes and edges. These methods always keep a mapping from
an entity or a relation to their learned latent representation. The generated representation weights are
primarily a (set of) vector(s), a matrix, or a tensor of numbers. In several methods, for example, in a
subset of graph convolutional neural network methods, additional weights are encoded, corresponding
to nodes and edges of several network layers that encode distinct neighborhood levels.

Knowledge graph Embedding, in principle, considers graphs that, in graph theory, are known as
multi-relational graphs.

Mathematical Formalization: Knowledge Graph Embedding (KGE)

A relational learning model is made of an embedding function and a prediction function. The
embedding function is a f : E, R → Z, that maps entities E and relations R to 𝑑-dimensional vectors
Z = {𝑧1, . . . , 𝑧𝑛}, 𝑧𝑖 ∈ R. Complementarily, a prediction function is function that given a triple
(h, r, t) determines if (h, r, t) ∈ Z .

We denote the embedding representation of an entity h with a lowercase letter ℎ if it is a vector and
with an uppercase letter 𝐻 if it is a matrix.
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2.2 Learning Representations for Knowledge Graphs

A KG embedding model learns latent representations by forming weights directly from a score
function that is modeling triples. In more complex formulations, as in graph neural networks, besides
encoding weights for triples in the score function, they benefit from convolution layers that encode the
combination of neighbor links into the embedding.

The encoder part of a KGE is a classifier similar to a Siamese Neural network where it learns
entities based on their similarity: In each iteration, the encoder computes and compares the score
of the method on a positive and a negative sample. Each sample here is a triple. When a sample is
positive, the target value for the distance function of the sample embeddings is zero (or negative if
using margin ranking loss). When a sample is negative, their target distance becomes one (or positive
if using margin ranking loss). The training output is the embedding vectors for each KG’s entities and
relations. The dimension of the vector is usually much lower than the number of samples or entities.
Therefore the embedding task is also known as encoding a KG into a low-dimensional space.

We define two types of KGE in this thesis:

Structure-based Embedding

A KG embedding 𝑧𝑖 = f : E, R → Z is attentive to network structure if it is a function of entities
and relations such that it models the existence of a neighborhood of an entity e𝑖 using relations r𝑖 and
other entities 𝑒 𝑗 ∈ E.

Most knowledge graph embedding methods like QuatE [17] and RotatE [18] compute embeddings
using the information describing connections between entities and, therefore, structure-based. We
follow this Section with three crucial concepts in knowledge graph embedding.

Negative Sampling: Negative sampling is an essential process in KGE because the training datasets
for these learning algorithms miss labeled negative samples. Knowledge graphs are based on the
open-world assumption, meaning that the truth value of a statement may be true irrespective of whether
or not it is known to exist in the knowledge graph.

Based on the concept of open-world assumption, a negative sample is never known to be genuinely
untrue. Therefore, the datasets of the KGE task usually do not involve negative samples. Instead,
the embedding methods generate negative samples while training. Usually, the training part of KGE
methods generates a negative sample set based on positive samples. In this process, a KGE method
usually takes a triple, then corrupts its head or tail by replacing that entity with another random
entity in the datasets. Then the generated triple is checked against the positive samples and will be
disregarded if it exists in the training positive sample set.

Link Prediction on Knowledge Graphs: Here we explain the details of the link prediction task
and why it is a crucial part of knowledge graph embedding studies. Knowledge graphs are extensively
utilized in Machine Learning, for example, to solve named entity recognition in the Natural Language
Processing tasks and Question Answering. Despite all of the advances in knowledge graphs, they have
reached a stalemate in terms of completeness. YAGO is missing 36.5% for gender relations mentions,
and the percent of missing gender for persons has a lower coverage of 99.75%. [19].
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Chapter 2 Preliminaries

Link Prediction is the task of estimating missing facts based on the known facts in a KG. Link
Prediction based on Knowledge graph embedding targets the incompleteness of the knowledge graphs.
Because a triple represents a fact, the link prediction task indicates the estimation of a missing head or
a missing tail of a triple. This prediction is shown with < ℎ, 𝑟, ? > and <?, 𝑟, 𝑡 > and is dubbed as head
and tail prediction. Any Link prediction evaluation experiment includes a negative triple generation
phase. Given an incomplete triple < ℎ, 𝑟, ? >, the score for all possible triples with replaced tail is
inferred and compared to an entity that completes the triple from the test set. This comparison results
in the score rank.

We evaluate the link prediction performance by ranking the score of each test triple against its
corrupted versions where we replace the head once and once replace the tail, and then we average
these scores. Based on the ranking of scores, we extract the hit at N (Hit@N), mean rank (MR), and
mean reciprocal rank (MRR). In more difficult test settings, such as link prediction in the Inductive
setting, we keep a fixed set of negative samples in addition to the positive sample set and compute
AUC and AUC-PR over the ranking of positive and negative samples. When generating ranking tests,
a false triple is only made by replacing a head or a tail, but predicates remain the same. A valid rank
test includes all triples with the corrupted heads and tails by the set of all entities. We mainly report
the evaluations in the filtered setting. The filter setting filters positive samples, where a generated
corrupted triple is checked upon not to exist in the known test and validation and train triple sets.

2.3 Relational Pattern Learning

Relations inside a KG can form different patterns. Generally, a logic rule expresses a relation pattern.
The following section describes several patterns which are frequent in knowledge graphs:

Symmetry relational pattern is a sub-category of equivalence pattern. Therefore, it is a binary
relation that works in both directions. The relation can also be stated by the equal to property. For
instance if a = b, then b = a.

Mathematical Definition: Symmetry

A relation 𝑟 is symmetric (antisymmetric) if ∀𝑥, 𝑦

𝑟 (𝑥, 𝑦) ⇒ 𝑟 (𝑦, 𝑥) ( 𝑟 (𝑥, 𝑦) ⇒ ¬𝑟 (𝑦, 𝑥) ).

A clause with such a structure has a symmetry (antisymmetry) pattern. If 𝑟𝑇 represents the converse
of r, then r is symmetric if and only if 𝑟 = 𝑟𝑇 . Marriage, Friendship, and Partners are a few examples
of symmetric relations. The inversion pattern occurs when two relations are in opposite directions
between two entities.
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2.4 Normalisation and Normal Form

Mathematical Definition: Inverse

A relation 𝑟1 is inverse to relation 𝑟2 if ∀𝑥, 𝑦

𝑟2(𝑥, 𝑦) ⇒ 𝑟1(𝑦, 𝑥).

A clause with such a form has an inversion pattern. Parent and Child, Receive and Send, and Sell
and Buy are examples of inverse relations. The composition pattern turns out among three relations
when they form this bond through three entities:

Mathematical Definition: Composition

A relation 𝑟1 is composed of relation 𝑟2 and relation 𝑟3 if ∀𝑥, 𝑦, 𝑧

𝑟2(𝑥, 𝑦) ∧ 𝑟3(𝑦, 𝑧) ⇒ 𝑟1(𝑥, 𝑧)

Relation Pattern Learning targets learning hidden relational patterns in knowledge graphs. Because
different models have limited capability of relation pattern learning, based on the patterns composing
a knowledge graph, one can estimate the degree of suitability of a knowledge graph to embedding
models.

The relational patterns are principally not explicitly defined in a knowledge graph. Hence, to
address the learning of triples with relational patterns, it is beneficial that models implicitly extract
them. A lower level of support for the encoding of relation patterns is that models attempt not to
limit the learning of triples with relational patterns. A knowledge graph model, in fact, not only
learns representations for entities and relations but also implicitly embeds its relational patterns.
Therefore, the more knowledge graph relational patterns a model supports, the better it can encode a
representation of knowledge characterized by a graph.

While the large scale of knowledge graphs can be a challenge for the learning models, the complexity
of relation patterns can challenge knowledge graph embedding models even on a dataset as small as a
set of few triples.

2.4 Normalisation and Normal Form

The encoded metric or vector of values representing entities and relations of a graph are usually
transformed into their normal form during training or before handing over to third-party applications.
Normalization makes vectors trained by different models comparable, allowing other systems to
recognize and use weight vectors generated by a model. Here we explain the meaning of norm for
vectors and give their definition from a linear algebraic point of view. We stick to this definition
throughout the thesis.
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Chapter 2 Preliminaries

Norm is a measure indicating the size of a vector or matrix. For a vector 𝑣 the length is shown with
∥𝑣∥ and for a matrix X the norm is represented by ∥𝑋 ∥. They are several representations of the norm
for vectors and matrices. Frobenius defined a norm for matrices as the square root of |𝑎𝑖 𝑗 |

2 [20].

Mathematical Definition: Frobenius Norm

Frobenius matrix norm is formulated as :

∥𝑋 ∥𝐹 =

√√√ 𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

|𝑎𝑖 𝑗 |
2

Another way to formulate this norm is the square root of the matrix trace of 𝐴𝐴𝐻 , where 𝐴𝐻 is the
conjugate transpose, i.e.,

| |𝐴| |𝐹 =

√︃
(𝑇𝑟 (𝐴𝐴𝐻)).

For vectors a norm is defined similarly for different root and power values.

Mathematical Definition: Vector Norm

We define vector norm |𝑣 |𝑝 for 𝑝 = 1, 2, ...

|𝑣 |𝑝 =

(∑︁
𝑖

|𝑣𝑖 |
𝑝

)1/𝑝

.

The most common values for 𝑝 are 1, 2 and 3. for 𝑝 values equal to 1 and 2 the vector norm is also
known as 𝐿1-norm and 𝐿2-norm. According to definition 5 above, 𝐿2-norm formulation is

𝐿
2 − 𝑛𝑜𝑟𝑚 = |𝑥 |2 =

√︃
(𝑥2

1 + 𝑥
2
2 + ... + 𝑥

2
𝑛).

2.5 Optimization methods for KGE

The bottom line of the mathematical definition for any knowledge graph learning algorithm is an
optimization problem for an objective function to solve. Therefore the optimization methods are the
heart of any knowledge graph embedding method. The optimization algorithms find the minimum or
maximum of an objective function. In the context of embedding algorithms, a better optimization
produces embedding weights that comply more with the objective function and generate a smaller
error. Therefore, a KGE method based on such an optimization method better separates negative and
positive samples.
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2.5 Optimization methods for KGE

Between optimization methods, gradient-based approaches are the most common methods known
for knowledge graph embedding. Stochastic gradient descent (SGD) is an effective gradient-based
method that plays a key role in several machine learning success stories, including the Deep Learning
breakthroughs and knowledge graph embedding models [21, 14, 22].

SGD iteratively optimizes approximations for the minimum or maximum of the objective function.
It is a stochastic approach because instead of calculating the actual gradient gained from the entire
train data set, it uses an estimate calculated from a random subset of the data. This reduction decreases
the requirement of memory and computation, especially on a large dataset. We define an objective
function for a knowledge graph embedding method that is discrete and can be summoned iterative as
follows:

Mathematical definition: Objective Function

An objective function for knowledge graph embedding as optimization problem is in the form:

𝑸(𝑤) = 1
𝑛

𝑛∑︁
𝑖=1

𝑄𝑖 (𝑤),

where optimization method estimates the parameter 𝒘 that minimizes 𝑸(𝑤).

Stochastic gradient descent (SGD) steps:

We formulate SGD algorithm as:
■ Choose an initial vector of parameters 𝒘 and learning rate 𝜼 .
■ Repeat until reaching an approximate minimum for 𝑤:

a) Randomly shuffle samples in the training set.
b) For 𝒊 = 1, 2, ..., 𝑛, do:

𝒘 := 𝑤 − [∇𝑄𝑖 (𝑤).

Adadelta algorithm [23] extended SGD by making the constant learning rate adaptive to gradient
values in the previous step of the training iteration. Adam[24] in contrast, improved SGD by applying
the momentum values of weights in each iteration beside the learning rate.

In this thesis, we base our approach for knowledge graph representation learning on these three
optimization algorithms.

Multi Objective Optimisation: Optimization problems with more than one objective are referred
to as multi-objective optimization (MOO) [25]. In contrast to single-objective optimization, a solution
to a multi-objective problem may not be unique. Pareto optimality in multi-objective problems is a
condition commonly applied to determine if a solution for a MOO is optimal [25].
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Chapter 2 Preliminaries

Mathematical definition: Pareto Optimal

A point, 𝑥∗ ∈ 𝑋 , is Pareto optimal iff there does not exist another point, 𝑥 ∈ 𝑋 , such that
𝐹 (𝑥) ≤ 𝐹 (𝑥∗), and 𝐹𝑖 (𝑥) < 𝐹𝑖 (𝑥

∗) for at least one function.

A well investigated approach for multi-objective optimization is the weighted sum of objectives:

𝑼 =

𝑘∑︁
𝑖=1

𝑤𝑖𝐹𝑖 (𝑥)

Where 𝑤𝑖 is a multiplied weight and 𝐹𝑖 is an objective. Lotfi Zadeh [26] shows that if all of the 𝑤𝑖
weights are positive, the minimum of this sum is Pareto optimal. Therefore, minimizing𝑈 is sufficient
for Pareto optimality. This formulation’s Pareto Optimal condition fulfillment supports the suggested
method and the contributions in Chapter 4.

2.6 Graphical Feature of Knowledge Graphs

In graph theory, an entity in a knowledge graph translates to a node in a multi-relational graph.
Therefore we consider node features same as the feature of entities. A primary graphical property of a
node inside a graph is its Centrality.

Centrality Value

The node’s centrality value designates the node’s importance concerning the whole graph. For
instance, degree is a centrality attribute of a node that indicates the number of links incident upon
it. When we consider degree as a centrality value, the higher the degree of a node is, the greater its
importance in a graph.

The average length of the shortest path connecting a node to every other node in the graph is known
as a node’s closeness centrality. The betweenness of a node is another metric of centrality based
on shortest paths. The total number of shortest paths that travel through a node is its betweenness
centrality. Katz centrality measures the number of all nodes that can be connected through a path,
while the contributions of distant nodes are penalized. It is also known as Alpha centrality. The
PageRank and the Katz are two variants of Eigenvector centrality. Encoding graphical properties
of graphs into embedding space provides a model a new vision of an embedded graph besides its
structural information. Chapter 5 explores this topic in depth.
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CHAPTER 3

Related Work

This Chapter reviews the state of the research and the prominent literature related to the research
problem and research questions defined in Chapter 1. Based on the literature, we highlight the open
gaps and the room for improvement. We first compare the current knowledge graph embedding
methods with regard to their limitation and capabilities in the KGE task. We particularly pay close
attention to their technique to address relation pattern learning. We then discuss and overview the
previous work on improving the effectiveness of KGE methods based on the underlying knowledge
graphs, including the capability in graph feature learning. In the end, we cover existing link prediction
benchmarks and position our proposed solutions.

This Chapter is based on the related work sections from following publications [15, 27, 7]:

■ Afshin Sadeghi, Damien Graux, Hamed Shariat Yazdi, Jens Lehmann. MDE: Multiple Distance
Embeddings for Link Prediction in Knowledge Graphs. In Proceedings of the 24th European
Conference on Artificial Intelligence (ECAI) 2020, 1427–1434.

■ Afshin Sadeghi, Diego Collarana, Damien Graux, Jens Lehmann. Embedding Knowledge Graphs
Attentive to Positional and Centrality Qualities. In Proceedings of the European Conference on
Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD)
2021, 548–564.

■ Afshin Sadeghi, Hirra Abdul Malik, Diego Collarana, Jens Lehmannn. Relational Pattern
Benchmarking on the Knowledge Graph Link Prediction Task. Conference on Neural Information
Processing Systems (NeurIPS) 2021.

3.1 Knowledge Graph Embedding: Modeling Methods

A large and growing body of literature has investigated KGE models. A typical KGE model consists
of three main elements: (1) entities and relations representation in a continuous vector space, (2)
a scoring function to measure KG’s facts plausibility, and (3) a loss function that allows learning
KGE in a supervised manner. Based on this formulation, we classify KGE models in latent distance
approaches, tensor factorization and multiplicative models, and neural networks. Between the three
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Chapter 3 Related Work

Figure 3.1: A simple illustration of TransE and TransH. The Figure is from [29].

Figure 3.2: An illustration of TransE and RotatE in complex plane. The Figure is from [30].

main elements, the score function primarily determines the capability of a KGE to encode relation
patterns. The existing approaches disregard addressing a generalized learning technique for all relation
patterns. Nevertheless, several models theoretically allow learning of various relation patterns. This
feature empowers these methods to encode complex knowledge graphs better. We, therefore, also
discuss the effect of the score functions on the capacity of KGE methods on learning relation patterns.

Latent Distance Models, e.g., the members of the Trans* [14, 28, 29] family, measure a fact’s
plausibility by scoring the distance between the two entities, usually after a translation carried out
by the relation. TransE [14] represents the relation and entities of a triple by a vector that has this
relation. TransH [29] projects the vector of head and tail to a relation-specific hyperplane. Figure
illustrates TransE and TransH, where the vectors representing the head and tail are projected to a
relation-specific hyperplane. This extension allows the model to learn a weight 𝑊𝑟 per relation to
better specify the connection of a head to a tail using a relation in a positive training sample.

Similarly, TransR [28] follows the idea of relation-specific spaces and extends the distance function.
RotatE [30] combines translation and rotation. RotatE models relations as rotations from head to
tail entities in the complex space and uses the Hadamard product in the score function to do these
rotations. Figure compares TransE and RotatE in a complex plane. This extension allows the model
to encode an extended set of interactions between the relations in different relation patterns.

A direct interpretation of the definition for distance-based methods is that the embedding representa-
tions for closely related entities lay close to each other. This feature makes this class of embeddings fit
for entity matching applications. Designing an effective score function for such models is the subject
of many recent studies in knowledge graph-based entity matching [31, 32, 33, 34].
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3.1 Knowledge Graph Embedding: Modeling Methods

Figure 3.3: A visualization of the neural tensor network. Each dashed box represents an slice of the tensor, in
this case there are k = 2 slices. The Figure is from [37].

Tensor Factorization and Multiplicative Approaches define the score of triples via pairwise mul-
tiplication of embeddings. RESCAL [35] is a early multiplicative model that proposes loss-based tensor
factorization to approximate an adjacency tensor by vector-matrix product of h𝒕 r t. DistMult [12]
multiplies the embedding vectors of a triple element by element (h, r, t) as the objective function.
However, DistMult fails to distinguish displacement of head relation and tail entities, and therefore,
it cannot model anti-symmetric relations. Finally, ComplEx [13] is an extension of DistMult that
performs the multiplication in the complex space. This solution allows learning of anti-symmetric
relations, which is the DistMult’s issue; however, it inhibits learning the composition relation pattern
that DistMult permits in the first place.

Neural Network Methods train a neural network to learn the interaction of the h, r and t. Unlike
previous methods, connecting artificial neurons in different layers allows Graph Neural Network
(GNN) aggregate node formation using a message-passing architecture.

ER-MLP [36] is a two-layer feedforward neural network considering ℎ, 𝑟 and 𝑡 vectors in the
input. NTN [37] is a neural tensor network meaning that it replaces a standard linear layer from the
conventional neural networks with a bilinear tensor layer. In the tensor layer, NTN concatenates head
ℎ and tail 𝑡 vectors and feeds them to the first layer that has 𝑟 as weight. In another layer, it combines
ℎ and 𝑡 with a tensor 𝑅 that represents r and finally, for each relation, it defines an output layer 𝑟 to
represent the relation embeddings. Figure 3.3 shows a visualization of the neural tensor network.

In SME [38] relation 𝑟 is once combined with the head ℎ to get 𝑔𝑢 (ℎ, 𝑟), and similarly it is combined
with the tail 𝑡 to get 𝑔𝑣 (𝑡, 𝑟). SME defines a score function by the dot product of this two functions in
the hidden layer. In the linear SME, 𝑔(𝑒, 𝑟) is equal to 𝑀1

𝑢𝑒 + 𝑀
2
𝑢𝑟 + 𝑏𝑢, and in the bilinear version, it

is 𝑀1
𝑢𝑒 ◦ 𝑀

2
𝑢𝑟 + 𝑏𝑢. Here, 𝑀 refers to weight matrix and 𝑏 is a bias vector.

Graph convolutional networks (GCNs) are a subset of convolutional neural networks (CNNs) that
can handle non-Euclidean graph data. Most GCN methods follow the message passing mechanism
from MPNN [39]. Message passing is an aggregate function of embedding weights and allows nodes
to equally influence their hop-one neighbors. Mostly GCNs are used for node classification. However,
recent extensions of GCNs allow the encoding of knowledge graphs [40, 41, 42, 43].
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Hybrid Methods have recently raised, such as CompGCN [44] which is a convolutional graph
network benefiting from score functions proposed in embedding methods. MDE𝑛𝑛 [15] and GFA-
NN [27] are likewise two models in this branch which we propose and discuss in detail in the Chapters 4
and 5. The hybrid methods benefit from the most effective score functions from knowledge graph
embedding methods and the neural network structure.

3.2 Advances in Knowledge Graph Elements

The last Section reviewed different types of KGE methods and discussed how the formulation of KGE
score functions enables or inhibits the learning of different relation patterns. This factor significantly
influences the effectiveness of KGE methods. Here we review related works categorized by three other
principal elements of knowledge graph embedding that recently evolved to improve the performance
of the KGE methods.

Negative Sampling: Empirical studies show that baseline methods like TransE and DistMult
are more effective with proper sampling than many more recent KGE methods [18, 45]. While
earlier KGE methods compare only one negative sample per positive sample in calculating their score
functions, novel methods improved the embedding efficiency by extending the negative sampling
technique. A technique to improve negative sampling is altering the probabilistic function for making
negative samples. While most methods uniformly select replacement entities to make negative samples,
TransH [29] applies Bernoulli sampling in replacing the head or tail with different probabilities for
one-to-many, many-to-one, and many-to-many relations. This extension consequently reduces falsely
labeled negative samples by allowing the extraction of negative samples per positive sample and
weighting them based on the frequency of links.

KBGAN [46] proposes a Generative Adversarial Network (GAN) schema for generating negative
samples based on triple weights extracted using the Bernoulli sampling. This sampling approach
applies a twist to the margin ranking loss that allows a balanced combination of loss values for negative
and positive samples by assigning them probabilistic weights using the Softmax function. RotatE
simplifies this negative sampling technique by integrating the generator component inside the KGE
method instead of executing a discrete generator in parallel. This extension is more computationally
efficient and allows the calculation of numerous negative samples per positive sample. This technique
is particularly effective on KGE methods whose score functions are defined based on margin ranking
loss, such as DistMult and TransE. Our suggested KGE methods in Chapters 4 and 5 involve one-to-one
negative sampling with limit-based loss, in addition to adversarial negative sampling coupled with
margin ranking loss.

In comparison, Neural network designs for KGE [44, 13, 47] conventionally use Mean squared
error (MSE) as the loss function that allows comparing a batch of positive samples against all possible
negative samples in one iteration. However, this method would be more efficient if their scores for
triples get probabilistic weight by a Softmax function [46].

Graph Feature Learning: Several studies have investigated the benefits of using graph features to
bridge the graph structure gap and the numeric vector space. Muzzamil et al. [48] defined a Fuzzy
Multilevel Graph Embedding (FMGE), an embedding of attributed graphs with many numeric values.
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3.3 Link Prediction Benchmarking Datasets

P-GNN [49] incorporates positional information by sampling anchor nodes and calculating their
distance to a given node. Finally, it learns a non-linear distance weighted aggregation scheme over
the anchor nodes. In Chapter 5, we propose an model that generates embeddings aware of graph
features of an underlying Knowledge graph. In Section 5.3.1 we present an in-depth comparison of
P-GNN with GFA-NN. Traditionally, GNN approaches only encode nodes’ local features (similar to
the modeling schema of KGEs) while focusing on neighbor nodes; P-GNN extends them to include
the distances to anchor nodes. However, our approach also learns nodes’ features regarding the whole
graph, known as global node properties.

Inductive Support: Link Predictors in the Inductive task estimate relations for entities not declared
in the training data. KGE Methods specified for this type of link prediction, try to learn more context
information from the knowledge graph related to the asked entity. Our GFA-NN [27] method presented
in Chapter 5 learns several entities centrality values and positional features for entities which are
contextual information related to entities. Similarly, CatE [50] encodes the degree and positional
features to target Inductive test triples. However, this model uses the score function of TransE to
model triples, while GFA-NN is based on multiple objective optimizations.

To extract context information of nodes, GraIL [51] encodes the sub-grubs involving targeted
entities and ensembles the sub-graph embeddings with the embeddings produced by the standard KGE
methods, for example, TransE, to produce a better result in the link prediction tests. BERTRL [52]
borrows external contextual information related to entities from BERT language model [53]. However,
this model is limited to cases where textual information related to entities exists. DKRL[54] similarly
learns external textual external information related to entities to predict links in the Inductive setting,
and in addition, it embeds triples beside embedding entity and predicates. Using external context
information is not limited to associated textual information of entities. For example, in IKRL [55],
researchers involve image embedding to provide external information in the process of knowledge
graph embedding.

INDIGO [56] uses the strategy of context information learning for the task of knowledge graph
completion. In the knowledge graph completion task, the KGE predicts missing triples for an
incomplete knowledge graph. This method has an encoder/decoder structure, where it applies a
neural network on the embedding weights after encoding a knowledge graphs. Finally, researchers
that propose LAN [57] for the knowledge graph completion task suggest considering the contextual
information of redundant neighbors and the logic relation patterns for Inductive knowledge graph
embedding.

3.3 Link Prediction Benchmarking Datasets

Benchmark datasets are a means to compare and evaluate the link prediction models, parameters, and
procedures. The benchmarked dataset, as described by [58] is helpful for two fundamental analyses:
efficiency and effectiveness. We adopt and extend their analysis types in this study. Our efficiency
analysis includes assessing the time consumption for training and prediction. Meanwhile, our analysis
investigates the effectiveness of KGE models in 3 branches. The first is the number of negative samples
tested against a positive sample. The second branch is the support for graph features learning, for
example, path learning. The third effectiveness test branch considers the performance in relational
pattern learning.
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The datasets for link prediction evaluation are often extracted by subsampling real-world KGs. This
data then becomes split into training, validation, and test sets. We list the four most well-known link
prediction datasets related to our work:
• Bordes et al. [14] extracted FB15k by filtering all of the FreeBase1 entities featuring more than

100 times and excluded literals. FreeBase is a large-scale knowledge graph with approximately
44 million entities and 1.9 billion triples, where the entities refer to topics in common human
knowledge such as actors and cities.

• Bordes et al. [14] in the same study extracted WN18 from WordNet 4. The entities in WordNet
represent word senses, and the relations indicate the lexical relationships between the synsets.

• FB15k-237 [59] is a subset of FB15k that excludes the triples that leak inverse relation patterns
between the train and test sets. Nevertheless, this dataset has leakage in the other relation patterns.

• Similar to generation of FB15k-237, Dettmers et al. [47] made WN18RR by filtering out the inverse
relations from WN18. This dataset likewise suffers from leakage between other relation patterns.

Open graph benchmark [60] is an extensive study that generates several datasets for different KGE-
based tasks, including link prediction. We use the biological ogb-biokg dataset in our experiments of
Chapter 5 to test how well the proposed method in this Chapter predicts links on a large-scale dataset,
considering that the training data of ogb-biokg includes approximately 4.7 million triples.

In the direction of link prediction evaluation in the Indicative setting, the GraIL [51] study extracts
subsets of WN18RR, FB15k-237, and NELL-995 datasets. We include several of these datasets in the
experiments section of Chapter 5 to evaluate if embedding graphical features of a knowledge graph
supports the model in the Inductive setting. For testing KGE methods specifically in the n-ary link
prediction setting, the TRFR [61] study extracts NELL-995-3 from NELL-995 [62] and Similarly the
NaLP [63] study extracts WikiPeople from the Wikidata2 dataset. In these benchmarks, the percentage
of n-ary relations is specified by filtering other triples. Therefore, they include a higher percentage of
n-ary relations compared to the regular link prediction datasets.

In Chapter 7 we generate a collection of datasets and experiments to fill the gap of lacking leak-free
link prediction benchmarks and test the capability of KGE methods in learning relation patterns. In
this study, we keep the study of ogb [60] and NELL-995 [62] datasets and the studies for n-ary link
prediction setting as our ultimate guidance and standard to support our benchmarking task. There we
cover the experiments in both Inductive and Transductive settings. The study of n-ary link prediction
datasets inspired us to include percentage-based datasets as a part of our benchmark.

After reviewing the preliminaries and related work in knowledge graph embedding to this point, we
start the core part of this study in the following by proposing multiple distance embeddings. This
approach targets the crucial Challenge 1 posed in the Introduction by allowing the encoding of relation
patterns for complex knowledge graphs.

1
https://developers.google.com/freebase/

2
https://www.wikidata.org/wiki/Wikidata:Main_Page
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CHAPTER 4

Multiple Distance Embeddings for Link
Prediction in Knowledge Graphs

Over the past decade, knowledge graphs have become popular for capturing structured domain
knowledge. Relational learning models enable the prediction of missing links inside knowledge graphs.
More specifically, latent distance approaches model the relationships among entities via a distance
between latent representations. Translating embedding models (e.g., TransE) are among the most
popular latent distance approaches which use one distance function to learn multiple relation patterns.
However, they are mostly ineffective in capturing symmetric relations since the representation vector
norm for all the symmetric relations becomes equal to zero. They also lose information when learning
relations with reflexive patterns since they become symmetric and transitive.

In this Chapter, we propose the Multiple Distance Embedding model (MDE) that addresses these
limitations and a framework to collaboratively combine variant latent distance-based terms. Our
solution is based on two principles: 1) we use a limit-based loss instead of a margin ranking loss,
and 2) by learning independent embedding vectors for each of the terms, we can collectively train
and predict using contradicting distance terms. We further demonstrate that MDE allows modeling
relations with (anti)symmetry, inversion, and composition patterns. We propose MDE as a neural
network model that allows us to map non-linear relations between the embedding vectors and the
expected output of the score function. Our empirical results show that MDE performs competitively to
state-of-the-art embedding models on several benchmark datasets. We specifically target this research
question in this Chapter:

Research Question 1

Does combining multiple distance-based scores targeting different relation patterns generate more
effective embeddings of knowledge graphs?

Overall, the contributions in this Chapter are as follows:
• Proving the theoretical analysis of current knowledge graph embedding models and pointing out

their limitation on learning different relation patterns.
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• Developing MDE knowledge graph embedding method and showing that MDE allows encoding
several relational patterns.

• Showing the proposed method is extensible to other relation patterns if the extension is properly
formulated.

• Suggesting limit-based loss function for knowledge graph embedding.

• Proposing an algorithm to actively search the limits for the limit-based loss function to use in
embedding models.

• Empirical evaluating our method, where it performs competitively to the state-of-the-art in link
prediction experiments.

This Chapter is based on the following publication [15]:

■ Afshin Sadeghi, Damien Graux, Hamed Shariat Yazdi, Jens Lehmann. MDE: Multiple Distance
Embeddings for Link Prediction in Knowledge Graphs. In Proceedings of the 24th European
Conference on Artificial Intelligence (ECAI) 2020, 1427–1434.

While machine learning methods conventionally model functions given sample inputs and outputs,
a subset of Statistical Relational Learning (SRL) [64, 65] approaches specifically aim to model
“things” (entities) and relations between them. These methods usually model human knowledge,
which is structured in the form of multi-relational knowledge graphs (KG). Knowledge graphs allow
semantically rich queries and are used in search engines, natural language processing (NLP), and
dialog systems. However, they usually miss many of the true relations [66]; therefore, predicting
missing links/relations in KGs is a crucial challenge for SRL approaches.

Practically, a KG usually consists of a set of facts. We assume any fact is representable by a
triple (head, relation, tail) where heads and tails are called entities. Distance-based KG embeddings
are popular among the SRL models because of their simplicity, the low number of parameters, and
efficiency on large-scale datasets. Specifically, their simplicity allows their integration into many
models. Previous studies have integrated them with logical rule embeddings [67], have adopted
them to encode temporal information [68] and have applied them to find equivalent entities between
multi-language datasets [69].

Soon after the introduction of the first multi-relational distance-based method, TransE [14], it was
acknowledged that it is ineffective in learning symmetric relations since the norm of the representation
vector for all the symmetric relations in the KG becomes close to zero. This shortcoming limits the
model from distinguishing different symmetric relations in a KG well. To extend this model, many
variations were studied afterward, e.g., TransH [29], TransR [28], TransD [70], and STransE [71].
Even though they solved the issue of symmetric relations, they introduced another limitation: these
models were no longer effective in learning the inversion and composition relation patterns that
originally TransE could handle.

Besides, as noted in [72, 30], within the family of distance-based embeddings, reflexive relations
are usually forced to become symmetric and transitive. In this study, we take advantage of independent
vector representations of vectors that enable us to view the same relations from different aspects and
put forward a translation-based model that addresses these limitations and allows the learning of all
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three relation patterns. In addition, we address the issue of the limit-based loss function in finding an
optimal limit and suggest an updating limit loss function to be used complementarily to the current
limit-based loss function, which has fixed limits. Moreover, we frame our model into a neural network
structure that allows it to learn non-linear patterns for the limits in the limit-based loss, improving the
generalization power of the model in link prediction tasks.

The model performs well in the empirical evaluations, competing against state-of-the-art models in
link prediction benchmarks. In particular, it outperforms state-of-the-art models on Countries [73]
benchmark, which is designed to evaluate composition pattern inference and modeling.

Since our approach involves several elements that model the relations between entities as the
geometric distance of vectors from different views, we dubbed it multiple-distance embeddings
(MDE)1.

The rest of this Chapter is structured as follows: In Section 4.1, we summarize the related efforts in
KGE with an outlook on their effectiveness in allowing learning of relation patterns. Then we present
the MDE model in Section 4.2 and describe the extensions of the model, including a hyperparameter
search algorithm for the loss function and a Neural Network framing of MDE in Section 4.3. We
report on the experiments in Section 4.4 before concluding.

4.1 Relation Pattern Coverage in KGE models

In this Section, we review how previous KGE models allow at least the learning of one or two relation
patterns in their embedding; however, they mostly block the learning of other patterns.

Tensor Factorization and Multiplicative Models define the score of triples via pairwise mul-
tiplication of embeddings. DistMult [12] simply multiplies the embedding vectors of a triple
element-by-element ⟨ℎ, 𝑟, 𝑡⟩ as the score function. Since the multiplication of real numbers is
symmetric, DistMult can not distinguish displacement of head relation and tail entities, and therefore,
it can not model anti-symmetric relations.

ComplEx [13] solves the issue of DistMult by the idea that the complex conjugate of the tail makes
it non-symmetric. By introducing complex-valued embeddings instead of real-valued embeddings to
DistMult, the score of a triple in ComplEx is 𝑅𝑒(ℎ⊤𝑑𝑖𝑎𝑔(𝑟)𝑡) with 𝑡 the conjugate of t and 𝑅𝑒(.) is
the real part of a complex value. ComplEx is not effective in encoding composition rules [30]. In
RESCAL [22] instead of a vector, a matrix represents the relation 𝑟 , and performs outer products of ℎ
and 𝑡 vectors to this matrix so that its score function becomes ℎ⊤𝑅𝑡. A simplified version of RESCAL
is HolE [74] that defines a vector for 𝑟 and performs circular correlation of ℎ and 𝑡 has been found
equivalent [75] to ComplEx.

Another tensor factorization model is Canonical Polyadic (CP) [76]. In CP decomposition, each
entity 𝑒 is represented by two vectors ℎ𝑒, 𝑡𝑒 ∈ R

𝑑 , and each relation 𝑟 has a single embedding vector
𝑣𝑟 ∈ R

𝑑 . MDE is similarly based on the idea of independent vector embeddings. A study [77] suggests
that in CP, the independence of vectors causes the poor performance of CP in KG completion, however,
we show that the independent vectors can strengthen a model if they are combined complementarily.

SimplE [72] analogous to CP, trains on two sets of subject and object entity vectors. SimplE’s
score function, 1

2 ⟨ℎ𝑒𝑖 , 𝑟, 𝑡𝑒 𝑗 ⟩ +
1
2 ⟨ℎ𝑒 𝑗 , 𝑟

−1
, 𝑡𝑒 𝑗

⟩, is the average of two terms. The first term is similar
to DistMult. However, its combination with the second term and using the second set of entity
vectors allows SimplE to avoid the symmetric issue of DistMult. SimplE allows learning of symmetry,

1The complete code and the experimental datasets are available from: https://github.com/mlwin-de/MDE
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anti-symmetry, and inversion patterns. However, it is unable to effectively encode composition rules,
since it does not model a bĳection mapping from h to t through relation r.

In Latent Distance Approaches the score function is the distance between embedding vectors
of entities and relations. In the view of social network analysis, [78] originally proposed distance
of entities −𝑑 (ℎ, 𝑡) as the score function for modeling uni-relational graphs where 𝑑 (., .) means any
arbitrary distance, such as Euclidean distance. SE [79] generalizes the distance for multi-relational
data by incorporating a pair of relation matrices into it. TransE [14] represents relation and entities of
a triple by a vector that has this relation

𝑆1 =∥ ℎ + 𝑟 − 𝑡 ∥ 𝑝 (4.1)

where ∥ . ∥ 𝑝 is the 𝑝-norm. To better distinguish entities with complex relations, TransH [29] projects
the vector of head and tail to a relation-specific hyperplane.

Similarly, TransR follows the idea with relation-specific spaces and extends the distance function
to ∥ 𝑀𝑟 ℎ + 𝑟 − 𝑀𝑟 𝑡 ∥ 𝑝. In short, the members of the Trans* [14, 28, 29] family measure a fact’s
plausibility by scoring the distance between the two entities, usually after a translation carried out by
the relation.

RotatE [30] combines translation and rotation and defines the distance of a 𝑡 from tail ℎ, which
is rotated the amount 𝑟 as the score function of a triple −𝑑 (ℎ ◦ 𝑟, 𝑡) where ◦ is Hadamard product.
This method allows for modeling relations with (anti)symmetry, inversion, and composition patterns;
however, do not cover learning the Transitivity relation pattern.

A new distance-based KGE method [80] allows learning of the Transitivity relation pattern. Despite
its mediocre efficiency, this effort is notable because it covers a relation pattern that its learning was
inhibited in the previously reviewed KGE methods.

Unlike the earlier mentioned methods, the Neural Network-based methods learn KGE by connecting
artificial neurons in different layers. Graph Neural Network (GNN) aggregate node formation using a
message-passing architecture. Neural networks are black-box models, i.e., the structure of the function
being approximated by them is not clear. Therefore, in theory, their learned weights are not directly
interpretative to relation patterns. However, empirical evaluation methods specially made for relation
pattern learning can mitigate this gap. We will cover a study to generate such evaluations in Chapter 7.
There we also include the pattern relation learning analysis of state-of-the-art neural networks for
knowledge graph learning.

In summary, the reported works only focus on modeling the relations of the knowledge graphs, and
allowing relation patterns was a side benefit for them. However, our study attempts to directly address
allowing learning of different relation patterns by a specific structure design and modeling functions
tailored to the task.

4.2 MDE: Multiple Distance Embeddings

The score function of MDE involves multiple terms. We first explain the intuition behind each term
and then explicate a framework that we suggest to effectively utilize them such that we benefit from
their strengths and avoid their weaknesses.

Inverse Relation Learning: Inverse relations can be a strong indicator in knowledge graphs.
For example, if 𝐼𝑠𝑃𝑎𝑟𝑒𝑛𝑡𝑂 𝑓 (𝑚, 𝑐) represents that a person 𝑚 is a parent of another person 𝑐, then
this could imply 𝐼𝑠𝐶ℎ𝑖𝑙𝑑𝑂 𝑓 (𝑐, 𝑚) assuming that this represents the person 𝑐 being the child of 𝑚.
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This indication is also valid in cases when this only holds in one direction, e.g. for the relations
𝐼𝑠𝑀𝑜𝑡ℎ𝑒𝑟𝑂 𝑓 and 𝐼𝑠𝐶ℎ𝑖𝑙𝑑𝑂 𝑓 . In such a case, even though the actual inverse 𝐼𝑠𝑃𝑎𝑟𝑒𝑛𝑡𝑂 𝑓 may not
even exist in the KG, we can still benefit from inverse relation learning. To learn the inverse of the
relations, we define a score function S2 :

𝑆2 =∥ 𝑡 + 𝑟 − ℎ ∥ 𝑝 (4.2)

Symmetric Relations Learning: It is possible to easily check that the formulation ∥ ℎ + 𝑟 − 𝑡 ∥
allows2 learning of anti-symmetric pattern but when learning symmetric relations, ∥ 𝑟 ∥ tends toward
zero which limits the ability of the model in separating entities especially if symmetric relations are
frequent in the KG. For learning symmetric relations, we suggest the term S3 as a score function. It
learns such relations more effectively despite it is limited in the learning of anti-symmetric relations.

𝑆3 =∥ ℎ + 𝑡 − 𝑟 ∥ 𝑝 (4.3)

Lemma 1. S1 allows modeling anti-symmetry, inversion, and composition patterns, and S2 allows
modeling symmetry patterns.

Proof. Let 𝑟1, 𝑟2, 𝑟3 be relation vector representations and 𝑒𝑖, 𝑒 𝑗 , 𝑒𝑘 are entity representations. A
relation 𝑟1 between (𝑒𝑖 , 𝑒𝑘) exists when a triple (𝑒𝑖 , 𝑟1, 𝑒𝑘) exists and we show it by 𝑟1(𝑒𝑖 , 𝑒𝑘).
Formally, we have the following results:

Anti-symmetric Pattern. If 𝑟1(𝑒𝑖 , 𝑒 𝑗) and 𝑟1(𝑒 𝑗 , 𝑒𝑖) hold, in equation 4.1 for S1, then:

𝑒𝑖 + 𝑟1 = 𝑒 𝑗 ∧ 𝑒 𝑗 + 𝑟1 ≠ 𝑒𝑖 ⇒ 𝑒𝑖 + 2𝑟1 ≠ 𝑒𝑖

Thus S1 allows encoding of relations with anti-symmetric patterns.

Symmetric Pattern. If 𝑟1(𝑒𝑖 , 𝑒 𝑗) and 𝑟1(𝑒 𝑗 , 𝑒𝑖) hold, for S3 we have:

𝑒𝑖 + 𝑒 𝑗 − 𝑟1 = 0 ∧ 𝑒 𝑗 + 𝑒𝑖 − 𝑟1 = 0 ⇒ 𝑒 𝑗 + 𝑒𝑖 = 𝑟1

Therefore S3 allows encoding relations with symmetric patterns. For S1 we have:

Inversion Pattern. If 𝑟1(𝑒𝑖 , 𝑒 𝑗) and 𝑟2(𝑒 𝑗 , 𝑒𝑖) hold, from Equation 4.1 we have:

𝑒𝑖 + 𝑟1 = 𝑒 𝑗 ∧ 𝑒 𝑗 + 𝑟2 = 𝑒𝑖 ⇒ 𝑟1 = −𝑟2

Therefore S1 allows encoding relations with inversion patterns.

Composition Pattern. If 𝑟1(𝑒𝑖 , 𝑒𝑘) , 𝑟2(𝑒𝑖 , 𝑒 𝑗) and, 𝑟3(𝑒 𝑗 , 𝑒𝑘) hold, from equation 4.1 we have:

𝑒𝑖 + 𝑟1 = 𝑒𝑘 ∧ 𝑒𝑖 + 𝑟2 = 𝑒 𝑗 ∧ 𝑒 𝑗 + 𝑟3 = 𝑒𝑘 ⇒ 𝑟2 + 𝑟3 = 𝑟1

Thus S1 allows encoding relations with composition patterns. □

2We used the term “it allows” to imply that the encoding of such patterns does not inhibit the learning of relations
having a particular pattern. Meanwhile, in the literature, SimplE uses “it can encode” and RotatE uses “the model infers”.
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Relieving Limitations on Learning of Reflexive Relations:
A previous study [72] highlighted the common limitations of TransE, FTransE, STransE, TransH,

and TransR for learning reflexive relations where these translation-based models force the reflexive
relations to become symmetric and transitive.

To relieve these limitations, we define S4 as a score function that is similar to the score of RotatE
i.e., ∥ ℎ ◦ 𝑟 − 𝑡 ∥ 𝑝 but with the Hadamard operation on the tail. In contrast, to RotatE which represents
entities as complex vectors, S4 only holds in the real space:

𝑆4 =∥ ℎ − 𝑟 ◦ 𝑡 ∥ 𝑝 (4.4)

Lemma 2. The following restrictions of translation-based embeddings approaches do not apply to
the S4 score function. R1: if a relation 𝑟 is reflexive, on Δ ∈ E, 𝑟 it will be also symmetric on Δ. R2:
if 𝑟 is reflexive on Δ ∈ E, 𝑟 it will be also be transitive on Δ.

Proof. R1: For such reflexive 𝑟1, if 𝑟1(𝑒𝑖 , 𝑒𝑖) then 𝑟𝑙 (𝑒 𝑗 , 𝑒 𝑗). In this equation we have:

𝑒𝑖 = 𝑟1𝑒𝑖 ∧ 𝑒 𝑗 = 𝑟1𝑒 𝑗 ⇒ 𝑟1 = 𝑈 ⇏ 𝑒𝑖 = 𝑟1𝑒 𝑗

where𝑈 is unit tensor.
R2: For such reflexive 𝑟1, if 𝑟1(𝑒𝑖 , 𝑒 𝑗) and 𝑟𝑙 (𝑒 𝑗 , 𝑒𝑘) then 𝑟1(𝑒 𝑗 , 𝑒𝑖) and 𝑟𝑙 (𝑒𝑘 , 𝑒 𝑗). In the above

equation we have:

𝑒𝑖 = 𝑟1𝑒 𝑗 ∧ 𝑒 𝑗 = 𝑟1𝑒𝑘 ⇒ 𝑒𝑖 = 𝑟1𝑟1𝑒 𝑗𝑒𝑘 ∧ 𝑟𝑖 = 𝑈
⇒ 𝑒𝑖 = 𝑒 𝑗𝑒𝑘

⇏ 𝑒𝑖 + 𝑒𝑘 = 𝑟𝑙
□

Model Definition: To incorporate different views to the relations between entities, we define these
settings for the model:
■ Using limit-based loss instead of margin ranking loss.
■ Each aggregated term in the score represents a different view of entities and relations with an

independent set of embedding vectors.
■ In contrast to ensemble approaches that incorporate models by training independently and testing

them together, MDE is based on multi-objective optimization [81] that jointly minimizes the
objective functions.
However, when aggregating different terms in the score function, the summation of opposite vectors

can cause the norm of these vectors to diminish during the optimization. For example, if S1 and S3 are
added together, the minimization would lead to relation(r) vectors with zero norm value. To address
this issue, we represent the same entities with independent variables in different distance functions.

Based on CP, MDE considers four vectors 𝑒𝑖 , 𝑒 𝑗 , 𝑒𝑘 , 𝑒𝑙, ∈ R
𝑑 as the embedding vector of each

entity e , and four vectors 𝑟𝑖 , 𝑟 𝑗 , 𝑟𝑘 , 𝑟𝑙 ∈ R
𝑑 for each relation r.

The score function of MDE for a triple (h, r, t) is defined as weighted sum of listed score functions:
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Figure 4.1: Geometric illustration of the translation terms considered in MDE.

𝑓𝑀𝐷𝐸 = 𝑤1𝑆
𝑖
1 + 𝑤2𝑆

𝑗

2 + 𝑤3𝑆
𝑘
3 + 𝑤4𝑆

𝑙
4 − 𝜓 (4.5)

where 𝜓, 𝑤1, 𝑤2, 𝑤3, 𝑤4 ∈ R are constant values. Figure 4.1 displays the geometric illustration of
the four translation terms considered in MDE.

In the following, we show using𝜓 and limit-based loss, the combination of the terms in Equation (4.5)
is effective, such that if one of the terms recognizes if a sample is true 𝐹𝑀𝐷𝐸 would also recognize it.

Limit-based Loss: Because margin ranking loss minimizes the sum of error from directly comparing
the score of negative to positive samples, when applying it to translation embeddings, it is possible
that the score of a correct triplet is not small enough to hold the relation of the score function [82].
To enforce the scores of positive triples become lower than those of negative ones, [82] defines
limited-based loss which minimizes the objective function such that the score for all the positive
samples becomes less than a fixed limit. [33] extends the limit-based loss so that the score of the
negative samples becomes greater than a fixed limit. We train our model with the same loss function
which is:

𝑙𝑜𝑠𝑠 = 𝛽1

∑︁
𝜏∈T+

[ 𝑓 (𝜏) − 𝛾1]+ + 𝛽2

∑︁
𝜏
′∈T−

[𝛾2 − 𝑓 (𝜏′)]+ (4.6)

where [.]+ = max(., 0), 𝛾1, 𝛾2 ∈ R+. T+
,T

− are the sets of positive and negative samples, and
𝛽1, 𝛽2 > 0 are constants denoting the importance of the positive and negative samples. This version of
limit-based loss minimizes the aggregated error such that the score for the positive samples becomes
less than 𝛾1 and the score for negative samples becomes greater than 𝛾2. To find the optimal limits for
the limit-based loss, we suggest updating the limits during the training.

Time Complexity and Parameter Growth: Considering the ever growth of KGs and the expansion
of the web, it is crucial that the time and memory complexity of a relational mode be minimal.
Despite the limitations in expressivity, TransE is one of the popular models on large datasets due to its
scalability. With 𝑂 (𝑑) time complexity (of one mini-batch), where 𝑑 is the size of embedding vectors,
it is more effective than RESCAL, NTN, and the neural network models. Similar to TransE, the time
complexity of MDE is 𝑂 (𝑑). Due to the additive construction of MDE, the inclusion of more distance
terms keeps the time complexity linear in the size of vector embeddings.
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4.3 Model Extensions

4.3.1 Searching for the limits in the limit-based Loss

While the limit-based loss resolves the issue of margin ranking loss with distance-based embeddings,
it does not provide a way to find the optimal limits. Therefore the mechanism to find limits for each
dataset and hyper-parameter is the try and error. To address this issue, we suggest updating the limits
in the limit-based loss function during the training iterations. We denote the moving-limit loss by
𝑙𝑜𝑠𝑠𝑔𝑢𝑖𝑑𝑒.

𝑙𝑜𝑠𝑠𝑔𝑢𝑖𝑑𝑒 = lim
𝛿, 𝛿

′→𝛾1

𝛽1

∑︁
𝜏∈T+

[ 𝑓 (𝜏) − (𝛾1 − 𝛿)]+

+ 𝛽2

∑︁
𝜏
′∈T−

[(𝛾2 − 𝛿
′) − 𝑓 (𝜏′)]+

(4.7)

where the initial value of 𝛿, 𝛿′ is 0. In this formulation, we increase the 𝛿, 𝛿′ toward 𝛾1 and 𝛾2 during
the training iterations such that the error for positive samples minimizes as much as possible.

Instead of the fixed limit value as in limit-based loss, 𝑙𝑜𝑠𝑠𝑔𝑢𝑖𝑑𝑒𝑑 updates the limit for positive and
negative objective functions during the training. The aim of this approach is to find a balance between
two goals:

(i) To make the error of a correct triple near to zero, similar to the idea of margin ranking loss.

(ii) To increase the margin between the limits for positive and negative samples as much as possible.
The second goal is following the Structural risk minimization principle [83] to maximize the margin

between the positive and negative samples. We minimize the limit for the objective of negative
samples, with the condition that the error for the objective of positive samples stays small.

Therefore, we search for fine limits for the limit-based loss by testing on the validation set after each
50 epoch and taking those limits that give the best value during the tests. The details of the search for
limits are explained in Algorithm 1.

This Algorithm impels the positive samples to gain zero loss(the idea of distance-based embeddings)
and aims to increase a 𝛾2 as large as possible to maximize the margin between positive and negative
loss. The Algorithm first sets the limit for positive samples and the limit for the negative samples
second. After several iterations, if the positive loss (𝑙𝑜𝑠𝑠+) does not decrease it implies that the limit
for positive samples is too small. Therefore, it increases both 𝛾1, 𝛾2. Whenever during the iterations
the 𝑙𝑜𝑠𝑠+ becomes zero it increase 𝛿 by a fixed amount b so that 𝛿 = 𝛿 + b.

After initialisation of the limits(𝛾1 and 𝛾2) and 𝛿 and 𝛿′ it update the limits during the training
iteration, and checks if 𝑓 (𝜏) − 𝑓 (𝜏′) ≥ 𝛾2 −𝛾1 so that it preserve the characteristic of the margin-based
ranking loss. It performs a similar comparison for the loss of negative values (𝑙𝑜𝑠𝑠−) to decrease 𝛿′.

After observing the most promising values for limits in the preset number of iterations, it stops the
search and performs the training while having the 𝛿 values fixed(fixed limit-base loss) to allow the
adaptive learning to reach loss values smaller than the 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑.

We based this approach on the idea of adaptive learning rate [23], where the Adadelta optimizer
adapts the learning rate after each iteration, therefore in the 𝑙𝑜𝑠𝑠𝑔𝑢𝑖𝑑𝑒𝑑 we can update the limits
without stopping the training iterations. In our experiments, the variables in the algorithm, are as
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Algorithm 1 Guided Limit Loss

1: Initialize: 𝛿 = 𝛿′ = 𝛿0, 𝛾1 = 𝛾2 ∈ R+
, 𝜓 ∈ R

2: Initialize: 𝑖 = 0, b ∈ R+
, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ∈ R+

3: Inside training iterations:
4: if Using 𝑙𝑜𝑠𝑠𝑔𝑢𝑖𝑑𝑒𝑑 instead of 𝑙𝑜𝑠𝑠𝑙𝑖𝑚𝑖𝑡−𝑏𝑎𝑠𝑒𝑑 then
5: 𝑙𝑜𝑠𝑠

+
= 𝛽1

∑
𝜏∈T+ [ 𝑓 (𝜏) − (𝛾1 − 𝛿)]+

6: 𝑙𝑜𝑠𝑠
−
= 𝛽2

∑
𝜏
′∈T− [(𝛾2 − 𝛿

′) − 𝑓 (𝜏′)]+
7: 𝑙𝑜𝑠𝑠 = 𝑙𝑜𝑠𝑠

+ + 𝑙𝑜𝑠𝑠
−

8: if 𝑙𝑜𝑠𝑠+ = 0 & 𝛾1 ≥ b then
9: 𝛿 = 𝛿 + b

10: if 𝑙𝑜𝑠𝑠− > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 & 𝛾2 ≥ b then
11: 𝛿

′
= 𝛿

′ + b
12: if Using 𝑙𝑜𝑠𝑠𝑙𝑖𝑚𝑖𝑡−𝑏𝑎𝑠𝑒𝑑 then
13: 𝑙𝑜𝑠𝑠 = the result from Equation (4.6)

follows: 𝛿0 = 0, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0.05, b = 0.1.

We test the model after changes in 𝛿 and 𝛿′ and select those values that lead to the best ranking
scores.

Lemma 3. There exist 𝜓 and 𝛾1, 𝛾2 ≥ 0 (𝛾1 ≥ 𝛾2), such that only if one of the terms in 𝑓𝑀𝐷𝐸
estimates a fact as true, 𝑓𝑀𝐷𝐸 also predicts it as a true fact. Consequently, the same also holds for the
capability of MDE to allow learning of different relation patterns.

Proof. We show there are boundaries for 𝛾1, 𝛾2, 𝑤1, 𝑤2, 𝑤3, 𝑤4, such that learning a fact by one of the
terms in 𝑓𝑀𝐷𝐸 is enough to classify a fact correctly.

To extend this formulation to more term, it is enough to show that there is at least one set of
boundaries for the positive and negative samples that follow the constraints.

The case to prove is when three of the distance functions classify a fact as negative 𝑁 and the one
distance function e.g. S2 classifies it as positive 𝑃, and the case that S1 and S3 classify a fact as positive
and S2 classify it as negative. We set 𝑤1 = 𝑤3 = 1/4 and 𝑤2 = 1/2 and assume that S𝑢𝑚 is the value
estimated by the score function of MDE, we have:

𝑎 >
𝑁

2
≥ 𝛾2

2
∧ 𝛾1

2
>
𝑃

2
≥ 0 ⇒ 𝑎 + 𝛾1

2
> 𝑆𝑢𝑚 + 𝜓 ≥ 𝛾2

2
(4.8)

There exist 𝑎 = 2 and 𝛾1 = 𝛾2 = 2 and 𝜓 = 1 that satisfy 𝛾1 > 𝑆𝑢𝑚 ≥ 0 and the inequality 4.8. □

It is notable that without the introduction of 𝜓 and the limits 𝛾1, 𝛾2 from the limit-based loss,
Lemma 3 does not hold, and framing the model with this settings makes the effective combination of
the terms in 𝑓𝑀𝐷𝐸 possible. In case future studies discover new interesting distances, this Lemma
shows how to basically integrate them into MDE.

In contrast to SimplE, which ties the relation vectors of two terms in the score together, MDE does
not directly relate them. This feature allows MDE to take advantage of independent relation and entity
vectors and combine contrasting terms in the score function.
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Figure 4.2: Illustration of the possible positioning of score values for MDE𝑁𝑁 on WN18RR where the value of
𝛾1 and 𝛾2 is 2.

The learning of the symmetric relations is previously studied (e.g. in [12, 30]) and [84] studied
the training over the inverse of relations, however providing a way to gather all these benefits in one
model is a novelty of MDE. Besides, complementary modeling of different vector-based views of a
knowledge graph is a novel contribution.

4.3.2 MDE𝑵𝑵: MDE as a Neural Network

The score of MDE is already aggregating a multiplication of vectors to weights. We take advantage of
this setting to model MDE as a layer of a neural network that allows learning the embedding vectors
and multiplied weights jointly during the optimization. To create such a neural network we multiply 𝜓
by a weight 𝑤5 and we feed the MDE score to an activation function. We call this extension of MDE
as MDE𝑁𝑁 :

𝑓𝑀𝐷𝐸𝑁𝑁
= 𝐹 ( ∥ 𝑤1𝑆

𝑖
1 ∥ 𝑝 + ∥ 𝑤2𝑆

𝑗

2 ∥ 𝑝 + ∥ 𝑤3𝑆
𝑘
3 ∥ 𝑝

+ ∥ 𝑤4𝑆
𝑙
4 ∥ 𝑝 + ∥ 𝑤5 ∥ 𝑝 𝑐 − 𝜓)

(4.9)

where 𝐹 is 𝑇𝑎𝑛ℎ𝑠ℎ𝑟𝑖𝑛𝑘 activation function with the formulation

𝑇𝑎𝑛ℎ𝑠ℎ𝑟𝑖𝑛𝑘 (𝑥) = 𝑥 − 𝑇𝑎𝑛ℎ(𝑥) (4.10)

and 𝑤1, 𝑤2, . . . , 𝑤5 are elements of the latent vector 𝑤 that are estimated during the training of the
model and 𝑐 and 𝜓 are constants. Similarly we add 𝑦 and 𝑧 as latent vectors multiplied to the first and
the second elements in the Equations 4.1, 4.2, 4.3 & 4.4. For example S1 in MDE𝑁𝑁 becomes:

𝑆1 =∥ 𝑦1ℎ + 𝑧1𝑟 − 𝑡 ∥ 𝑝 (4.11)
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Dataset #entity #relation #training #validation #test
FB15k 14 951 1 345 483 142 50 000 59 071
WN18 40 943 18 141 442 5 000 5 000

FB15k-237 14 541 237 272 115 17 535 20 466
WN18RR 40 943 11 86 835 3 034 3 134

Table 4.1: Number of entities, relations, and triples in each division.

This framing of MDE reduces the number of hyper parameters. In addition, the major advantage
of MDE𝑁𝑁 –in comparison to the linear combination of terms in MDE– is that the 𝑇𝑎𝑛ℎ𝑠ℎ𝑟𝑖𝑛𝑘
activation function allows the non-linear mappings between the embedding vectors and the expected
target values for the loss function over positive and the negative samples.

Since 𝑇𝑎𝑛ℎ𝑠ℎ𝑟𝑖𝑛𝑘 has a range of R it allows setting large values for 𝛾1 and 𝛾2. For example, for
WN18RR we set their value to 1.9. It is notable that the classic activation functions such as 𝑠𝑖𝑔𝑚𝑜𝑖𝑑
and 𝑇𝑎𝑛ℎ are not suitable to be used as activation functions here because they cannot converge the
loss function to limit values larger than one. To generate a non-linear loss function for MDE𝑁𝑁 , we
combine the square of positive loss and the negative loss values:

𝑙𝑜𝑠𝑠𝑀𝐷𝐸𝑁𝑁
= (

∑︁
𝜏∈T+

[ 𝑓 (𝜏) − 𝛾1]+)
2

+ (
∑︁
𝜏
′∈T−

[𝛾2 − 𝑓 (𝜏′)]+)
2

(4.12)

Figure 4.2 shows the positioning of the score values for MDE𝑁𝑁 on WN18RR in which 𝛾1 and 𝛾2 is
2. The horizontal axis indicates the sample numbers and the vertical axis indicates their loss values.
The score values for negative samples, 𝑓 (𝜏′) lay on the green area and score values for the positive
samples, 𝑓 (𝜏) lay on the red area.

4.4 Experiments

Datasets: We experimented on four standard datasets: WN18 and FB15k which were extracted
by Bordes et al. in [14] from Wordnet [85] and Freebase [86] respectively. We used the same
train/valid/test sets as in [14]. WN18 contains 40 943 entities, 18 relations and 141 442 train
triples. FB15k contains 14 951 entities, 1 345 relations and 483 142 train triples. In order to test the
expressiveness ability rather than relational pattern learning power of models, FB15k-237 [59] and
WN18RR [47] exclude the triples with inverse relations from FB15k and WN18 which reduced the
size of their training data to 56% and 61% respectively. Table 4.1 summarizes the statistics of these
knowledge graphs.
Baselines: We compare MDE with several state-of-the-art relational learning approaches. Our
baselines include TransE, RESCAL, DistMult, NTN, ER-MLP, ComplEx and SimplE. We report the
results of TransE, DistMult, and ComplEx from [13] and the results of TransR and NTN from [87],
and ER-MLP from [74]. The results on the inverse relation excluded datasets are from Table 13 of [30]
for both TransE and RotatE. And the rest are from [47]3.

3Scores of ConvE on FB15k are from https://github.com/TimDettmers/ConvE/issues/26

41

https://github.com/TimDettmers/ConvE/issues/26


Chapter 4 Multiple Distance Embeddings for Link Prediction in Knowledge Graphs

(a) Positive triple including Similar_to

(b) Negative triple including symmetric pattern Similar_to (c) hypernym + hyponym

Figure 4.3: Diagrams describing the prediction of each term in MDE score for symmetric relation in a positive
triple are depicted in Figure (a) and its corrupted version with the same head and tail in Figure (b). Figure (c)
shows the histogram diagram of the elements of two the sum of two inverse relations, hypernym and hyponym
in S1.

Evaluation Setting: We evaluate the link prediction performance by ranking the score of each test
triple against its versions with replaced head, and once for the tail. Then we compute the hit at
N (Hit@N), mean rank (MR), and mean reciprocal rank (MRR) of these rankings. We report the
evaluations in the filtered setting.
Implementation: We implemented MDE in PyTorch4. Following [79], we generated one negative
example per positive example for all the datasets. We used Adadelta [23] as the optimizer and
fine-tuned the hyperparameters on the validation dataset. The ranges of the hyperparameters are set
as follows: embedding dimensions 25, 50, 100, 200, batch size in the range of 1024 to 1725, and
iterations 50, 100, 1000, 1500, 2500, and 3600. We set the initial learning rate on all datasets to 10.
For MDE, the best embedding size and 𝛾1 and 𝛾2 and 𝛽1 and 𝛽2 values on WN18 were 50 and 1.9,
1.9, 2 and 1 respectively and for FB15k were 200, 10, 13, 1, 1.

4
https://pytorch.org
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(a) r1 (b) r2

(c) r3 (d) r1+r2-r3

Figure 4.4: Diagrams (a, b, c & d) show the norm of the elements in vectors r1, r2, r3 and r1+r2-r3 where r3 is
composed of r1 and r2. Here, r1 represents /award/award_category/nominees./award/ award_nominatio/nominated_for ,
r2 represents /award/award_nominee/award_nominations./award /award_nomination/nominated_for and r3 represents
/award/award_winner/awards_won./award/ award_honor/award_winner.

The best found embedding size and 𝛾1 and 𝛾2 and 𝛽1 and 𝛽2 values on FB15k-237 were 100, 9, 9,
1 and 1 respectively and for WN18RR were 50, 2, 2, 5 and 1. We selected the coefficient of terms
in (4.5), by grid search, with the condition that they make a convex combination, in the range 0.1 to
1.0, and tested those combinations of the coefficients where they create a convex combination. Found
values are 𝑤1 = 0.16, 𝑤2 = 0.33, 𝑤3 = 0.16, 𝑤4=0.33. We experimented the model to find the best
value for 𝜓 between {0.1, 0.2,. . . , 1.5}. We use 𝜓 = 1.2 for the MDE experiments. We use the value 2
for p in p-norm throughout the paper.

To regulate the loss function and to avoid over-fitting, we estimate the score function for two sets of
independent vectors and we take their average in the prediction. Another advantage of this operation
is the reduction of required training iterations.
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Countries(AUC-PR)
Model S1 S2 S3

DistMult [12] 1.00 ± 0.00 0.72 ± 0.12 0.52 ± 0.07
ComplEx [13] 0.97 ± 0.02 0.57 ± 0.10 0.43 ± 0.07
ConvE [47] 1.00 ± 0.00 0.99 ± 0.01 0.86 ± 0.05
RotatE [30] 1.00 ± 0.00 1.00 ± 0.00 0.95 ± 0.00

MDE 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Table 4.2: Results on the Countries datasets. Results of RotatE are taken from [30] and the results of the other
models are from [47].

.

For the WN18RR experiment of MDE𝑁𝑁 , we use the same parameters as in MDE for 𝛾1, 𝛾2,
and the same embedding size. We use the embedding size 50 for WN18RR, 200 for WN18, 200
for FB15k-237, and 200 for FB15k. We use c = 4 and 𝜓 = 2.5 for the MDE𝑁𝑁 experiments. Our
experiments show this method usually reaches its best performance in the benchmarks in just 50
iterations.In our experiments, we use an adaptive learning rate method for both MDE and MDE𝑁𝑁 .

We observe that adding new three dimensions and three distance functions to the model has not
slowed the model’s training. In contrast, it allowed the model to reach 0.92 in just 100 epochs with a
training time of 8 minutes when running on a system with a Pentium i5 CPU.

The current framework of KG embedding model evaluations is based on the open-world assumption
that the generation of an unlimited number of negative samples is possible. In this setting, it becomes
debatable to consider negative sample generation as a part of the model since it significantly influences
the ranking results. In particular, RotatE effectively assimilates the effect of many negative samples in
the self-adversarial negative sampling technique. We verify the influence of this sampling method on
the MDE results and to distinguish it we call this implementation MDE𝑎𝑑𝑣 . For this implementation,
we use Adam as the optimizer similar to RotatE. We select dimension 400, learning rate 0.0005, batch
size 512, and 624 negative samples per positive sample for the test on WN18RR. For FB15k-237, we
test the model with dimension 1000, learning rate 0.0005, batch size 240, and 1224 negative samples
per positive sample.

4.4.1 Relation Pattern Implicit Inference

To verify the implicit learning of relation patterns, we evaluate our model on Countries dataset [73,
74]. This dataset is curated in order to explicitly assess the ability of the link prediction models for
composition pattern modeling and implicit inference. It is made from 2 relations and 272 entities,
where the entities include 244 countries, 5 regions, and 23 subregions. In comparison to general
link prediction tasks on knowledge graphs, evaluation queries in Countries are specified only to the
form locatedIn(c, ?), where, the answer is one of the five regions. The Countries dataset is made of 3
tasks, and each one requires inferring a composition pattern with increasing length and difficulty. The
measure for this evaluation is usually AUC-PR.

Table 4.2, shows that our model performs significantly better than the previous models. While
RotatE outperforms older models on S1 and S2, MDE gains the best result on S1 and S2 as well as S3,
which is the most difficult task. We also evaluate if MDE embeddings implicitly represent different
relation patters.
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WN18 FB15k
Model MR MRR Hit@10 MR MRR Hit@10

TransE [14] – 0.454 0.934 – 0.380 0.641
TransH [29] 303 – 0.867 87 – 0.644
STransE [71] 206 0.657 0.934 69 0.543 0.797
RESCAL [22] – 0.890 0.928 – 0.354 0.587
DistMult [12] – 0.822 0.936 – 0.654 0.824
SimplE [72] – 0.942 0.947 – 0.727 0.838

NTN[37] – 0.53 0.661 – 0.25 0.414
ER-MLP [36] – 0.712 0.863 – 0.288 0.501
ConvE [47] 504 0.942 0.955 51 0.657 0.831

ComplEx [13] – 0.941 0.947 – 0.692 0.84
RotatE [30] 309 0.949 0.959 40 0.797 0.884

MDE 118 0.871 0.956 49 0.652 0.857

Table 4.3: Results on WN18 and FB15k. Best results are in bold.

Symmetry pattern requires S3 term to correctly distinguish positive and negative samples for MDE.
We investigate the relation embeddings from a 50-dimensional MDE trained on WN18. Figure 4.3a
gives the value of different terms for a triple with symmetric relation “similar_to” between the entities
“pointed” and “sharpened”. Since the smaller score values of MDE are suggesting that a triple is a
positive sample, the smaller values of individual terms in the model would also influence the overall
model to recognize a triple as positive. S3 shows the smallest value among all the terms. Figure 4.3b
illustrates the values of terms for the negative sample (pointed, similar_to, pointed) where S1 and S2
scores are low due to their incapability in recognizing a negative sample when the head and tail are
the same. However, S3 adjusts the overall MDE score by producing a great number that compensates
for the low S1 and S2 results.

Inversion pattern requires inverse relations in S1 and S2 terms to have inverse angles. Figure 4.3c
shows the histogram of the elements of the sum of hypernym and hyponym relations in S1. We can
see from this Figure that most of the elements in these two relations have opposite values.

Composition pattern requires the embedding vectors of the composed relation to be the addition of
the other two relations in S1. We train a 200-dimensional MDE model to verify the implicit inference
of the composition patterns on FB15k-237. Figure 4.4a to 4.4d illustrate that most of the elements in
r1 + r2 - r3 are near zero where r3 is composed of r1 and r2 relations.

4.4.2 Link Prediction Results

Table 4.3 summarizes our results on FB15k and WN18. It shows that MDE performs like RotatE
and outperforms other state-of-the-art models in MR and Hit@10 tests, significantly improving the
performance of the latent distance approaches. Table 4.4 shows the results of the experiments on
FB15k-237 and WN18RR. These results follow the same pattern as the ones reported in Table 4.3.
This Table shows the extension of the model with adversarial negative sampling gives the best MRR
result in the FB15k-237. The slight improvement of MDE𝑁𝑁 over MDE in hit@10 ranking results
demonstrates the positive effect of the non-linear setting for limits of the loss function and the
non-linear activation function.
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WN18RR FB15k-237
Model MR MRR Hit@10 MR MRR Hit@10

DistMult [12] 5110 0.43 0.49 254 0.241 0.419
ComplEx [13] 5261 0.44 0.51 339 0.247 0.428
ConvE [47] 5277 0.46 0.48 246 0.316 0.491
RotatE [30] 3340 0.476 0.571 177 0.338 0.533

MDE 2629 0.457 0.536 189 0.288 0.484
MDE𝑁𝑁 3165 0.432 0.531 - - -
MDE𝑎𝑑𝑣 3219 0.458 0.560 203 0.344 0.531

Table 4.4: Results on WN18RR and FB15k-237. Best ones are in bold.

The significantly large Hit@10 rank value and the small mean rank value indicates overfitting in the
model. By using limited-based loss, and fixing the limits for loss of positive and negative functions to
a constant we reduce the mean rank to a great extent. We observe that the mean rank in MDE is for
WN18 is the best value and in FB15k is lower than most of the other methods.

It is noticeable that the addition of independent vectors in the model does not decrease the mean
rank of the model, whereas, in models with high vector dimensions, the MR and MRR results are
unbalanced. For example, for ComplEx and ConvE which both use a vector dimension of 200, the
MRR is significant but the MR is high (which is not suitable), such that, CompEx and ConvE have the
greatest overfitting among the compared methods. A reason besides the higher dimension, for their
overfitting, is that their training method includes an unbalanced positive and negative sample batch in
the loss calculation. On a different note, RotatE mitigates this issue with the application of a high
number of negative samples per positive sample, which allows for having higher dimensions, and
balancing out the effect of the greater number of negative samples by normalizing the loss of negative
samples in comparison to the number of positive samples in a batch.

The comparison of our model to other state-of-the-art methods in Table 4.4, shows the competitive
performance of MDE and MDE𝑎𝑑𝑣. It is observable that in the MDE tests with only one negative
sample per positive sample and using vector sizes between 50 to 200, MDE challenges models with
relatively large embedding dimensions (1000) and a high number of negative samples (up to 1024). In
the ablation study presented in [30], we notice that RotatE (with the margin-based ranking criterion,
and without self-adversarial negative sampling) produces a Hit@10 score of 0.476 on FB15k-237,
which is lower than the MDE score.

The adaptation of self-adversarial negative sampling in MDE improves the Hit@10 ranking and the
MRR score of the model. This improvement is more significant on the FB15k-237 rather than on the
WN18RR, as there is a greater number of relations and entities in FB15k-237 and the self-adversarial
negative sampling increases the coverage of different combinations of entities in the training. We also
observe on the FB15k-237 benchmark, that MDE𝑎𝑑𝑣 outperforms previous models on the MRR score
since it exists more relations with composition pattern in this dataset than in the WN18RR dataset.

We include each of the terms in MDE as we hypothesize that each one contributes to the generalization
power of the model. Practically, we verify this approach in the following section.
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WN18RR FB15k-237
Individual Term MR MRR Hit@10 MR MRR Hit@10

S1 3137 0.184 0.447 187 0.260 0.454
S2 8063 0.283 0.376 439 0.204 0.342
S3 3153 0.183 0.449 186 0.258 0.455
S4 2245 0.323 0.467 220 0.273 0.462

Table 4.5: Results of each individual term in MDE on WN18RR and FB15k-237. The best results are in bold.

WN18RR WIN18
Removed Term MR MRR Hit@10 MR MRR Hit@10

S1 3983 0.417 0.501 113 0.838 0.946
S2 3727 0.358 0.490 131 0.823 0.943
S3 3960 0.427 0.499 161 0.850 0.943
S4 3921 0.366 0.478 163 0.705 0.929
𝑁𝑜𝑛𝑒 3985 0.428 0.501 151 0.844 0.946

Table 4.6: Results of MDE after 100 iterations when removing one of the terms. The best results are in bold.

4.4.3 Ablation Study

To better understand the role of each term in the score function of MDE stated in Equation (4.5), we
embark on two ablation experiments. First, we train MDE using one of the terms alone and observe
the link prediction performance of each term in the filtered setting. In the second experiment, we
remove one of the terms at a time and test the effect of this removal on the performance model after
100 training iterations. We perform the first experiment on WN18RR and FB15k-237 and the second
on WN18RR and WN18 datasets.

Table 4.5 summarizes the results of the first experiment on WN18RR and FB15k-237. We can see
that S4 outperforms the other terms while S1 and S3 perform very similarly on these two datasets.
Among the four terms, S2 performs the worst since most of the relations in the test datasets follow
an anti-symmetric pattern, where S2 is not effective in modeling them. Comparing each term to the
overall MDE model shows that none perform as well as the MDE combination. In addition, simply
aggregating their MRR produces a greater number than MDE, which indicate the leakage of relation
patterns in WN18RR and FB15k-237 datasets.

Table 4.6 shows the results of the second experiment. The evaluations on WN18RR and WN18
show that the removal of S4 has the most negative effect on the performance of MDE. The removal
of S1, which was one of the good performing terms in the last experiment, has the most neglectable
effect. This result indicates that while S1 covers some of the relation patterns that are targeted in other
terms, it is not as effective as the combination of these terms. Nevertheless, S1 improves the MRR in
the MDE. Also, when we remove S2, the MRR and Hit@10 are negatively influenced, indicating that
it exists cases where S2 performs better than the other terms. However, it performed the worst among
all the terms in the individual tests.
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4.5 Conclusion

In this Chapter, we created a model based on the generation of several independent vectors for each
entity and relation that overrides the expressiveness restrictions of most of the embedding models. To
our knowledge, MDE is one of the few existing KG embedding approaches that are unable to allow the
modeling of all the three very frequent relation patterns. We framed MDE into a Neural Network
structure and validated our contributions via both theoretical proofs and empirical results.

We demonstrated that with multiple views to translation embeddings and by using independent
vectors (it was previously supposed to cause poor performance [77, 72]), a model can perform
solidly in the link prediction task. Our experimental results confirm the competitive performances of
MDE in MR and Hit@10 on the benchmark datasets. Particularly, MDE outperforms all the current
state-of-the-art models for the benchmark of composition relation patterns.
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CHAPTER 5

Graph Feature Aware Knowledge Graph
Embedding

Knowledge graph embedding (KGE) is lately at the center of many artificial intelligence studies due to
its applicability for solving downstream tasks, including link prediction and node classification. To
target the KGE challenge more effectively, in the previous Chapter, we proposed a multi-objective
method that allows learning relation patterns of knowledge graphs. The training mechanism of MDE,
as in most knowledge graph embedding models, encodes node relations into the vector space, utilizing
only the local graph structure of an entity, i.e., information of the 1-hop neighborhood. However,
capturing global features of entities besides the local graph structure is crucial for prediction tasks on
knowledge graphs.

This Chapter proposes a novel KGE method named Graph Feature Attentive Neural Network
(GFA-NN) that extracts graphical features of entities. GFA-NN not only considers the local graph
structure of a knowledge graph as in the conventional methods but also generates embeddings that
entail the graph features. Consequently, the resulting embeddings of GFA-NN are attentive to two
types of global network features; First, nodes’ relative centrality, based on the observation that some
of the entities are more “prominent” than the others, and second, the relative position of entities in the
graph. GFA-NN computes several centrality values per entity, generates a random set of reference
nodes’ entities, and computes a given entity’s shortest path to each entity in the reference set. It then
learns this information through optimization of objectives specified on each of these features.

Besides theoretically analyzing the proposed graph feature learning, we empirically investigate the
performance of GFA-NN on several link prediction benchmarks. We show that GFA-NN achieves
on-par or better results than state-of-the-art KGE solutions in both inductive and transductive settings.
In addition, we investigate the potential of GFA-NN in embedding large knowledge graphs by testing
it on a large-scale biological dataset, where it significantly outperforms the current models. In this
Chapter, we target the second research question:

Research Question 2

Does learning network features of knowledge graphs improve the efficiency of KG embedding?
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Contributions of this Chapter are as follows:
• Proposing a score function for embedding graph features alongside relational learning.

• Providing the mathematical formulation of several graph features, normalizing and adopting these
features to make them compatible with relational learning.

• Proposing GFA-NN model: a neural network for feature-aware knowledge graph embedding.

• Providing a theoretical analysis for learning graph features in GFA-NN, highlighting the potential
and limitations.

• Empirically evaluating graph feature-aware embedding of knowledge graphs, where it outperforms
the state-of-the-art KGE methods in several benchmarks.

This Chapter is based on the following publication [27]:
■ Afshin Sadeghi, Diego Collarana, Damien Graux, Jens Lehmann. Embedding Knowledge Graphs

Attentive to Positional and Centrality Qualities. In Proceedings of the European Conference on
Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD)
2021, 548–564.

Knowledge graphs (KGs) are capable of integrating heterogeneous data sources under the same
graph data model. Thus KGs are at the center of many artificial intelligence studies. KG nodes
represent concepts (entities), and labeled edges represent the relation between these entities, e.g.
(Berlin, CapitalOf, Germany) is a fact stating Berlin is the capital of Germany. KGs such as Wikidata,
WordNet, Freebase, and Nell include millions of entities and relations representing the current
knowledge about the world. KGs, in combination with Machine Learning models, are used for refining
the knowledge graph itself and for downstream tasks, like link prediction and node classification.
However, to use KGs in Machine Learning methods, we need to transform the graph into vector space
representations named knowledge graph embeddings (KGE).

KGE has many applications, including analysis of social networks and biological pathways. Thus,
many approaches have been proposed ranging from translation methods, e.g., Trans* family [14, 28,
29]; Rotation-based methods, e.g., RotatE [30]; Graph Convolutional methods, e.g., R-GCN [88],
COMPGCN [44], and TransGCN [89]; and Walk-based methods , e.g., RDF2Vec [90].

Traditional graph embedding methods, however, rely exclusively on facts (triples) that are explicitly
present in a knowledge graph. Therefore, their prediction ability is limited to a set of incomplete facts.
A means of improvement is to incorporate complementary information in the embeddings. A class of
methods applies external knowledge such as entity text descriptions [91] and text associations related
to entities[92] into the KG modeling. In contrast, intrinsic methods extract complementary knowledge
from the same KG. For example, the algorithms that derive logical rules from a KG and combine
them with embeddings of the KG [93, 94]. Analogously recent studies [49] consider graph structural
features as an intrinsic aspect of KGs in the embedding.

This Chapter addresses a challenge of most KGE models; These methods independently learn the
existence of relation from an entity to its hop-1 neighborhood. This learning strategy neglects the fact
that entities located at a distance can still affect an entity’s role in the graph. Besides that, the location
of the entities in the network can be beneficial for distinguishing nodes.
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Figure 5.1: An example knowledge graph in which nodes 𝑒1 and 𝑒2 are difficult to distinguish by a KGE model
only using their neighborhood information.

Figure 5.1 illustrates such an example where the goal is to learn embeddings for 𝑒1 and 𝑒2 entities
in the KG. Distinguishing between the two candidates, i.e., George W. Bush and George H. W. Bush,
is challenging for previous methods since 𝑒1 and 𝑒2 have almost the same neighbors, except George W.
Bush graduated from Harvard University while George H. W. Bush did not.

However, If we compare 𝑒1 to 𝑒2 using their eigenvector centrality, we can easily distinguish them.
𝑒1 has a greater centrality than 𝑒2 since 𝑒1 is connected to Harvard that has a high eigenvector centrality.
Analogously, if we consider the shortest path of 𝑒1 and 𝑒2 to 𝑒3 that belongs to set of reference node
𝑆, their distance to 𝑒3 is different. Intuitively, if a model could beforehand know the centrality and
distance to 𝑒3 as additional knowledge, it can more easily model 𝑒1 and 𝑒2 and rank them correctly.

With a new view to knowledge graph embedding, we propose GFA-NN1, an approach that learns
both the local relations between the entities and their global properties in one model. In order to
effectively encode entity indicators in knowledge graph modeling, we focus on learning node centrality
and positional indicators (e.g., the degree, Katz, or eigenvalue centrality of entities in the graph) as
well as the knowledge graph structure.

For this purpose, we fuse the modeling of each entity indicator in the style of Multiple Distance
Embedding (MDE) [15] where distinct views to knowledge graphs are modeled through independent
embedding weights.

GFA-NN extracts positional information and four centrality indicators of nodes from the KG and
defines a learning function for each one. Then GFA-NN scores their aggregation with MDE. Previously,
different leanings were applied to embedding models using constraints in the loss function. Now that
MDE has broken the limitation of using more than one objective function on independent embeddings,
we directly add new extracted information about the entities as aggregated objective functions.

1Source code is available at https://github.com/afshinsadeghi/GFA-NN
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Chapter 5 Graph Feature Aware Knowledge Graph Embedding

Centrality values and the position of nodes in graphs are global measurements for nodes across the
whole graph. If we use a local assignment, for example, the number of paths between specific nodes,
this measurement may have different weights based on what portion of the network is considered in
the calculation.

Despite the exciting recent advancements, most of the previous works fail to learn the relation
between entities regarding the whole graph. Therefore, we define relative position attentive and
relative centrality attentive functions for embedding the relative importance of nodes and their position
relative to the whole network. In the following section, we discuss the relation between our work and
the current state-of-the-art.

We outline in Section 5.2 the idea of centrality and positional qualities learning and explain
our approach. In Section 5.3, we mention the model’s theoretical analysis; and we continue with
experiments that evaluate our model in Section 5.4.

5.1 Background

We conceive a KG as a multi-relational graph. An entity in such formulation is equivalent to a node in
graph theory, and an edge represents a relation. In this study, we use Node and Entity interchangeably.
We use the term “Node" to emphasize its graphical properties. and we use the term “Entity" to
highlight the entity’s concept.

Link prediction on knowledge graphs is made by a Siamese classifier that embeds KG’s entities and
relations into a low-dimensional space. Thus, a knowledge graph embedding model is a function f : E,
R → Z, that maps entities E and relations R to 𝑑-dimensional vectors Z = {𝑧1, . . . , 𝑧𝑛}, 𝑧𝑖 ∈ R.

In the following, we first review the definition for Structure-based Embedding from the Chapter 2
and then provide a generalization of the position-aware embedding definition [49] that distinguishes
our method from the previous works:

Structure-based Embedding: A KG embedding 𝑧𝑖 = f : E, R → Z is attentive to network
structure if it is a function of entities and relations such that it models the existence of a neighborhood
of an entity e𝑖 using relations r𝑖 and other entities 𝑒 𝑗 ∈ E. Most knowledge graph embedding methods
like QuatE and RotatE compute embeddings using the information describing connections between
entities and, therefore, structure-based.

Property-Attentive Embedding: A KG embedding 𝑧𝑖 = f : E, R → Z is attentive to network
properties of an entity if there exists a function 𝑔𝑝 (., ., ...) such that 𝑑𝑝 (𝑣𝑖 , 𝑣 𝑗 , ...) = 𝑔𝑝 (𝑧𝑖 , 𝑧 𝑗), where
𝑑𝑝 (, ) is a graphical property in G. This definition includes both the property of a sole node such as
its centrality and the properties that describe the inter-relation of two nodes such as their shortest
path. Examples of Property-Attentive Embedding are P-GNNs [49] and RDF2Vec [90], which their
objective function incorporates the shortest path between nodes into embedding computation.

We show that current KGE methods cannot recover global graph properties, such as path distances
between entities and centrality of nodes, limiting the performance in tasks where such information is
beneficial. Principally, structure-aware embeddings cannot be mapped to property-aware embeddings.
Therefore, only using structure-aware embeddings as input is not sufficient when the learning task
requires node property information. This work focuses on learning KGEs capturing both entities’ local
network structures conjointly with the global network properties. We validate our hypothesis that a
trait between local and global network features is crucial for link prediction and node classification
tasks.
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5.2 Method

A KGE is attentive to node network properties if the embedding of two entities and their relation
can be used to approximately estimate their network feature, e.g., their degree relative to other entities
in the network.

You et al. [49] show for position attentive networks, there exists a mapping 𝑔 that maps structure-
based embeddings 𝑓𝑠𝑡 (𝑣𝑖), ∀ 𝑣𝑖 ∈ V to position attentive embeddings 𝑓𝑝 (𝑣𝑖), ∀ 𝑣𝑖 ∈ 𝑉 , if and only if
no pair of nodes have isomorphic local q-hop neighborhood graphs. This proposition justifies the
good performance of KGE models in tasks requiring graphical properties and their under-performance
in real-world graphs such as biological and omniscience KGs (e.g., Freebase, DBpedia), in which
the structure of local neighborhoods are quite common. This proposition, however, does not hold
for centrality attentive embeddings. The reason is that if no pair of nodes have isomorphic local
q-hop neighborhood graphs, it is still possible for them to have the same centrally attentive embed-
dings. For example, two nodes with the same number of neighbors consisting of different nodes have
the same degree; however, their neighborhoods are non-isometric. We formulate this proposition below:

Proposition:

For position attentive networks, we know (You et al. [49]) that there exists a mapping 𝑔 that maps
structure-based embeddings 𝑓𝑠𝑞(𝑣𝑖), ∀ 𝑣𝑖 ∈ V to position attentive embeddings 𝑓𝑝 (𝑣𝑖), ∀ 𝑣𝑖 ∈ 𝑉 , if
and only if no pair of nodes have isomorphic local q-hop neighbourhood graphs.
This proposition does not hold for centrality attentive embeddings.

Proof. If no pair of nodes have isomorphic local q-hop neighborhood graphs, it is still possible for
them to have the same centrally attentive embeddings. To show that, it is enough that two nodes
have the same centrally value in the graph: for example, for degree centrality, when the two nodes
have the same number of neighbors, that are consisting of different nodes, their neighborhoods are
non-isometric; however, they have the same degree centrality.

Therefore 𝑓𝑝 (𝑣𝑖) can not be a function of 𝑓𝑠𝑡 (𝑣𝑖), and the two pairs of nodes would have different
structure-aware node embeddings while their centrally attentive embeddings are equal. □

We show in Section 5.2 how we address this challenge for centrality learning.

5.2 Method

This Section details our proposed method for generating entity network properties attentive embeddings
from knowledge graphs. We generalize the concept of knowledge graph embedding with a primary
insight that incorporating centrality and distance values enables KGE models to compute embeddings
with respect to the graphical proprieties of entities relative to the whole network instead of only
considering the direct local neighbors (Figure 5.2, left side).

When modeling the positional information, instead of letting each entity model the information
independently and selecting a new reference set per iteration, we keep a set of reference entities
through training iterations and across all the networks in order to create comparable embeddings. This
design choice enables the model to learn the position of nodes with respect to the spectrum of different
reference node positions and makes each embedding attentive to position (Figure 5.2, top left).

GFA-NN models each graphical feature with a dedicated objective function, meaning that the
information encrypted in centrality attentive embeddings does not interfere with the embedding vectors
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Figure 5.2: Architecture of GFA-NN. GFA-NN first pre-computes the centrality property of nodes and their
distance to a set of to randomly selected reference nodes (Left). Then, node centrality and position embeddings
attentive to position 𝑧𝑣𝑚 are computed via scores 𝐹1, ..., 𝐹𝑘 from the distance between a given node 𝑣𝑖 and the
reference-sets 𝑆𝑖 which are shared across all the entities (Top-middle).

that keep the positional information (Figure 5.2, top right). To compute the embedding 𝑧𝑣1
for node

𝑣1, a score of GFA-NN first computes via function 𝐹𝑖 and then aggregates the 𝐹𝑖 scores via 1×1
convolution and an activation function over obtains a vector of final scores. Inside 1×1 a vector 𝑤
learned, which is used to reduce scores into one centrality and position-aware score and produces
embeddings 𝑧𝑣1

which is the output of the GFA-NN (Figure 5.2, right side).
Centrality for nodes are individual values. While positional values are calculated relative to a set

of nodes in a graph, only one centrality value per entity is extracted. Still, learning this information is
valuable because the centrality value of a node is meaningful despite the absence of a large portion of
the network. This trait is particularly beneficial in inductive relation prediction tasks.

5.2.1 Model Formulation

The components of GFA-NN are as follows:
■ Random set of reference nodes for distance calculations.
■ Matrix 𝑀 of distances to random entities, where each row 𝑖 is a set of the shortest distance of an

entity to the selected set of random nodes.
■ Trainable vectors 𝑟𝑑 , ℎ𝑑 , 𝑡𝑑 that project distance matrix 𝑀 to a lower dimensional embedding space
𝑧 ∈ R𝑘 .

■ Structure-attentive objective functions 𝑓
𝑠𝑡

1 (𝑣𝑖), . . . , 𝑓𝑠𝑡𝑘 (𝑣𝑖) that model the relatedness information
of two entities with their local network, which is indicated by triples that consist of head and tail
nodes (entities) connected by an edge (relation).
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■ Position-attentive objective function 𝐹𝑠 that models the position of a node (entity) in the graph with
respect to its distance to other nodes. This objective considers these distances as a factor of the
relatedness of entities.

■ Centrality attentive objective functions 𝐹𝑐 that model the relatedness information of two entities
according to centrality properties of nodes (entities). In this setting, the global importance of nodes
is learned relative to the centrality of other nodes.

■ Trainable aggregation function 𝑓1×1 is a 1×1 convolution [95] that fuses the modeling of the
structure-based connectivity information of the entities and relations with their position aware and
centrality attentive scoring.

Our approach consists of several centrality and position-attentive phases that each of which learns an
indicator in a different metric of the status of entities relative to the network.

In the first phase, GFA-NN performs two types of computation to determine the position status and
the centrality status of entities. The unit for centrality status computes the relative significance of
entities as a vector of length one 𝑐 𝑗

𝑖
, where 𝑗 represents each of the centrality metrics. The unit for

position status embedding samples 𝑛 random reference-entities 𝑆𝑛, and computes an embedding for
entities. Each dimension 𝑖 of the embedding is obtained by a function 𝐹 that computes the shortest
path to the 𝑖-th reference entity relative to the maximum shortest path in the network.

Then objective functions 𝐹𝑠, 𝐹
1
𝑐 , ..., 𝐹

4
𝑐 apply an entity interaction model to enforce the property

features 𝑒𝑠𝑖 into entity embeddings 𝑒𝑖 , which in the next phase makes a 1×1 convolution [95] over the
scores via weights 𝑤 ∈ R𝑟 and non-linear transformation Tanhshrink. Specifically, each entity earns
an embedding per attribute that includes values that reveal the relative status information from input
entity network properties information. Calculation of the centrality for all nodes in the network leads
to a vector representation of the graph for each measure, while the distances to the reference nodes 𝑆
generate a dense matrix representation.

The network property attentive modeling functions are the same class of functions as used by
existing translational KGEs plus a modeling function of embeddings that we extended to be performed
in 3D using a rotation matrix. In the following, we further elaborate on the design choices.

5.2.2 Centrality-Attentive embedding:

As shown in Section 5.1, the centrality values are not canonical. Therefore, the model learns their
difference in a normal form, in which the equality of their norm does not mean they are equal. Degree
centrality is defined as : 𝐶𝑑 (𝑛) = deg(𝑛).

Katz centrality [96] extends degree centrality from counting neighbor nodes to nodes that can be
connected through a path, where the contribution of distant nodes is reduced:

𝐶𝑘 (𝑛) =
∞∑︁
𝑘=1

𝑁∑︁
𝑗=1
𝛼
𝑘
𝐴
𝑘
𝑗,𝑖

where 𝐴 is the adjacency matrix and 𝛼 is attenuation factor in the range (0, 1). Another included
centrality measure is PageRank with the following formulation:

𝐶𝑝 (𝑛) = 𝛼
∑︁
𝑗

𝑎 𝑗 ,𝑖

𝐶𝑝 ( 𝑗)
𝐿 ( 𝑗) + 1 − 𝛼

𝑁
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where 𝑁 is |𝑉 |, the number of nodes in the graph, and 𝐿 ( 𝑗) is the degree of node 𝑗 . Relative
eingenvector centrality score of a node n is defined as:

𝐶𝑒𝑖(𝑛) =
1
_

∑︁
𝑚∈𝐾𝐺

𝑎𝑚,𝑛𝑥𝑚

where 𝐴 = (𝑎𝑣,𝑡 ) is the adjacency matrix such that 𝑎𝑣,𝑡 = 1 if node 𝑛 is linked to node 𝑚, and 𝑎𝑣,𝑡 = 0
otherwise. _ is a constant which fulfils the eingenvector formulation 𝐴𝑥 = _𝑥. Note that the method
in first phase normalizes each of the centrality values. The normalization occurs with respect to
minimum and the maximum value for nodes in the network and makes attributes relative to the whole
network. For example, degree centrality is normalized as follows:

𝐶
𝑑
𝑖 =

𝑑𝑒𝑔𝑟𝑒𝑒(𝑖) − 𝑑𝑒𝑔𝑟𝑒𝑒𝑚𝑖𝑛
𝑑𝑒𝑔𝑟𝑒𝑒𝑚𝑎𝑥 − 𝑑𝑒𝑔𝑟𝑒𝑒𝑚𝑖𝑛

The centrality-attentive modeling embeddings functions are the same class of dissimilarity functions
used by existing KGEs plus a penalty we define on the difference of the entity embeddings as:

𝐹
𝑐
𝑑 = ∥ℎ𝑖 − 𝑡𝑖 ∥2 − ∥ cos(𝑙𝑜𝑔(𝐶𝑑ℎ )) − cos(𝑙𝑜𝑔(𝐶𝑑𝑡 ))∥2 (5.1)

where the function is normalized with the 𝑙2 norm, ℎ𝑖 and 𝑡𝑖 represent the vector representation of
head and tail in a triple and lastly, 𝐶𝑑ℎ and 𝐶𝑑𝑡 respectively denote the centrality values of the head and
tail entities in that triple.

5.2.3 Position-Attentive embedding:

GFA-NN models the neighborhood structure using rotations in 3D space and a penalty that forces the
method to encode the difference in distances of entities to the reference nodes. The formulation for
the structure-attentive part is:

𝐹𝑟𝑜𝑡 =∥ 𝑣ℎ − 𝑣𝑟 ⊗ 𝑣𝑡 ∥2 (5.2)

where ⊗ represents a rotation using a rotation matrix of Euler angles with the formulation of direction
cosine matrix (DCM):[cos \ cos𝜓 − cos 𝜙 sin𝜓 + sin 𝜙 sin \ cos𝜓 sin 𝜙 sin𝜓 + cos 𝜙 sin \ cos𝜓

cos \ sin𝜓 cos 𝜙 cos𝜓 + sin 𝜙 sin \ sin𝜓 − sin 𝜙 cos𝜓 + cos 𝜙 sin \ sin 𝜙
− sin \ sin 𝜙 cos \ cos 𝜙 cos \

]
(5.3)

where 𝜙, \ ,and 𝜓 are Euler angles. The modeling of positional information is performed by a score
function made from rotation matrices and a penalty:

𝐹𝑝 = 𝐹𝑟𝑜𝑡− ∥ cos(𝑆ℎ𝑖 ) − cos(𝑆𝑡𝑖 )) ∥2 (5.4)

where 𝑆𝑖𝐶 is the calculated distance from the head and tail nodes to the reference nodes. Hence, the
score enforces to learn structure-attentive embeddings with a penalty that is the normalized scalar
difference of distance to reference nodes. Here we use the 𝑙2 norm to regularize the 𝐹𝑖 score functions
and apply adversarial negative sampling technique to generate weighted scores per sample [30]. We
utilise Adam [24] for optimization.
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5.3 Theoretical analysis

Reference-set selection relies on a Gaussian random number generator to select normally distributed
random reference nodes from the network. GFA-NN keeps a fixed set of reference nodes during
the training of different entities through different iterations to generate embeddings attentive to the
position that are in the same space and, hence, comparable to each other.

Multiple Property aware scores can be naturally fused to achieve higher expressive power. This
happens in 𝑓1×1. Since canonical position-attentive embeddings do not exist, GFA-NN also computes
structure-attentive embeddings ℎ𝑣 via the common distance-based modelings of MDE. These scores
are aggregated with attribute attentive scores, and then the model using a linear combination of these
scores forms a 1×1 convolution to produce only one value that contains both properties. The output of
this layer is then fed into the nonlinear activation function.

It is notable that independent weights in MDE formulation allow restricting solution space without
limiting the learnability power of the model. Note also that the method is still Semi-supervised
learning, where the train and test data are disjoint, and the centrality and path information computation
does not consider the portion of the unknown network to the model and only exist in the test data.

5.3 Theoretical analysis

5.3.1 Connection to Preceding KGE Methods

GFA-NN generalizes the existing knowledge graph embedding models. Taking the definition for the
structure-aware and node properties attentive models into perspective, existing knowledge embedding
models use the same information of connecting entities through different relations techniques but use
different neighborhood selection scoring functions and sampling strategies, and they only output the
structure-aware embeddings.

GFA-NN shares the score function aggregate training with MDE [15]. There, a linear combination
of scores 𝑓1×1 =

∑
𝑤𝑖𝐹𝑖 is trained, where 𝑤𝑖 weights are learnt together with the embeddings in the

score functions 𝐹𝑖 . GFA-NN also shares the concept of training independent embeddings with MDE.
The direction cosine matrix used in modeling positional information is convertible into a four-element
unit quaternion vector (𝑞0, 𝑞1, 𝑞2, 𝑞3). The quaternions are the center of the structure-based model
QuatE [17], where the relations are models as rotations in the quaternion space. Here, besides
modeling rotation, we formulated the score to include a translation as well. RotatE [30] similarly,
formulates the relations with a rotation and reduction in ∥ 𝑣ℎ ◦ 𝑣𝑟 − 𝑣𝑡 ∥, however RotatE models
rotation in the complex space. In the branch of Graph neural networks, the aggregate information of a
node’s neighborhood in one-hop [97, 98, 44] or nodes in the higher hops [99] is used in the message
passing mechanism.

P-GNN [49] explicitly learns the shortest path of random nodes for simple graphs. However, it
takes a new set of reference nodes in each iteration, which makes the learning of shortest paths local
and incremental. In addition, it makes it difficult to retain the structural information from positional
embedding. GFA-NN generalizes positional learning by learning the distances to a fixed set of random
nodes through the whole network, which makes the positional embedding vectors globally comparable.
From the point of view of graph type, GFA-NN generalizes the positional learning to multi-relational
graphs to support KGs. GFA-NN not only learns a weight for each of the network features, but it
also associates it with the existing relation types between the two entities that their features are being
learned. By including the relation type into position-attentive embeddings, the position also is encoded
into relation vectors that connect the entities.
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Note that relation type learning is sub-optimal for learning centrality values because the dimension
of relation types is much higher than the dimension of the node property values (one integer value),
which makes the centrality value differentiation diminish when learned together with the association
information belonging to relations. Another aspect that GFA-NN generalizes the existing graph
learning algorithms is that this method learns several centrality aspects and positional information at
the same time.

5.3.2 Expressive Power

In this Section, we explain how GFA-NN generalizes the expressive power of knowledge graph
embedding methods from the perspective of a broader Inductive bias. Generally, inductive bias in a
learning algorithm allows it to better prioritize one solution over another, independent of the observed
data [100].

Assuming that a labeling function 𝑦 labels a triple (ℎ, 𝑟, 𝑡) as 𝑑𝑟𝑦 (ℎ, 𝑡), we predict 𝑦𝑟 , similar to [49]
from the perspective of representation learning, which is by learning an embedding function 𝑓 , where
𝑣ℎ = 𝑓 (𝑣, 𝐺) and f computes the entity embeddings for 𝑣ℎ, 𝑣𝑟 and 𝑣𝑡 . Thus, the objective becomes
the task of maximizing the probability of the conditional distribution 𝑝(𝑦 |𝑣ℎ, 𝑣𝑟 , 𝑣𝑡 ). This probability
can be designated by a distance function 𝑑𝑣 (𝑣ℎ, 𝑣𝑟 , 𝑣𝑡 ) in the embedding space, which usually is an 𝑙𝑝
norm of the objective function of the model.

A KGE model, with a goal to predict the existence of an unseen triple (h, r, t), learns embeddings
weights vℎ and v𝑡 for the entities ℎ and 𝑡 and v𝑟 for a relation r that lies between them. In this
formulation, the embedding for an entity e is computed based on its connection through its one-hop
neighborhood, which we express by structural information 𝑆𝑒, and optimization over the objective
function 𝑓\ (𝑒, 𝑆𝑒). Hereby, the neighborhood information of two entities 𝑆𝑒1

and 𝑆𝑒2
is computed

independently. However, the network feature attentive objective function 𝑓𝜙 in GFA-NN poses a more
general inductive bias that takes in the distance from a random shared set of reference nodes, which
are common across all entities, and the centrality values, which are relative to all nodes. In this setting,
any pair of entity embeddings are correlated through the reference-set and the spectrum of relative
centrality and therefore are not independent anymore. We call this feature attentive information I.

Accordingly, we define a joint distribution 𝑝(𝑤𝑒1
, 𝑤𝑒2

) over node embeddings, where𝑤𝑒𝑖 = 𝑓𝜙 (𝑒𝑖 , 𝐼).
We formalize the problem of KG representation learning by minimizing the expected value of the
likelihood of the objective function in margin-based ranking setting, in the following for a structure
base KGE:

min
\
E𝑒1,𝑒2,𝑒3,𝑆𝑒1

,𝑆𝑒2
,𝑆𝑒3

L(𝑑+𝑣 ( 𝑓\ (𝑒1, 𝑆𝑒1
), 𝑓\ (𝑒2, 𝑆𝑒2

)) − 𝑑−𝑣 ( 𝑓\ (𝑒1, 𝑆𝑒1
), 𝑓\ (𝑒3, 𝑆𝑒3

)) − 𝑚)
(5.5)

and in GFA-NN:

min
\
E𝑒1,𝑒2,𝑒3,𝐼

L(𝑑+𝑣 ( 𝑓𝜙 (𝑒1, 𝐼), 𝑓𝜙 (𝑒2, 𝐼)) − 𝑑
−
𝑣 ( 𝑓𝜙 (𝑒1, 𝐼), 𝑓𝜙 (𝑒3, 𝐼)) − 𝑚) (5.6)

where 𝑑+𝑣 is the similarity metric determined by the objective function for a positive triple, indicating
existing a predicate between entities and by optimizing converges to the target label function
𝑑𝑦 (𝑒1, 𝑒2) = 0 for positive samples(existing triples) and 𝑑𝑦 (𝑒1, 𝑒3) = 𝑚 on negative samples. Here, 𝑚
is the margin value in the margin ranking loss optimization setting.
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Table 5.1: Statistics of the data sets used in the Experiments.
Dataset #entities #relations #train #validation #test

WN18RR 40943 11 86835 3034 3134
FB15k-237 14541 237 272115 17535 20466
ogbl-biokg 45085 51 4762678 162886 162870

WN18RR-𝑣3-ind 5084 11 6327 538 605
WN18RR-𝑣4-ind 7084 9 12334 1394 1429
NELL-995-𝑣1-ind 225 14 833 101 100
NELL-995-𝑣4-ind 2795 61 7073 716 731

Note that the representations of entities are calculated using joint and marginal distributions,
respectively. Similar to the proof of expressive power in [49], considering the selection of entities
𝑒1, ..., 𝑒𝑖 ∈ 𝐺 as random variables to form any triples, the mutual information between the joint
distribution of entity embeddings and any 𝑌 = 𝑑𝑦 (𝑒1, 𝑒2) is more significant than that between the
marginal distributions.

𝑌 : 𝐼 (𝑌 ; 𝑋 𝑗𝑜𝑖𝑛𝑡 ) ≥ 𝐼 (𝑌 ; 𝑋𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙). Where,
𝑋 𝑗𝑜𝑖𝑛𝑡 = ( 𝑓𝜙 (𝑒1, 𝑆𝑒1

), 𝑓𝜙 (𝑒2, 𝑆𝑒2
)) ∼ 𝑝( 𝑓𝜙 (𝑒1, 𝑆𝑒1

), 𝑓𝜙 (𝑒2, 𝑆𝑒2
))

𝑋𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙 = ( 𝑓\ (𝑒1, 𝐼), 𝑓\ (𝑒2, 𝐼))

Because the gap of mutual information is large when the targeted task is related to positional and
centrality information of the network, we deduce that KGE embedding based on the joint distribution
of distances to reference nodes and relative centrality values has more expressive power than the
current structure-based KGE models.

5.3.3 Complexity Analysis

Next, we explain the complexity of the method and show its complexity compared to the structure-based
models. When the shortest paths are calculated on the fly, the learning complexity is added up by
𝑂 (𝑏 𝑙𝑜𝑔(𝑏)) for finding the shortest paths on 𝑏 entities in each batch, and similarly, the centrality
computation aggregates to the complexity. We, therefore, pre-calculate this information to separate
them from the learning complexity. The complexity of each of the objective functions on a batch with
size 𝑏 is𝑂 (𝑏), and suppose 𝑛 property attentive features and 𝑚 structure-aware scores be involved, the
overall complexity becomes 𝑂 ((𝑛 + 𝑚) 𝑏). Note that the larger number here is 𝑏, and the complexity
increases by 𝑏 times when a graphical feature is involved in the learning.

5.4 Experiments

We evaluate the performance of our model with three experiments. The first experiment is the
traditional transductive ranking benchmark on datasets extended from the work initially introduced in
[14]. The second experiment is another transductive ranking evaluation on a large-scale dataset, and
the third is the inductive relation prediction experiment. This experiment evaluates a model’s ability
to generalize the link prediction task to unseen entities in the inductive setting. Table 5.1 shows the
statistics of the datasets used in the experiments.
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Table 5.2: Results on WN18RR and FB15k-237. Best results are in bold.
WN18RR FB15k-237

Model MR MRR Hit@10 MR MRR Hit@10
ComplEx-N3 – 0.48 0.57 – 0.37 0.56

QuatE2 – 0.482 0.572 – 0.366 0.556
TuckER – 0.470 0.526 – 0.358 0.544

CompGCN 3533 0.479 0.546 197 0.355 0.535
RotatE 3340 0.476 0.571 177 0.338 0.533
MDE 3219 0.458 0.536 203 0.344 0.531

GFA-NN 3390 0.486 0.575 186 0.338 0.522

Metrics and Implementation: We evaluate the link prediction performance by ranking the score
of each test triple against all possible derivable negative samples by once replacing its head with all
entities and once by replacing its tail. We then calculate the hit at N (Hit@N), mean rank (MR), and
mean reciprocal rank (MRR) of these rankings. We report the evaluations in the filtered setting. We
determine the hyper-parameters by using a grid search. We select the testing models that give the best
validation set results. We generally fix the learning rate on 0.0005 and search the embedding size
amongst {200, 300, 400, 500}. We search the batch size from {250, 300, 500, 800, 1000}, and the
number of negative samples amongst {10, 100, 200, 400, 600, 800, 1000}. We describe all GFA-NN
hyper-parameters in the end of this Section2.

5.4.1 Transductive link prediction experiment

Datasets: We perform experiments on three benchmark datasets: WN18RR [47], FB15k-237 [59],
and ogbl-biokg [60], which is comparably a sizeable knowledge graph assembled from a large number
of biomedical repositories.

Baselines: We compare our model with several state-of-the-art structure-based embedding
approaches. Our baselines include RotatE [30], TuckER [101], ComplEx-N3 [102], QuatE [17],
MDE [15] and the recent graph neural network CompGCN [44]. We report results of each method on
WN18RR and FB15k-237 from their respective papers, while the results of the models in ogbl-biokg

are from [60]. For RotatE, we report its best results with self-adversarial negative sampling, and
for QuatE, we report the results with N3 regularization. Our model uses the exact self-adversarial
negative sampling introduced in RotatE. This negative sampling schema is also applied to all the other
models in the ogbl-biokg benchmark.

Results and Discussion: Table 5.2 and Table 5.3 summarize the performance of GFA-NN and
other KGE models in the transductive link prediction task. We observe that GFA-NN outperforms
other state-of-the-art KGEs on WN18RR and is producing competitive results on FB15k-237.

Our analysis shows that the standard deviation of different positional and centrality measures through
the network in WN18RR is ≈0.009, while in FB15k-237, it is ≈0.002, which is 4.5 times smaller.
This comparison indicates that in WN18RR, these features are more diversified, but in FB15k-237,
they are close to each other. This analysis suggests the crucial impact of learning centrality and
positional-attentive embeddings on the superiority of the GFA-NN on the WN18RR benchmark.

2As well in the source code’s manual: https://github.com/afshinsadeghi/GFA-NN
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Table 5.3: MRR Results for ogbl-biokg. (Results of previous models are from [60].)
Method Validation Test
TransE 0.7456 0.7452
DistMult 0.8055 0.8043
ComplEx 0.8105 0.8095
RotatE 0.7997 0.7989
GFA-NN 0.9011 0.9011

Table 5.4: Hit@10 results for inductive datasets. (Other models’ results are from [51].)
Model WN18RR-𝒗3-ind WN18RR-𝒗4-ind NELL-995-𝒗1-ind NELL-995-𝒗4-ind

NeuralLP 0.4618 0.6713 0.4078 0.8058
DRUM 0.4618 0.6713 0.5950 0.8058
RuleN 0.5339 0.7159 0.5950 0.6135
GraiL 0.5843 0.7341 0.5950 0.7319

GFA-NN 0.5893 0.7355 0.9500 0.7722

While the result on the FB15k-237 is still very competitive to the state-of-the-art, as a lesson
learned, we can declare it as a fixed procedure to perform the standard deviation analysis on a dataset
before determining how much the network property attentive embedding learning method would be
beneficial.

Table 5.3 shows the MRR evaluation results on the comparably large biological dataset named as
ogbl-biokg. In this benchmark, the number of entity and training samples is much larger than the
WN18RR and FB15k-237 datasets.

The capability of learning feature attentive embeddings is crucial in this transductive link prediction
task. While the best KGEs can only achieve the 𝑀𝑅𝑅 of 0.8105 on the validation and 0.8095 on the
test dataset, GFA-NN reaches 0.901 on both datasets, improving state-of-the-art by 9 percent. This
wide gap between the results supports the assumption that property-attentive embeddings surpass
prior methods in larger-scale real-world networks. A cause for this significant efficiency difference
is that traditional methods have difficulty differentiating entities in large-scale networks due to the
greater number of similar substructures. In contrast, GFA-NN can distinguish such nodes better by
learning the global features of nodes. In addition, in such a small-world structured network, the
entity-to-relation ratio is more substantial, which causes a considerable standard deviation of positional
and centrality qualities. As indicated earlier, this feature is beneficial to the model’s efficiency.

5.4.2 Inductive link prediction experiment

Datasets: For evaluations in the inductive setting, we select four variant datasets which Komal et
al. [51] extracted from WN18RR and NELL-995 [62].

Baselines: Inductive baselines include GraIL [51], which uses sub-graph reasoning for inductive link
prediction. RuleN [103] that applies a statistical rule mining method, and two differentiable methods
of rule learning NeuralLP [104] and DRUM [105]. We report the results of these state-of-the-art
models from Komal et al. [51].
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Table 5.5: Best hyperparameter setting of GPA-NN on the benchmark datasets.
Dataset Dim Batch size #neg #iterations 𝒈 value

WN18RR 400 300 800 100000 2.5
FB15k-237 1000 1000 200 200000 4.0
ogbl-biokg 400 600 850 700000 2.5

WN18RR-𝑣3-ind 300 1000 200 30000 0.5
WN18RR-𝑣4-ind 200 1400 10 30000 - 0.5
NELL-995-𝑣1-ind 200 300 600 20000 2.5
NELL-995-𝑣4-ind 200 1000 700 20000 2.5

Results: Table 5.4 summarizes the GFA-NN’s Hit@10 ranking performance against methods
specified on the inductive link prediction task. Although we did not explicitly design GFA-NN for
this task, we observe that GFA-NN performs very competitively in this setting and outperforms the
best inductive learning models in most cases. This result supports our hypothesis that the knowledge
graph embedding attentive to positional and centrality qualities are beneficial for prediction tasks in
challenging settings, i.e., inductive link prediction tasks.

Hyperparameter Settings: We list the best hyperparameters setting of GPA-NN on the benchmark
datasets in Table 5.5. The learning rate in all the experiments is fixed to 0.0005, adversarial temperature
for negative sampling is fixed to 2.5, and 𝜓, the dividend for the score aggregation in 𝑓1×1 is fixed to
14.

5.5 Conclusion

In this Chapter, with a new view of the relational learning algorithms, we proposed to learn the
structural information of the network conjointly with learning the centrality and positional properties of
the knowledge graph entities in one model. We provided theoretical analyses and empirical evaluations
to identify the improvements and constraints in the expressive power for this class of KGEs. In
particular, we demonstrated that with proper formulation, learning these global features is beneficial
to the link prediction task, given that GFA-NN performs highly effectively in various benchmarks and
often outperforms current state-of-the-art solutions in both inductive and transductive settings. We
showed this approach can be put forth for tasks on large-scale graphs. Since GFA-NN is effective
on networks with a higher entity-to-relation ratio, applications of the approach can be considered on
biological, chemical, and social networks in future works.
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CHAPTER 6

BenchEmbed: A Framework for Reproducible
Link Prediction Benchmarking

In the previous Chapters 4 and 5, we proposed methods for effective embedding of knowledge
graphs. To effectively compare KGE methods in the link prediction task, testing them on their best
parameters under FAIR [106] conditions is crucial. In this Chapter, we target a common challenge in
the evaluations of the knowledge graph embedding methods, i.e., the lack of reproducible evaluations.
Specifically, a framework to generate reproducible experiments that follow the FAIR principles is
missing.

In this study, we extend the general HOBBIT benchmarking platform to evaluate the link prediction
efficiency of embedding models with such criteria. The source code of this study, a demonstrating
benchmark made by the framework, and the installation and usage guide of the framework are openly
available in https://github.com/mlwin-de/BenchEmbed.

This Chapter targets the research question:

Research Question 3

How can we make the evaluations of embedding models reproducible?

Contributions of this Chapter can be summarized as follows:

• Developing the Benchembed framework that generates fixed test environments to perform repro-
ducible link prediction evaluation of KGE models.

• Presenting the framework structure and providing a base for understanding the approach.

• Providing instructions for adaptation of the work in further studies to promote the application of
reproducible link prediction experiments in future works.

• Providing templates to simplify the extension and deployment of the framework to promote
reproductive link prediction studies.
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This Chapter is based on following publication [107]:

■ Afshin Sadeghi, Xhulia Shahini, Martin Schmitz, Jens Lehmann BenchEmbedd: A FAIR Bench-
marking tool for Knowledge Graph Embeddings. Demo track SEMANTiCS 2021. Xhulia Shahini
and Martin Schmitz collaborated on this paper’s related code implementation and deployment tests.

A gap in current KGE studies is a standard independent evaluation environment that evaluates the
efficiency of models in the FAIR setting (e.g., with the exact vector sizes). Furthermore, these studies
suffer from the lack of a systematic, reproducible evaluation. To target these issues, we extended the
HOBBIT [108] platform as a Holistic benchmarking approach for Big Linked Data. With a new set of
benchmarks to evaluate the efficiency of knowledge graph embedding models with the aforementioned
criteria. We dedicate the rest of this Chapter to explaining the structure of this Benchmarking tool and
demonstrating the usage of the benchmarking system for the knowledge graph embedding models.

We chose HOBBIT as the base because it is developed under FAIR principles [106]. We follow the
same concepts in making this BenchEmbedd, which are:

1. F1 (Meta) data are assigned a globally unique and persistent identifier.

2. F2 Data are described with rich metadata (defined by R1 below).

3. F3 Metadata clearly and explicitly includes the identifier of the described data.

4. F4 (Meta) data are registered or indexed in a searchable resource.

Another advantage of the platform is generating dockerized benchmarking, i.e., once a system (image)
is generated, it is executed locally on a personal computer or a local cluster or deployed on computing
services such as Amazon Web Services (AWS).

The produced benchmarks are accessible, transferable, and easily reusable. This setting promotes
reliable scientific publications because it allows researchers to repeat the evaluations of a study without
concerns about standardized evaluation hardware. We ensure the reproducibility of the evaluations by
generating independent benchmark units that are executable (docker) images of the exact environment
of an initial evaluation made by a researcher. The framework is easily extensible and allows adding
more models.

In the following Section, we explain the structure of our benchmarking platform. We then present
the functionalities of the framework in Section 6.2 and Section 6.3 illustrates a demonstration of
BenchEmbedd and explains the steps to make a new test unit, i.e., Benchmark System.

6.1 Structure:

Figure1 6.1 illustrates the components in the HOBBIT platform structure. To make a HOBBIT-based
benchmark, we created the green and orange components in this figure. These parts consist of the
Benchmark Components (in orange) and Benchmark System (in green).

1The HoBBIT platform structure diagram is from [108].
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6.2 Functionalities

Figure 6.1: HOBBIT platform structure. BenchEmbedd extends it with evaluations and metrics for Link
prediction on knowledge graphs.

The Benchmark Components provide the tasks and data for the experiment unit (system). The
benchmark components work together as an infrastructure for benchmarking an experiment unit
in a link prediction experiment. This section consists of Evaluation Module, Evaluation storage,
Benchmark Controller, Task Generator, and Data Generator.

The Benchmark System contains a complete ready-to-run Benchmarking workflow within a
controlled dockerized2 running environment. A Benchmark System can contain configurations for
running multiple tests on different models and datasets. The benchmarking platform includes a System
configuration template with different configurations. It is possible to extend the framework to include
different test datasets by editing the template.

6.2 Functionalities

A unit of BenchEmbedd performs a concrete Link Prediction evaluation experiment. While KGE
models learn knowledge graphs in triples (head, relation, tail), the link prediction task tests KGE
models on how effectively they predict missing links (triples) in a knowledge graph.

Figure 6.2 shows a knowledge graph with four entities, where the green relations are known. In
this example, the link prediction task tests how well the missing triple (“Polito”, “is a university
in”, “Italy”) is estimated by a knowledge graph learning model. A KGE model is effective if it
generates a high score for the missing link indicating the existence of this relation. The current
implementation computes the following metrics: HIT@1, HIT@3, HIT@10, and Mean Reciprocal
Rank. Our published framework includes the test for TransE [14] model, and it is open to extending to
other models. We configured a benchmark to test over the WN18RR benchmarking dataset for the
demo.

2
https://www.docker.com
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6.3 Demonstration

The benchmark is a Java Maven project. After the setup 3 of BenchEmbedd, to execute a sample
Benchmark system, online one needs to follow these steps:

1. Login to the website https://master.project-hobbit.eu/.

2. Select “Benchmarks”.

3. Select “MLwin Benchmark” in the drop-down list of “Benchmarks”.

4. Select the desired System to Benchmark in the drop-down list “System”.

5. Press the “Submit” button.

At this stage, a popup window will appear. The Experiment Status shows the progress of the running
experiment, and clicking the link in the popup window displays the experiment results once the
experiment is finished. Figure 6.3 illustrates an example of the result table after running the demo
benchmark system.

6.4 Defining new Benchmark Environments:

When Benchembedd generates a benchmark unit, it is not changeable anymore. Therefore, we generate
a new Benchmark test unit for each test the requires different metrics or datasets. On our GitHub page,
we provide a template Benchmark configuration, with the name Benchmark System file, that includes
instructions necessary to make a new Benchmark environment. It is possible to add new tests and
datasets by setting their associated variables in this file. In the following, we explain the steps to define
a new benchmark environment using the extended template Benchmark configuration.

Figure 6.2: An example of a knowledge graph with a missing link.

3Setup guide is in https://github.com/mlwin-de/BenchEmbedd#installation
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6.4 Defining new Benchmark Environments:

Figure 6.3: An example of demonstrated evaluation results.

The benchmark generation steps includes:

1. Writing a Benchmark System file.

2. Providing the set of pre-trained embedding vectors.

3. Creating a system docker image.

4. Writing a system meta-data file.

5. Creating a HOBBIT GitLab account to load up the files.

The steps to write a Benchmark System file are:
1. Extend the TransEtest.java file for a new benchmark system file. It contains the method

“test_triple” that is the base for the link prediction tests.

2. Provide trained embeddings with names “entity2vec.txt” and
“relation2vec.txt”.

Figure 6.1 shows a new independent Benchmark unit (dockerized system) with the color green and
names it “Benchmarked System”. To illustrate the framework in action, have set up and published
an executable Sample Benchmark unit (system) 4. That dockerized unit contains the implemented
framework and the trained embedding vector files with the TransE model. The output files of the
training process for this repository are converted from “.npy” to “.txt” files using the script located at

4mvn commands: https://github.com/mlwin-de/BenchEmbedd#benchmark-the-system-online
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Figure 6.4: An example of system meta-data file.

“src/kge_output_to_data.py”.
HOBBIT project allows publication and deployment of benchmarks generated by Benchembedd. To

deploy and upload the Benchembedd unit in the HOBBIT GitLab, a user requires a HOBBIT GitLab
account. A user can create an account for a new deployment in git.project-hobbit.eu.

HOBBIT GitLab recognizes a Benchembedd user name and a system name of a test unit by reading
a meta-data file inside a test unit. We included a file “system.ttl” that provides a template to declare
this information. After setting this information, a user can push a test unit system to HOBBIT GitLab
as a docker image. Figure 6.4 shows an example of a system meta-data file whose label is adopted to
“sample-system” and includes a GitLab username.

6.5 Conclusion

This Chapter presents Benchembedd, a framework that generates fixed test environments to perform
reproducible link prediction experiments for KGE models. In order to facilitate the research on Link
Prediction and KG embeddings, we developed this framework while keeping in mind the ease of
reproducible benchmark creation. To support further Benchmarks in the link prediction domain,
besides explaining the framework’s structure, we illustrated the method of adaptation and deployment
of the benchmarking system.
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CHAPTER 7

Relational Pattern Benchmarking

The previous Chapters 4 and 5 proposed approaches that target different challenges in the representation
learning of knowledge graphs. The most common procedure to assess the efficiency of the knowledge
graph embedding methods is to put them under the Link Prediction empirical analysis. The Link
Prediction based on KG embeddings targets the sparsity and incompleteness of knowledge graphs.
Chapter 6 proposed a framework to generate reproducible link prediction experiments. This Chapter,
follows on improving the evaluations of KGE methods by providing a better insight into the performance
of KGE methods on individual relation patterns.

Available datasets for evaluation of link prediction methods do not consider different graph patterns,
making it difficult to measure the performance of link prediction models in different knowledge graph
settings. This drawback leads to leaking relation patterns in the current benchmarks, obscuring the
understanding of the models’ actual effectiveness on relation patterns.

This Chapter presents a diverse set of pragmatic datasets to facilitate flexible and problem-tailored
Link Prediction and knowledge graph embedding research. We define knowledge graphs specified
to different relational patterns in a diverse range of inductive characteristics, from being entirely
inductive in one dataset to fully transductive test datasets. In addition, we generate various partially
inductive datasets.

Using the extracted datasets, we embark on a comprehensive benchmark for the state-of-the-art
KGE-based link prediction methods. We analyze the outputs of the methods on our datasets to
compare their capabilities, provided that we consider uniform evaluation metrics for each dataset. Our
analysis of datasets over link prediction models provides a better insight into the suitable parameters
for each situation, optimizing the KG-embedding-based systems.

This Chapter targets the research question:

Research Question 4

How can we recognize a more effective embedding method on a specific relation pattern?
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Contributions of this Chapter are as follows:
• Proposing a new benchmark for link prediction task that targets investigating KGE models on a

single relation pattern basis.

• Proposing several datasets1 by classifying triplets into their respective classes according to their
patterns, keeping in mind the properties from both inductive and transductive types. Therefore, we
extract four categories from each class: Fully Inductive, Fully Transductive, CountBased Inductive,
and either Head or Tail Inductive. Each category is further divided into patterns of Symmetry,
Anti-symmetry, Inverse, and Inductive, making of 32 datasets per category and 96 in total.

• Developing methods for extracting separated patterns and automatic rectifying methods to avoid
data leakage between detests. The datasets are also designed based on unification to benchmark
them onto different link predicting models.

• Observing a significant setback in benchmarking knowledge graph models, we extend the work
done by [60], keeping in mind our set of data.

• Generating a fair comparison to help choose the best model and dataset combination, which is
especially beneficial for NLP Research.

• The previous research on benchmarking datasets was too general; we provide a tool-set to designate
a specific approach according to the type of datasets.

• Exploring the characteristics of the datasets that can be potential performance boosters.

This Chapter is based on following publication [7]:

■ Afshin Sadeghi, Hirra Abdul Malik, Diego Collarana, Jens Lehmannn. Relational Pattern
Benchmarking on the Knowledge Graph Link Prediction Task. Conference on Neural Information
Processing Systems (NeurIPS 2021) 2021.

Some of the most used knowledge graphs include DBpedia [109], Yago [110], Freebase [111] and
WordNet [85]. Despite being in demand, KGs still face many issues, such as data incompleteness. To
tackle the issue, knowledge graph embedding models take the role of link predictors in which they
observe the patterns in knowledge graphs based on how facts are connected together. According to
[112], the goal of the link prediction task is to map the entities/relations to low dimensional vectors
capturing the structure of the knowledge graph, which helps predict the likelihood score of the triple.
Despite advancements in benchmarks, a significant chunk is still unexplored.

In this study, we enhanced the work of [113] by building various datasets on the principles of known
and valuable facts using the Freebase and Wordnet datasets, categorizing them into different patterns
for benchmarking.

1All datasets, scripts, and extended results are available: https://github.com/mlwin-de/relational_pattern_

benchmarking
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7.1 Integration into BenchEmbedd Benchmarking Platform

The relation of each triplet is observed and then grouped into categories. Each category includes
relations involved in a specific relation pattern, e.g., symmetry has the “same” relation between two
entities such as “friends”, whereas inverse has two “different and directed” relations between the
entities such as “father and son”.We make categories of datasets and observe the link prediction (LP)
models over them.

With the goal of setting up a benchmark that separates the task of testing KG embedding models
from the models, we extend Benchembed, the MLwin-Hobbit platform for benchmarking various
trained methods, which are implemented in different environments (e.g., PyTorch and Java). This
extension is crucial for a reproducible evaluation and fair comparison of methods.

7.1 Integration into BenchEmbedd Benchmarking Platform

To perform a link prediction benchmarking based on FAIR principles, we integrated the models
in BenchEmbedd [107], a platform that aims at benchmarking big linked data. Such benchmark
experiments are frozen into docker containers, which can be accessed, reproduced, and reused easily
with little prior knowledge of the test platform. The system allows researchers to make and test systems
without having to worry about standardized hardware.

We train state-of-the-art KG embedding models from scratch with our RAW datasets, providing
experimental results that give exciting research directions. We consider the most popular and unified
evaluation metrics along with the AUC-PR test in all combinations. Our experiments suggest that the
link predicting models are scalable to large-scale datasets and graphs. These results indicate fruitful
guidance for future research in KG Link Prediction and KG Embeddings.

In the following Section, we review the related work on which we based our benchmarking and
dataset generation. We highlight the different aspects of Relational datasets in the two Sections after it.
They include relational patterns and different types of inductive and transductive settings for evaluation
datasets. In Section 7.5, we describe our relation pattern-based extracted benchmark datasets, and
our extraction method. Section 7.6 illustrates our Benchmark results which include an extensive set
of state-of-the-art methods and our numerous relation pattern-specific datasets. In this Section, we
particularly compare the two embedding methods proposed in Chapters 4 and 5 detailedly, and we
finally conclude this Chapter in the Section 7.7.

Figure 7.1: Example of triplet categorization based on relation pattern.
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7.2 Related Work

Benchmarking datasets helps to compare and evaluate the LP models, parameters, and procedures as
well as the statistics of the different datasets that are evaluated. The benchmarked dataset as described
by [58] is useful for two basic analyses, efficiency, and effectiveness analysis.

7.2.1 Benchmarking

The dataset of [60] is kept as our ultimate guidance and standard to support the benchmarking task.
CODEX dataset was benchmarked by [114] with unified evaluation strategies and empirical analysis.
We studied and prepared subsets for Relational Patterns of Inversion, Symmetry, and Composition
accordingly. We use the same strategy of making sub-datasets and then benchmarking on a number
of models. Evaluation techniques of using MRR and Hit Ratios were considered but along with the
introduction of AUC-PR. Using GNN and Graph Kernel methods as used by [115] gave us a new
direction to use [51] GraIL for our dataset benchmarking. In the study of relation patterns, we include
the most frequent patterns. In the related works, they are studies that consider experiments on more
complex logical rules, such as [116] that evaluate Inverse Equivalence and Subsumption rules, and in
this direction, [104] evaluates the performance of the knowledge base inference methods on a dataset
of grid paths of different lengths.

The following Section dedicates to dataset building. We explain the importance of dataset building
and refer to the current strategies that we based our study upon to make our benchmark datasets.

7.2.2 Dataset Building

Relation Extraction, the sub-field of information extraction, is one of the core techniques that support
ML research. It organizes the structural information into groups according to the need [117].

We build our datasets keeping in mind the dataset building strategies from OGB [60] as well as
the CODEX [114] and TU-Dataset [115]. CODEX is gathered from thirteen domains ranging from
medicine to music. This dataset is built on the principles of snowball sampling to extract data, while
in our study, we searched for specific relational patterns to enable pattern-specific evaluations. To
have a fair comparison, CODEX uses a fixed set of negative/corrupted samples. We similarly use
this approach for calculating AUC-PR scores in our evaluation. TU-Dataset, a unified set of over 120
datasets from several domains, targets graph classification and regression tasks, while in our study, we
focus on the link prediction task.

We use the characteristics visualization technique for the datasets and the required properties for
the analysis of the characteristics, of the aforementioned studies, as a baseline to define our dataset.
We based our study on the two following datasets and extracted subsequent sub-datasets in the form of
the stated patterns.
■ FB15k A freebase dataset with a total of 592,213 triplets with 14,951 entities and 1,345 relationships.

This factual dataset contains 483,142 Train triplets, 59,071 Test triplets and 50,000 Valid triplets. It
dataset contains many entities from the wiki-link data.

■ WN18 A dataset extracted from Wordnet version 3 with a total of 141,442 triplets with 40,943
entities and 18 relationships. The dataset contains 141,442 Train triplets, 5,000 Test triplets, and
5,000 Valid triplets. The dataset supports text analysis and provides with dictionary/thesaurus.
Lexical relationships between synsets are stated by this dataset.
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7.3 Pattern extraction from Relational Datasets

(a) A symmetric relation (b) An anti-symmetric relation

(c) An inverse relation (d) A composition relation

(e) An inference relation

Figure 7.2: We define five different relational patterns to create our datasets and benchmark.

7.3 Pattern extraction from Relational Datasets

Pattern extraction is the core task in building datasets for machine learning research. Pattern type
suggests the type of link prediction model that works best for the given dataset. Patterns, that are also
expressed as rules, each have different suitability to the embedding models. Link Predictors learn the
specific pattern of the datasets and then match rule-based patterns to provide reasoning. The patterns
we considered to build our datasets from Relational Datasets are stated below:

7.3.1 Symmetry

This relational pattern is a sub-category of Equivalence pattern. Therefore, it is a binary relation that
works in both directions. The relation can also be stated by the Equal to property, for instance, if a=b
then b=a A relation is symmetric if:

∀𝑎, 𝑏 ∈ 𝑋 (𝑎𝑅𝑏 ⇔ 𝑏𝑅𝑎)

𝑟 (𝑎, 𝑏) ⇒ 𝑟 (𝑏, 𝑎)

If 𝑅𝑇 represents the converse of R, then R is symmetric if and only if 𝑅 = 𝑅
𝑇 . Marriage, Friendship,

and Partners are a few examples of symmetric relations.
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7.3.2 Anti-Symmetry

The rule of Anti-Symmetry is opposite to Symmetry. It is a directed rule that states if a relation R
binds A to B, the same can not work in the opposite direction, binding B to A. The rule is written as

𝑟 (𝑎, 𝑏) ⇒ ¬𝑟 (𝑏, 𝑎)

Relations such as Owner (to Tenant), Parent (to Child), and Singer (to Song) are Anti-Symmetric.
Figure 7.2b shows a few examples of this rule.

7.3.3 Inverse

It is a binary relation stating two opposite relations for a set of entities. It is possible to assume a
unique inverse relation for every relation. Inverse pattern between two set of two triples occurs when
they have the opposite relation directions and have the same entities.

𝑟2(𝑥, 𝑦) ⇒ 𝑟1(𝑦, 𝑥)

Parent-Child and Teacher-Student are examples of the inverse relations. Figure 7.2c shows how inverse
relation is represented.

7.3.4 Composition

This binary relation which is also termed as relation multiplication is basically a compound relation
which states the relation that can not exist without the existence of another relation. For Example, for
the relation Aunt, the relation of Sister and Son/Daughter must exist in order to prove someone as an
Aunt of somebody. In mathematical terms, relation 𝑟1 is composed of relation 𝑟2 and relation 𝑟3 if:

∀𝑥, 𝑦, 𝑧 : 𝑟2(𝑥, 𝑦) ∧ 𝑟3(𝑦, 𝑧) ⇒ 𝑟1(𝑥, 𝑧)

Figure 7.2d states that Paris is the Capital of France, According to the composition property, Paris
must be in France to be its capital.

7.3.5 Inference

Inference relation pattern is one of the logical rules we formed datasets of. The rule states that we can
deduce a relationship between two entities from the knowledge of another relationship between the
two of them:

∀ℎ, 𝑡 : (ℎ, 𝑟1, 𝑡) ⇒ (ℎ, 𝑟2, 𝑡)

where ℎ and 𝑡 are entities and 𝑟1 and 𝑟2 are relations between them. Figure 7.2e gives an example of
inference relation which states Paris is the capital of France and thus, according to r1, Paris much be
in France as well. Therefore, (Paris, isCapitalof, France) ⇒(Paris, isLocatedin, France)
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Algorithm 2 Algorithm to extract dataset with a relation pattern P
1: Input: Knowledge graph K, relation pattern to extract P
2: Output: train𝑛𝑒𝑤 , test𝑛𝑒𝑤 and valid𝑛𝑒𝑤 sets.
3: Generate dataset A = Union of all the triples ∈ 𝑈 (𝑡𝑟𝑎𝑖𝑛, 𝑡𝑒𝑠𝑡, 𝑣𝑎𝑙𝑖𝑑) of K.
4: for each triple t in A: do
5: if found triples that form pattern P with t in A then
6: Add the Premise triples forming the pattern to the set 𝑆𝑝
7: Add the Conclusion triples forming the pattern to the set 𝑆𝑐
8: Add 𝑆𝑝 to the train𝑛𝑒𝑤 set.
9: for each relation pattern P’ other than P do

10: for each triple t in A: do
11: if if found triples that form pattern P’ with t in A then
12: Add the Conclusion triples forming the pattern to the set 𝑆′𝑐
13: for For each triple 𝑡 ∈ 𝑆𝑐 do
14: if t exist in 𝑆′𝑐 then
15: remove it from 𝑆𝑐

16: Split 𝑆𝑐 into 3 parts 𝑆1, 𝑆2 and 𝑆3
17: Add 𝑆1 to train𝑛𝑒𝑤 , 𝑆2 to test𝑛𝑒𝑤 and 𝑆3 to valid𝑛𝑒𝑤 sets.
18: Return: train𝑛𝑒𝑤 , test𝑛𝑒𝑤 and valid𝑛𝑒𝑤 sets.

7.4 Evaluation Dataset Settings

There exist two different methods for the dataset division into train and test/validation subsets, where
the composition of entities of each setting defines the evaluation setting:

Inductive Setting In an inductive setting, the entities during training are not found in the test dataset.
The part of entities are kept missing and their relations are made to be found by the LP models. The
number of disjoint entities varies in an inductively set dataset, fully inductive sets have fully disjoint
set of entities and thus difficult for the models to predict. In our study we consider different ratios of
disjoint entities and also different distributions of disjoint entities in the head and tail of triples.

Transductive Setting A dataset is divided to train and test/validation in a transductive setting when
the occurrence of entities is ensured to be in the training procedure if it appears either in a test or valid
sets. Transductive datasets are best for Entity Specific Embedding. All entities in the training set are
present in the test set and thus a model has trained embeddings for them specifically.

7.5 A New Set of Pattern Specific Datasets

This Section describes our method to generate a new set of pattern-specific datasets for the link
prediction task, followed by the setup description for benchmarking the state-of-the-are KGE methods
using our extracted datasets.
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Table 7.1: Inductive Setting Datasets
Inductive Train Test Valid Total Entities Total Relations % of Original Dataset

Symmetry 4254 542 542 3447 51 0.901
Anti-Symmetry 12930 3494 3884 8304 433 3.429
Inverse 4753 2568 2568 7745 641 1.670FB15k

Inference 3489 2824 2745 6083 611 1.530

Symmetry 2322 272 272 4344 5 1.893
AntiSymmetry 16650 4698 4697 20552 18 17.203
Inverse 8728 903 904 13842 17 6.958WN18

Inference 844 99 99 1639 15 0.688

7.5.1 The Standard Patterns

To make relation-specific datasets, we generated entirely disjoint sets from both FB15k and WN18 and
then subcategorized them into relational datasets, creating a set of eight datasets. We extracted triples
with a specific relation pattern to make each dataset. We then disregard common triples between two
sets of relation pattern triples. Figure 7.1 shows an example of triple categorization based on relation
patterns.

We developed Algorithm 2 that details this workflow. To extract a dataset for a relation pattern
P from a benchmark knowledge graph K2, it first unions the triples in train and test and validation
sets. Then it extracts Premise and Conclusion triples that form a targeted relation pattern. It adds the
Premise triples to the new train set. Then it searches the Conclusion triples for triples that leak other
relation patterns into the extracted triples and excludes them. Finally, it divides the leftover Conclusion
triples into three sets and adds these triples to the new train and test and validation sets. Based on this
method, we extracted a subset of data from the standard FB15k and WN18 with Symmetry, Inverse,
Anti-symmetry, and Inference patterns.

After generating datasets for each of the relation pattern, we extracted an entirely inductive and a
transductive dataset and two more customized datasets. In the first set, the percentage of inductive and
transductive triples is fixed, and in the second set, each triplet has one Inductive entity with the other
entity being transductive. The description of these settings is in the following.

Inductive We built four datasets with the inductive setting where the entities of test and train datasets
are entirely disjoint. Table 7.1 states the statistics of our datasets.

Transductive Transductive Setting has common entities in train and test datasets. Therefore, the
entities are already seen by the model, making prediction much easier for them. Table 7.2 states the
statistics of the set of eight datasets from the transductive type.

Head-Tail Ratio Inductive We built a set of datasets by keeping either the head or the tail of each
triplet in the train hidden from the test dataset. By doing so, we gain a semi-inductive dataset with
each triplet unseen. Table 7.3 reports the statistics of these datasets.

2The script to extract data based on each individual relational pattern is available in the code section of https:

//github.com/mlwin-de/relational_pattern_benchmarking/
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7.5 A New Set of Pattern Specific Datasets

Table 7.2: Transductive Setting Datasets
Transductive Train Test Valid Total Entities Total Relations % of Original Dataset

Symmetry 5781 1399 1416 2823 52 1.452
Anti-Symmetry 20711 128 109 2471 143 3.537
Inverse 31332 750 750 10988 696 5.544FB15k

Inference 70226 104 111 10500 377 11.895

Symmetry 1449 362 363 2030 5 1.436
AntiSymmetry 6366 190 168 3393 15 4.441
Inverse 4364 750 750 5765 17 3.873WN18

Inference 2027 12 10 3009 18 1.353

Table 7.3: Head-Tail Inductive Setting Datasets
Head-Tail Inductive Train Test Valid Total Entities Total Relations % of Original Dataset

Symmetry 5621 989 990 3632 52 1.283
Anti-Symmetry 15404 10795 10795 9241 470 6.247
Inverse 24176 4701 4701 12065 794 5.670FB15k

Inference 13845 5898 5636 9671 665 4.286

Symmetry 1630 185 186 2447 5 1.322
AntiSymmetry 30000 5603 5603 23786 18 27.217
Inverse 5421 621 621 7843 17 4.401WN18

Inference 462 84 85 815 15 0.417

Table 7.4: 50% Inductive Setting Datasets
Percentage Based Inductive Train Test Valid Total Entities Total Relations % of Original Dataset

Symmetry 4677 445 444 3219 51 0.940
Anti-Symmetry 14904 11603 11608 9911 472 6.436
Inverse 6124 779 779 4958 600 1.297FB15k

Inference 5840 5249 5263 7031 446 2.761

Symmetry 2009 253 253 3285 5 1.661
AntiSymmetry 22208 5330 5329 21666 18 21.709
Inverse 7613 678 678 10785 17 5.924WN18

Inference 685 58 64 1235 15 0.533

Percentage-wise building In our study, we generated half of the test triples with inductive settings
and half with the transductive setting. We apply this percentage base data generation to each category.
Table 7.4 describes the statistics of the 50% datasets.

For our benchmark, we take standard evaluation metrics of Hit Ratios (at 1, 3, 10), Mean Reciprocal
Rank, Area Under the Curve, and AUC-PR. [118] suggests that for a perfect AUC-PR score, an equal
number of negative triplets are needed along with positive triplets. Therefore, as described by [51], in
the test set, the same number of negative samples are created by corrupting the copy of each triplet by
either replacing the head or the tail with any random entity. We used the same procedure to incorporate
each model with the AUC-PR score in a unified way.
We considered DistMult [12], RotatE [18], TransE [14], GraIL [51], MDE [15] and CompGCN
[44] for our analysis.
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Table 7.5: Hit@10 and MRR results of Link Predictors on datasets extracted from FB15k.
FB15k

DistMult TransE RotatE MDE GraIL CompGCN QuatEType of
dataset Dataset

Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR

Symm 0.0000 0.0003 0.0000 0.0002 0.0000 0.0002 0.0000 0.0002 0.0000 0.0228 0.0074 0.0060 0.0000 0.0040
Anti-Sym 0.0000 0.0004 0.0000 0.0002 0.0000 0.0001 0.0000 0.0001 0.0000 0.0236 0.0023 0.0022 0.2435 0.0912
Inverse 0.0021 0.0024 0.0028 0.0030 0.0019 0.0021 0.0019 0.0021 0.0000 0.0210 0.0012 0.0013 0.2530 0.0914Inductive

Inference 0.0008 0.0008 0.0018 0.0020 0.0004 0.0005 0.0004 0.0005 0.0000 0.0235 0.0011 0.0013 0.2640 0.0982

Symm 0.8755 0.8692 0.1405 0.0449 0.8594 0.8498 0.2184 0.1232 1.0000 0.9801 0.9836 0.8924 0.8604 0.7914
Anti-Sym 0.0041 0.0031 0.0432 0.0155 0.0083 0.0041 0.5078 0.3129 0.9922 0.9836 0.9648 0.8540 0.2214 0.1780
Inverse 0.0137 0.0087 0.0439 0.0160 0.0083 0.0069 0.1547 0.0881 0.9953 0.9307 0.8020 0.6305 0.2704 0.1240Transductive

Inference 0.0000 0.0036 0.0800 0.0276 0.0100 0.0066 0.1827 0.1413 0.9932 0.9616 0.7308 0.5264 0.1309 0.0999

Symm 0.0232 0.0097 0.0157 0.0061 0.0071 0.0043 0.0071 0.0047 0.4317 0.4065 0.0137 0.0068 0.0000 0.0166
Anti-Sym 0.0019 0.0011 0.0009 0.0008 0.0008 0.0010 0.0084 0.0038 0.1226 0.1143 0.0066 0.0026 0.3997 0.1957
Inverse 0.0031 0.0022 0.0341 0.0135 0.0059 0.0039 0.0849 0.0492 0.1380 0.1008 0.1272 0.0734 0.3393 0.1651

Head/Tail
Ratio

Inference 0.0047 0.0032 0.0141 0.0054 0.0085 0.0046 0.0281 0.0132 0.0882 0.0709 0.0936 0.0583 0.3464 0.1785

Symm 0.2596 0.2590 0.0079 0.0033 0.0461 0.0215 0.0674 0.0415 0.2584 0.2843 0.2629 0.2624 0.7500 0.5461
Anti-Sym 0.0002 0.0005 0.0001 0.0003 0.0000 0.0002 0.0006 0.0006 0.0466 0.0422 0.0015 0.0013 0.3738 0.2146
Inverse 0.0635 0.0534 0.0161 0.0076 0.0045 0.0028 0.0507 0.0367 0.1343 0.1554 0.1496 0.1310 0.2963 0.2121

Percentage
Based(50%)

Inference 0.0098 0.0067 0.0142 0.0055 0.0217 0.0110 0.1369 0.1014 0.0782 0.0894 0.1484 0.1291 0.1966 0.1110

Experiment Setup Our system is implemented in Python, with Adadelta [23] as the optimizer. All
Transductive bias models are set with learning rate 0.0001 with GraIL and CompGCN at 0.01 in-order
to practice uniformity. Alpha (𝛼) is kept between [0.5,1]. The models are set with the Dimensions
= [GraIL = 1000, CompGCN = 100 and all other models = 500]. The epochs are set uniform for
TransE, Distmult and RotatE = 6000 whereas MDE is given a higher number of 150,000 and GraIL
and CompGCN are run are 100 and 500 epochs respectively. For TransE, Distmult, RotatE, and MDE,
we used a fixed number of negative samples, 50, in all the experiments. We estimated the score for
five runs and took the average to regulate loss function. All the experiments are performed on a local
server with Intel Corporation Xeon E7 v4/Xeo CPU with 24 cores, 256 GB RAM, and GeForce GTX
1180 with 4 GPU cores.

7.6 Results

In this Section, we report the experiment results and discuss them. Tables 7.5 and 7.6 show the MRR
and Hit@10 performance of the LP methods and the Tables 7.7 and 7.8 report the AUC-PR results.
To provide a better overview of the AUC-PR results, Table 7.9, shows the average results of these two
Tables in one place. Table 7.10 compares the results of MDE and the novel GFA-NN method, and
Table 7.11 reports the ranking results of the LP models on the aggregate transductive datasets. Extended
result sheets are available in https://github.com/mlwin-de/relational_pattern_benchmarking.

Inductive As far as Inductive datasets are concerned, in both FB15k and WN18, GraIL and
CompGCN outperform all other models due to their property of inductive bias-ness. Segregating
far, all models performed well over the Inference dataset. CompGCN gave a better performance on
the Inverse dataset with a 56.46 AUC-PR score on the FB15k extracted dataset and 67.40 AUC-PR
scores on the WN18 extracted dataset, whereas MDE did not perform well in all datasets from the
inductive category. To sum up, the difference between Inductive and Transductive models could easily
be noticed in this set of experiments.
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7.6 Results

Table 7.6: Hit@10 and MRR results of Link Predictors on datasets extracted from WN18.
WN18

DistMult TransE RotatE MDE GraIL CompGCN QuatEType of
dataset Dataset

Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR

Symm 0.0000 0.0001 0.0000 0.0002 0.0000 0.0001 0.0000 0.0001 0.0000 0.0201 0.0018 0.0011 0.0000 0.0000
Anti-Sym 0.0000 0.0002 0.0000 0.0001 0.0000 0.0001 0.0000 0.0001 0.0001 0.0304 0.0006 0.0007 0.0000 0.0016
Inverse 0.0000 0.0001 0.0000 0.0001 0.0000 0.0001 0.0000 0.0001 0.0000 0.0215 0.0000 0.0003 0.0000 0.0009Inductive

Inference 0.0000 0.0002 0.0000 0.0002 0.0000 0.0003 0.0000 0.0004 0.0000 0.0251 0.0051 0.0042 0.0000 0.0002

Symm 0.9277 0.9064 0.0073 0.0031 0.7509 0.9792 0.4378 0.4195 1.0000 0.9979 0.9848 0.9738 0.9143 0.9466
Anti-Sym 0.0000 0.0005 0.0000 0.0016 0.0000 0.0006 0.1079 0.0624 0.9684 0.9581 0.9816 0.9720 0.0374 0.0153
Inverse 0.0000 0.0003 0.0000 0.0020 0.0047 0.0030 0.2220 0.1787 1.0000 0.9977 0.9940 0.9441 0.0377 0.0156Transductive

Inference 0.2917 0.2394 0.0000 0.0013 0.0833 0.0523 0.2500 0.2520 1.0000 1.0000 0.2083 0.1566 0.0486 0.0323

Symm 0.0027 0.0008 0.0000 0.0002 0.0055 0.0013 0.0162 0.0111 0.0054 0.0253 0.0081 0.0063 0.0272 0.0089
Anti-Sym 0.0007 0.0005 0.0000 0.0005 0.0014 0.0014 0.0003 0.0003 0.0011 0.0291 0.0012 0.0006 0.0844 0.0453
Inverse 0.0009 0.0007 0.0000 0.0004 0.0016 0.0015 0.0523 0.0318 0.0000 0.0340 0.0395 0.0196 0.0688 0.0577

Head/Tail
Ratio

Inference 0.0000 0.0020 0.0000 0.0002 0.0000 0.0002 0.0833 0.0277 0.0000 0.0200 0.0714 0.0321 0.0198 0.0245

Symm 0.5013 0.5029 0.0000 0.0003 0.0731 0.0437 0.0514 0.0353 0.5020 0.5119 0.0040 0.0030 0.8593 0.7899
Anti-Sym 0.0000 0.0002 0.0002 0.0002 0.0000 0.0001 0.0005 0.0006 0.0111 0.0439 0.0010 0.0010 0.0198 0.0245
Inverse 0.1924 0.1199 0.0118 0.0047 0.0701 0.0368 0.0155 0.0082 0.4808 0.4906 0.0000 0.0010 0.0193 0.0102

Percentage
Based(50%)

Inference 0.0000 0.0002 0.0000 0.0005 0.0000 0.0007 0.0172 0.0174 0.0345 0.0552 0.0086 0.0121 0.1086 0.0196

Table 7.7 summarizes FB15k results and the green column of Table 7.9 summarizes the average
AUC-PR on the Inductive setting. All models show a low performance on the MRR and Hit metric for
the Inductive datasets. The results in the Tables 7.5 and 7.6 follow the same pattern. Nevertheless,
the AUC-PR results show that some models can better distinguish positive and negative samples in
an equal number of samples, e.g., CompGCN performs better in separating negative samples in the
Inductive setting.

Transductive In evaluations with transductive setting datasets, all models showed significant
improvement in the link prediction task than their performance over other datasets. TransE and MDE
were almost 15% - 20% less accurate compared to other state-of-the-art models in the AUC-PR. The
Symmetry dataset gives promising results with link prediction of more than 95% in almost all models.
Furthermore, for the WN18 dataset, GraIL and even CompGCN predict 99% true triplets for the
symmetry dataset. Overall, GraIL and CompGCN, and QuatE are proved to be the superior models
for transductive datasets.

An exception of performance for the Symmetry dataset in Distmult between inductive and
transductive cases was observed, where for both WN18 and FB15k the AUC-PR result increased in
the transductive setting by an amount of about 40%.

Promising AUC-PR results for symmetry dataset by the model are displayed in Table 7.7 and
Table 7.8.

Semi-Inductive - Head Tail Ratio Since this set of datasets is also inductive in its properties as all
triplets are fully inductive with either one of the entities unseen. The models behave exactly the same
way as they work with the inductive datasets. All state-of-the-art models fail to perform under such
settings except GraIL and CompGCN due to their inductive nature. Despite the fact that GraIL and
CompGCN perform better than the transductive bias model, they could not rank the triplets correctly
with more than 0.52 AUC-PR. However, CompGCN shows some improvements for the Inference type
datasets under the category with around 0.60 AUC-PR.
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Table 7.7: AUC-PR Results of Link Predictors on datasets extracted from FB15k.

FB15k
Metric (AUC-PR)Type of dataset DataSets

DistMult TransE RotatE MDE GraIL CompGCN QuatE
Symm 0.4933 0.4585 0.4554 0.4650 0.5000 0.7682 0.3115
Anti-Symmetry 0.4993 0.4161 0.3889 0.4221 0.5009 0.6577 0.4841
Inverse 0.4992 0.4632 0.4282 0.4496 0.4986 0.5646 0.4824Inductive

Inference 0.5063 0.4578 0.4403 0.4527 0.5022 0.5566 0.4924
Symm 0.9618 0.6901 0.9608 0.9434 0.9966 0.9995 1.0000
Anti-Symmetry 0.5151 0.6038 0.5853 0.9986 0.9998 1.0000 0.8998
Inverse 0.5345 0.6318 0.5967 0.7948 0.9963 0.9927 0.9137Transductive

Inference 0.4907 0.7484 0.5359 0.7468 0.9971 0.9982 0.8933
Symm 0.6409 0.7480 0.7259 0.7764 0.7846 0.6109 0.6526
Anti-Symmetry 0.5054 0.5486 0.5406 0.5331 0.5881 0.5559 0.6539
Inverse 0.5093 0.5507 0.5359 0.5499 0.5432 0.7815 0.6906Head/Tail Ratio

Inference 0.5314 0.5401 0.5292 0.5156 0.5261 0.6410 0.6102
Symm 0.7257 0.5955 0.6256 0.6201 0.6831 0.7591 0.7721
Anti-Symmetry 0.4959 0.4474 0.4347 0.4208 0.5045 0.5774 0.7268
Inverse 0.5870 0.5351 0.5602 0.5597 0.6206 0.7253 0.7368Percentage Based(50%)

Inference 0.4935 0.5284 0.5140 0.5235 0.5620 0.6455 0.7169

Table 7.8: AUC-PR Results of Link Predictors on datasets extracted from WN18.
WN18

Metric (AUC-PR)Type of Dataset DataSets
DistMult TransE RotatE MDE GraIL CompGCN QuatE

Symm 0.4912 0.4864 0.5164 0.4889 0.5000 0.4736 0.9892
Anti-Symmetry 0.4972 0.4400 0.4119 0.4774 0.4999 0.6740 0.4616
Inverse 0.5023 0.4312 0.3931 0.4667 0.5000 0.5248 0.4716Inductive

Inference 0.5154 0.5175 0.4953 0.5131 0.5000 0.5398 0.4242
Symm 0.9855 0.6506 0.9849 0.9395 1.0000 0.9993 1.0000
Anti-Symmetry 0.5705 0.6048 0.5183 0.9856 0.9842 0.9953 0.9875
Inverse 0.4507 0.5274 0.6299 0.9244 1.0000 0.9952 0.9683Transductive

Inference 0.8745 0.7127 0.8655 1.0000 1.0000 0.7179 0.8913
Symm 0.5390 0.5609 0.6477 0.6652 0.5053 0.6172 0.6449
Anti-Symmetry 0.5328 0.5139 0.5135 0.4969 0.4999 0.5722 0.6258
Inverse 0.5202 0.5746 0.5442 0.6060 0.5000 0.5812 0.7249Head/Tail Ratio

Inference 0.5905 0.4181 0.6306 0.8024 0.5000 0.5145 0.6294
Symm 0.8185 0.5920 0.7657 0.7487 0.7626 0.5888 0.7873
Anti-Symmetry 0.4942 0.4773 0.4836 0.4769 0.5103 0.5973 0.8900
Inverse 0.7936 0.6586 0.7142 0.6418 0.7974 0.5374 0.8134Percentage Based(50%)

Inference 0.5472 0.5291 0.5290 0.5134 0.5031 0.5150 0.7924

Semi-Inductive - Percentage-Wise The datasets are gathered on the principle of half datasets
from the inductive category with 50% triplets of the transductive nature. Due to this reason, they
perform well on the link prediction models. Distmult and CompGCN give promising results of more
than 85% on the symmetry datasets. TransE could not give a better score due to its inability to infer
symmetric patterns, although it predicts inference patterns better than any other. As an average, we
conclude that all models outperform over the transductive setting of datasets in the link prediction task.
The KGE models also give promising results over datasets with the half inductive and half transductive
type (Count-Based Dataset), evidently due to the fact of containing exactly 50% transductive triplets.
Inductive datasets and head-tail inductive datasets still face issues in the link prediction task with
better results on CompGCN and GraIL.
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7.6 Results

Table 7.9: Mean AUC-PR performance of the LP methods.
WN18 FB15k

Metric (AUC-PR)Type of
dataset Inductive Transductive Head/Tail

Ratio
Percentage
Based(50%) Inductive Transductive Head/Tail

Ratio
Percentage
Based(50%)

DistMult 0.5015 0.7203 0.5456 0.6634 0.4995 0.6255 0.5468 0.5755
TransE 0.4688 0.6239 0.5169 0.5643 0.4489 0.6685 0.5969 0.5266
RotatE 0.4542 0.7497 0.5840 0.6231 0.4282 0.6697 0.5829 0.5336
MDE 0.4865 0.9624 0.6426 0.5952 0.4474 0.8709 0.5937 0.5310
GraIL 0.5000 0.9960 0.5013 0.6433 0.5004 0.9975 0.6105 0.5926

CompGCN 0.5531 0.9269 0.5713 0.5596 0.6368 0.9976 0.6473 0.6768
QuatE 0.4426 0.6518 0.6518 0.7382 0.5867 0.9618 0.6563 0.8208

AUC-PR Performance Summary Table 7.9 summarises the previous reported AUC-PR results by
averaging them. In this extract, we observe that the entirely inductive test is the most challenging for
the models, and then the Head/Tail Ratio and the Percentage Based tests were among the challenging
tests. The Transductive experiments were the least challenging of all the methods.

The models showed similar performance on the Inductive WN18 experiments with less than a 0.05
difference in the measure. The models produced results on a more diverse range in the Inductive
FB15k tests. In contrast, the difference in the results in the Transductive tests was the most significant.

7.6.1 Discussion

Inductive Evaluations Since none of the three types of inductive experiments included known
triples in the test phase, the models did not use any other information indicative of the identity of tested
entities (e.g., their distance to other entities), except for GraIL which applies sub-graph calculations for
the test-set as well. Thus, the vector weights of the unknown entities are set randomly. Consequently,
we conclude that the experimented models that benefit from no knowledge of entities estimate the
rank of the samples only by generating an embedding space such that the scores of negative triples are
separable from the random values to some extent using the common relations between test and the
training dataset.

Our second observation is that while the tested models perform with scores mostly above 0.40
on the AUC-PR test, they are less effective on the more difficult Hit and MRR ranking measures in
the inductive evaluations. The number of negative samples is a fundamental disparity between the
AUC-PR and MRR tests. In AUC-PR, their number is equal to the number of positive samples, and
in Hit and MRR, the number of negative samples is equal to the number of all the entities of a KG.
Therefore the larger a dataset is, the Hit and MRR test become more challenging, particularly in the
Inductive setting. Therefore we suggest that KGE studies consider the effect of the size of the test
knowledge graphs in evaluating their method.

In the following, we generally compare the performance of models over datasets extracted from the
two original knowledge graphs.

FB15k For FB15k, GraIL and CompGCN perform well on the inductive datasets, with the highest
performance on the Symmetry dataset in CompGCN, whereas GraIL shows a near performance on all
datasets with the inductive setting.
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Table 7.10: Evaluation results of GFA-NN model compared to MDE.
WN18 FB15k

Metric (AUC-PR)LP Methods Type of DataSet
Symm Anti-Symmetry Inverse Inference Symm Anti-Symmetry Inverse Inference

Inductive 0.4889 0.4774 0.4667 0.5131 0.4650 0.4221 0.4496 0.4527

Transductive 0.9395 0.9856 0.9244 1.0000 0.9434 0.9986 0.7948 0.7468

Head/Tail Ratio 0.6652 0.4969 0.6060 0.8024 0.7764 0.5331 0.5499 0.5156
MDE

Percentage Based(50%) 0.7487 0.4769 0.6418 0.5134 0.6201 0.4208 0.5597 0.5235

Inductive 0.4572 0.4218 0.3861 0.4877 0.4593 0.3939 0.4477 0.4584

Transductive 1.0000 0.9995 1.0000 1.0000 1.0000 0.9999 0.9848 0.9695

Head/Tail Ratio 0.6653 0.4977 0.6409 0.5846 0.6289 0.5470 0.6425 0.5764
GFA-NN

Percentage Based(50%) 0.7600 0.4662 0.7301 0.5382 0.6842 0.4264 0.6024 0.5437

CompGCN also performs well on transductive datasets with almost 100% accuracy on Anti-
Symmetry, along with outstanding performance on all datasets with the Count-based setting. QuatE
and GraIL show the same trend as CompGCN with near accuracy.

MDE performs well on transductive setting datasets with 99% accuracy on the Anti-Symmetry
followed by Head-Tail Ratio based datasets. RotatE, TransE and DistMult showed the same performance
pattern as MDE, with the highest performance in the transductive setting and least in inductively set
datasets. Table 7.7 describes the result of these evaluations.

WN18 In datasets extracted from WN18, a similar pattern as the FB15k dataset is observable. GraIL
and CompGCN show better results on inductive settings than other models. Link prediction in the
inductive and the transductive setting is better on WN18 datasets in most models as compared to
FB15k, which evidently is due to fewer relations to be computed. Link prediction on Symmetry
datasets from the transductive setting has around 0.99 AUC-PR for almost all the models considered.
Table 7.8 quotes results on WN18 Datasets.

7.6.2 Evaluation of GFA-NN model

Finally, we benchmark our datasets over a newer multi-objective optimization KGE similar to MDE,
i.e., GFA-NN [27], which considers the datasets’ graphical features to create embeddings. The node
features and graph properties are calculated and stored in separate files for training purposes. The
graphical feature information is not available to the model in the evaluation phase to make a fair
comparison.

Comparison between the previous MDE and GFA-NN reported in Table 7.10 shows outstanding
behavior of the newly introduced method in the Transductive and Semi-inductive settings. The most
significant improvement is observable in the Inference datasets, where the results show an improvement
of between 0.6% to 22% in the tested cases. For Instance, the FB15k Inference dataset with the
transductive setting improved from 74% in the AUC-PR score to 96%. Lastly, the results in the purely
inductive setting only show an improvement in the Inference dataset. That is because we handicapped
GFA-NN, not knowing the graphical features of any nodes in the test dataset.
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7.7 Conclusion

Table 7.11: Ranking results of the LP models on the aggregate datasets.
WN18RR FB15k-237

Model MR MRR Hit@10 MR MRR Hit@10
QuatE – 0.482 0.572 – 0.366 0.556
TransE 357 0.294 0.501 357 0.294 0.465

DistMult 5261 0.44 0.49 254 0.241 0.419
CompGCN 3533 0.479 0.546 197 0.355 0.535

RotatE 3340 0.476 0.571 177 0.338 0.533
MDE 3219 0.458 0.536 203 0.344 0.531

GFA-NN 3390 0.486 0.575 186 0.338 0.522

7.6.3 Comparison to Aggregate datasets

Table 7.11 shows the results of the LP methods on the aggregate datasets reported in [27] and [18].
This comparison of this table results to our pattern-specific experiments shows that while the

difficulty of each individual relation pattern for each model influences the overall results, the ratio of
each relation pattern also impacts their performance because the results are averaged in the MRR and
Hit evaluations. For example, while CompGCN is not the best method for learning inverse relations in
the transductive setting, it is one of the most effective methods in the FB15k-237 because FB15k-237
and WN18RR are missing the inverse relations from FB15k and WN18.

7.7 Conclusion

To sum up, we created several standard datasets with distinct relational patterns ranging from
symmetry to inverse and different degrees of inductiveness. We evaluated several state-of-the-art Link
Prediction models over them. We extended our research by working on link prediction models by
this benchmarking approach and highlighting their work on different types of datasets. A unified
evaluation strategy of AUC-PR measurement is incorporated into all link prediction models besides
the Hit@K and MRR measures. We highlighted the datasets with improved performance on particular
LP models. In order to support further research in the domain, we incorporated our benchmarking
datasets to the BenchEmbedd for evaluation of a linked data life-cycle. The meaningful experiment
outcome indicates that these datasets will foster the research on Link Prediction and KG embeddings.
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CHAPTER 8

Linking Physicians to Medical Research Results
via Knowledge Graph Embeddings and Twitter

In previous Chapters, we proposed methods to improve knowledge graph embedding and more
competently evaluate such methods for the link prediction task. Depending on the application context,
the semantics of targeted hidden links in the link prediction task take on different meanings. In
this Chapter, we define a novel notion and application for link prediction using knowledge graph
embedding.

Informing professionals about the latest research results in their field is a crucial task in the field of
health care because any development in this field directly improves the health status of the patients.
Meanwhile, social media is an infrastructure that allows the public to share information instantly.
Thus it has recently become popular in medical applications. In this study, we apply multiple distance
knowledge graph embedding (MDE) model from Chapter 4 to link physicians and surgeons to the
latest medical breakthroughs shared as the research results on Twitter. Our study shows that by using
this method, physicians can stay informed about the new findings in their field, given that they have an
account dedicated to their profession.

This Chapter targets the research question:

Research Question 5

Does a KGE method that allows the encoding of relation patterns tackle a real-world link prediction
task more effectively than a commonly applied KGE?

Contributions of this Chapter can be summarized as follows:

• Proposing a pipeline for applying the MDE machine learning method as a recommender system to
help physicians stay up-to-date in their field.

• Proposing a method for extracting and processing stream data from Twitter Social Network and
generating a knowledge graph from the data.
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• Proposing an extension of the multiple distance embedding method (MDE) that gives a probability
of a predicted link based on the learn relations from the Twitter knowledge graph.

• Evaluating the link suggestion mechanism for connecting physicians to the latest medical study
results meaningfully relevant to them.

This Chapter is based on the following publications [15, 119]:

■ Afshin Sadeghi, Jens Lehmann. Linking Physicians to Medical Research Results via Knowledge
Graph Embeddings and Twitter. The 4th Workshop on Data Science for Social Good - SoGood
2019. In Proceedings of the European Conference on Machine Learning and Principles and Practice
of Knowledge Discovery in Databases (ECML/PKDD 2019) 2019, 622–630.

■ Afshin Sadeghi, Damien Graux, Hamed Shariat Yazdi, Jens Lehmann. MDE: Multiple Distance
Embeddings for Link Prediction in Knowledge Graphs. In Proceedings of the 24th European
Conference on Artificial Intelligence (ECAI) 2020, 1427–1434.

Twitter is a projection of the interactions of a society connected to the internet, which is in constant
evolution. The dynamic aspect of this social media allows manifold applications. With the rise of
social media, Twitter was used to measure campaign impacts, collect opinions, analyze trends, and
study crises. However, recently, its applications have been more individualized. Particularly, because
Twitter has become the most popular form of social media used for healthcare communication [120],
and it is reshaping health care [121], it has become the center of many studies in the field of health
care. For example, a study suggests Twitter for knowledge exchange in academic medicine [122], and
it was argued that disease-specific hashtags and the creation of Twitter medical communities [123]
had improved the uniformity of medical discussions. Another study is dedicated to the influence of
specific medical hashtags on social media platforms [124].

Problem Statement: Pershad et al. [125] point out the potential of Twitter to reshape public health
efforts, including disseminating health updates and sharing information about diseases. Especially,
they emphasize the role of Twitter in making research advances more accessible for physicians. They
argue that connecting researchers and clinicians is crucial and valuable since clinicians can use new
information they discover from this closer contact with researchers to guide decision-making about
patient treatments in a field that is in constant progress.

In this study, we target this problem by providing a method that suggests to physicians and clinicians
the recent research breakthroughs in their specialized field based on their current social activity.
As the first step to reach this goal, we extract a subset of the Twitter network, and we generate a
knowledge graph (KG) from the extracted data. Figure 8.1 depicts a schema of the KG with example
user instances and the relations between them. In this figure, it is shown that our method recommends
a Tweet of Jane, who is a researcher, about her latest findings to Bob who is a surgeon. The method
calculates the probability that such a Tweet will be useful to Bob based on his previous favored Tweets
and the relation to other physicians that work in the same field. We then apply an embedding method
to predict links that are likely to be serving the physicians. The proposed application is different from
the user recommendation service of Twitter [126] which recommends users to follow or the works that
discover similar users [127]. Here, we focus our study and evaluation on suggesting related Tweets.

86

https://doi.org/10.1007/978-3-030-43823-4_49
https://doi.org/10.1007/978-3-030-43823-4_49
https://doi.org/10.3233/FAIA200248
https://doi.org/10.3233/FAIA200248


8.1 Background
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Recommended
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Figure 8.1: This diagram displays a schema of an example medical professional knowledge graph. This sample
of the Twitter network contains three users and their relations. It depicts Jane as a researcher that publishes
Tweets about her latest papers. Paul is a physician following her updates, and Bob is a third user that follows
Paul and is a physician but does not know about Jane and her publications. The orange dot line depicts a new
link suggested by our proposed method.

In the following Section, we give a brief background of this study and the definition of concepts
used in this Chapter. Then in Section 8.2, we review machine learning methods that predict links on
social networks and briefly explain a model that we use as the gold standard in our evaluations. In
Section 8.3, we propose and explain a method to apply knowledge graph embedding on Twitter data
to connect physicians to the latest research results in the medical field, and Section 8.4 presents our
experiments, where we put our proposed approach under empirical tests. We continue with discussion
of the experiment results in Section 8.5 and we conclude this Chapter in the Section 8.6.

8.1 Background

In a social network, a graph node represents a person, while edges that link the nodes correspond to
relationships between people. The edges are also called “connections” or “links”. Examples of social
networks are graphs that describe Facebook and Twitter. Link prediction, in general, is the task of
predicting whether a link exists between a given pair of nodes or not.
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Definition 1: a knowledge graph is defined by (E, P, T), a set of entities e ∈ E, a set of predicates p
∈ P, and a set of triples t ∈ T. A triple (𝑒𝑖 , 𝑝𝑘 , 𝑒 𝑗) is made of two entities and a predicate that connects
them.

In a KG, two entities can be connected by several predicates. When describing a social network by
a KG, nodes are translated to entities, and links are translated to predicates. However, in a KG, an
ontology usually specifies the class that describes what types of entities and predicates can construct a
triple. A relational learning model usually learns the relations of a KG. Embedding models are a class
of relational learning models that produce vector representations of the entities and predicates and
predict the missing links.

Definition 2: link prediction in a KG means to predict the existence of a triple, i.e., whether a
relation exists from two entities 𝑒𝑖 and 𝑒 𝑗 and a 𝑘-th predicate.

8.2 Related Work

Classic link prediction methods on social media use graph properties of the social network or NLP
feature of nodes to predict links between entities. For example, [128] is based solely on graph features
and [129] uses a similar technique for the social networks in healthcare. Meanwhile, [130] uses
common words to cluster and rank nodes and, based on that, predicts the closely-ranked nodes to be
connected. Another Study [131] uses a combination of graph features and keyword matches to train
classifiers(SVM, Naive Bayes, etc.) to predict if a link exists between two nodes.

Most of the studies on link prediction of social networks focus on the problem of link existence. In
contrast, some methods attempt to find link weights and the number of links between the nodes [132].
An advantage of KGE-based link prediction is that a KGE also predicts the link’s type since KG
embedding models distinguish the kind of links.

TransE [14] is an embedding model that is popular because of its simplicity and efficiency. It
represents the entities in a KG by a relation between the vectors representing them. The score function
describing these vectors in TransE is:

𝑆𝑐𝑜𝑟𝑒𝑇𝑟𝑎𝑛𝑠𝐸 =∥ ℎ𝑖 + 𝑟𝑖 − 𝑡𝑖 ∥ 𝑝 (8.1)

where 𝑛 refers to 𝐿1 or 𝐿2 norm and ℎ𝑖 and 𝑡𝑖 are the vector representations of an entity and 𝑟𝑖 is
the vector representations of a predicate. For training, TransE uses margin ranking loss as the loss
function and scales well on the large datasets. Since this method is well studied in the literature, we
consider it the gold standard method for our experiments. The following Section describes embedding
a KG extracted from Twitter using the MDE model and TransE and describes a method to evaluate
predicted links by the KGE models to estimate plausible links.

8.3 KG Embeddings for Twitter Link Prediction

Knowledge graph embedding models usually generate a prediction based on their score function.
Nickel et al. [22] suggest performing link prediction by comparing the score of a triple with some
given threshold \ or by ranking the entries according to their likelihood that the link in question exists.
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Figure 8.2: A sample of the extracted Tweets about the recent medical studies. Each row shows the content of
one of the extracted Tweets.

We similarly use the Multiple-Distance Embedding (MDE) model [15]. In comparison to TransE,
this model can learn several relational patterns and thus it can more accurately learn the hidden relation
between the entities. Specifically, MDE can learn relations with symmetry, antisymmetry, transitive,
inversion, and composition patterns. The overall score function of this model is as follows:

𝑆𝑐𝑜𝑟𝑒𝑀𝐷𝐸 = 𝑤1 ∥ ℎ𝑖 + 𝑟𝑖 − 𝑡𝑖 ∥ 𝑝 + 𝑤2 ∥ ℎ 𝑗 + 𝑡 𝑗 − 𝑟 𝑗 ∥ 𝑝 + 𝑤3 ∥ 𝑡𝑘 + 𝑟𝑘 − ℎ𝑘 ∥ 𝑝 −𝜓 (8.2)

where 𝜓 ∈ R+ is a positive constant. The loss function of this model is:

𝑙𝑜𝑠𝑠 = 𝛽1

∑︁
𝜏∈T+

[ 𝑓 (𝜏) − 𝛾1]+ + 𝛽2

∑︁
𝜏
′∈T−

[𝛾2 − 𝑓 (𝜏′)]+ (8.3)

where 𝛾1, 𝛾2 are small positive values and 𝛿0, 𝛿
′
0 = 0. 𝛽1, 𝛽2 > 0 are constraints. The given loss

minimizes the score of the positive samples. Therefore, the smaller the triple score, the more probable
the relation. Based on this property of the loss function, we define a measure to estimate the existence
of a predicate such that the more probable triples are given a higher score.

We designate the division of the maximum score of a triple in the training set to the score of a triple
as the probability of its existence:

𝑃𝑎 =
𝑚𝑎𝑥(𝑆𝑐𝑜𝑟𝑒𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔−𝑡𝑟𝑖 𝑝𝑙𝑒𝑠)

𝑆𝑐𝑜𝑟𝑒𝐴
(8.4)

This definition is based upon the assumption that after the training, the model accurately predicates
the triples of the training set. The equation compares only the triples of the same type (with the same
predicate). Thus, in predicting the triples for linking physicians to medical Tweets, we consider only
triples with 𝑙𝑖𝑘𝑒_𝑟𝑒𝑠𝑒𝑎𝑟𝑐ℎ_𝑇𝑤𝑒𝑒𝑡_𝑖𝑑 predicates.

To perform link prediction on Twitter, we train MDE over an extracted KG. In the following, we
explain the procedure to extract the dataset from which we later generate a KG using it.
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Relation Id Relation
0 is_talking_about

1 is_followed_by

2 is_following

3 job_title_type_is

4 likes_research_Tweet_id

Table 8.1: Relation types in the Social Ontology

Class Id User Entity Class
0 job_title_medical_researcher

1 job_title_physician

Table 8.2: Class of users in the Social Ontology

Knowledge Graph Extraction: We extract a set of Tweets about the latest medical studies using
Python scripting and the Tweepy library 1. We filter our search by medical keywords and time in order
to only obtain medical research-related Tweets which were created from the beginning of the year
2019. Figure 8.2 shows a sample of the extracted Tweets. To keep the privacy of users, we removed
the user and Tweet identifiers from the figure.

We extend our approach to extract Twitter users who are physicians, surgeons, nurses, and researchers
in the medical fields who have written about these topics or favored such Tweets. Our continuous
inquiry, with a duration of 8 hours, provided 5996 Twitter users. Between these users, the job title of
69 instances was deductible (researcher in the medical field or physician) based on the medical job
titles in their profile descriptions. We then grow a sub-graph using these 69 instances as stem entities
and extract their user-user and the user-Tweets relations. The extracted user-user relations involve the
users who follow or are followed by these users so that we generate the social neighbors of these users
in the Twitter network.

In the next step, we define an ontology for the extracted interactions. Our created ontology includes
five types of relations. Table 8.1 lists these relation types. We also anticipate two classes for users
in the ontology. Table 8.2 presents these classes. We generate a multi-relational knowledge graph
based on the ontology and the scraped data. This step converts our extracted relations to triples. The
generated knowledge graph TW52 includes 4439 entities comprising 1021 users and 3418 Tweets.
In this dataset, we only include these users’ user-to-user relations and user-to-Tweet relations. The
final constructed KG includes 4791 triples. The anonymized dataset is available for research in
https://github.com/afshinsadeghi/SocialEmbeddings.

8.4 Experiments

We set up two experiments. We first evaluate how well the MDE method performs on the social media
dataset against a baseline in the link prediction task. We then analyze the suggestion results of the
model in different situations.

8.4.1 Performance Evaluation

We set up an experiment to evaluate the link prediction performance of MDE against TransE as the
baseline.

1
https://www.tweepy.org/
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8.4 Experiments

Evaluation Setup: We dedicate 80 percent of the knowledge graph extracted from Twitter as the
training dataset and set the rest as the test dataset. We randomly choose triples by uniform random
selection to separate them for the test set. We perform ranking the score of each test triple against its
versions with replaced head and once with a replaced tail. We then compute the hit at N(hit@N), mean
rank(MR), and mean reciprocal rank (MRR) of these rankings. We set the vector size of TransE to 20
and choose the vector size of 10 for MDE. We use 𝐿2 normalization to normalize their score function and
train them by 700 iterations. For MDE, we set the hyperparameters as follows: 𝛾1 = 𝛾2 = 3 and𝜓 = 1.2.

Results: Table 8.3 lists the evaluation results of TransE and MDE on the extracted knowledge
graph. Due to the sparsity of the graph, TransE gains very low ranking scores while MDE produces
superior results for all the MR and MRR and hit@N tests. The results suggest the positive influence
of relation patterns learning in MDE.

Model MR MRR Hit@1 Hit@3 Hit@10
TransE 1327 0.021 0.005 0.019 0.048
MDE 1287 0.148 0.071 0.161 0.332

Table 8.3: Results on Twitter extracted dataset (TW52). Better results are in bold.

8.4.2 Link Prediction Analysis:

In this Section, rather than studying the model’s performance, we establish an experiment to analyze
the suggestion results of the model to find out whether it creates sound suggestions in different
situations. We apply the model to encode the constructed KG, and then we use it to suggest the
possibly engaging research results for the physicians. We then study the recommended results.

Considering the physicians in the KG and Tweets, which include research results, we calculate the
probability that such a Tweet is favorable for physicians using Equation 8.4. In our experiment, the
hit@1 of the training triples was 99.8 percent. Therefore, assuming maximum probability for the
training triples in the formula holds for the experiment.

The observation of relations and entities in the KG shows that it is structured with the small world
network patterns [133]. Particularly, it includes hub users and Tweets which are connected to other
nodes with a number of links that greatly exceed the average degree in the network.

We select a subset of physicians in the KG and classify them according to their relation to other
users and Tweets into four groups of 5 users. We particularly inspected their relation to hub users,
which we call User type A. Users of type A are followed by a large number of users(at least 200), they
are active users and have favored variant Tweets. We also consider users of type B who follow a small
number (25) who are also physicians or researchers. Table 8.4 lists these groups of users and the mean
of their probability of like a Tweet C that includes a research study. We consider two Tweets similar if
their representative vectors have a small angle. These Tweets are usually favored by the same group of
people.

It is observable from Table 8.4 that in the proposed model, users that follow a diverse group of users
and topics are less likely to be interested in an inquired Tweet than those with less diverse connections.
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User group Mean Probability of C
Users U that follow A. A and U like a Tweet similar to C 0.205

Users U that follow A. A likes a Tweet similar to C 0.134
Users U that follow B. A and B like a Tweet similar to C 0.975
New users U that still follow nobody and like no Tweet 0.127

Table 8.4: Mean Probability of linking to a Tweet C for users with different communities and liked Tweets

This effect is even stronger than when the user has liked a similar Tweet before. This suggests that the
model performs better if a Twitter account is dedicated only to social communications related to her
profession. Additionally, the new users that have not favored any Tweet are expected the least among
the users to favor a Tweet.

8.5 Discussion of the specificity of the problem

The proposed experiment in the study has two major components. The first is the data extraction and
KG construction part, in which we specify the problem by data cleaning and filtering the extracted
data and create an ontology specific to the physicians and research-related tweets. The result of this
part is TW52 knowledge graph which has a sparse network structure compared to the conventional
benchmark datasets of embedding models, i.e., WordNet18 and FB15k.

The second part of the study is the MDE embedding model. Although MDE is a general method
for the link prediction problems, the evaluations showed that it is capable of embedding the sparse
dataset much better than the state-of-the-art TransE model. Therefore we consider both components
appropriate for the proposed problem.

8.6 Conclusion

This Chapter proposed the application of multiple-distance knowledge graph embedding (MDE) to
suggest Tweets about medical breakthroughs to physicians. We extracted a KG of medical research
Tweets and their relations to the users which are medical researchers, or physicians.

We evaluated MDE against TransE as the baseline in a link prediction test for the social network
KG. Our experiment shows the superior ranking performance of MDE over the baseline. We defined a
probability for link suggestion and provided an analytic study. We thereby conclude that the model
can be suggested to serve in connecting the physicians and the up-to-date advances in medical studies.
Considering physicians’ time constraints on social media [134], automating such suggestions can help
physicians find news and trends relevant to medical research results more effectively and in less time.

For future work, it would be interesting to extend this study on a large scale and provide it as a
live service. In addition, future studies may investigate the social effect of such application to find its
effect benefits for patients besides the physicians.
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CHAPTER 9

Conclusion and Future Directions

In this thesis, we follow the research objective of improving the state of the art of KGE for complex
knowledge graphs. Chapter 1 identifies the research problem and discusses the key challenges to
address in order to reach the research objective.

We review the fundamentals and background concepts essential for this thesis in Chapter 2. Chapter 3
covers the related work corresponding to the research objective and research question. In Chapter 4,
we develop a novel learning method for knowledge graph embedding that removes a KG embedding
capability limit, i.e., being limited to one score function. We propose this idea as the basis of this
study and materialize the vision by defining independent vectors for a multiple distance embedding
method with several score functions. We present several score functions that allow the learning of
several relation patterns.

We further extend the idea of multiple distance objectives in learning global node features in
Chapter 5. We show the limitations and capabilities of this approach in theory and empirically.
Furthermore, we demonstrate the greater efficiency of the model in comparison to the state-of-the-
art approaches. We observed a more pronounced improvement in the inductive setting and on a
large-scale biological dataset. Chapter 6 dedicates to our effort in facilitating research on embedding
methods, where we develop a benchmark generating framework that generates reproducible evaluation
experiment units.

This study in Chapter 7 targets another complexity in evaluating relational pattern learning. Because
the link prediction benchmark datasets are mixing relation patterns, it is unclear how a method’s
efficiency is on an individual relation pattern. Therefore, we create a group of leak-free datasets for
four frequent relation patterns in the Inductive and Transductive settings. We conduct a benchmark
based on these datasets that spot the difference in the efficiency of several state-of-the-art embedding
methods in different situations. The results of this study can be used for model selection based on the
characteristics of target datasets.

Last but not least, Chapter 8 provides a proof of concept demonstrating the application of KGE
methods in the digital medicine branch. We illustrate how our proposed MDE method works in the
deployment step of an End-to-End machine learning workflow to help physicians stay up-to-date in
their work domain.
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9.1 Review of the Contributions

This Section concludes the thesis by reviewing our research questions and their contributions, now
taking into account the principal achieved findings that validate our research questions.

Research Question 1 (RQ1)

Does combining multiple distance-based scores targeting different relation patterns generate more
effective embeddings of knowledge graphs?

The capability to allow the modeling of different relation patterns plays a crucial role in embedding
knowledge graphs. In Chapters 4 we addressed RQ1 by exploring an aggregate loss optimization
approach for multiple distance objectives. We developed this solution based on the idea of independent
learning vectors coupled with a limit-based loss function. The output of this study is the MDE
knowledge graph embedding method that allows the encoding of several relation patterns. We
formulated each score in this aggregate optimization method such that each one targets one challenge
in learning one of the relation patterns. Here, to better understand how to determine each score
correctly, we analyzed different scores from the state-of-the-art models and showed why they fail in
learning particular relation patterns.

The involved independent vectors per score in this method do not increase the memory consumption
of the approach out of the linear complexity and yet allow combining contrasting modelings of triples.
The limit-based loss separates the modeling of positive and negative triples, allowing the method to
learn them independently. In addition, this technique facilitates the analysis of the combination of
the scores. Furthermore, we developed an algorithm that explores the space of scores for negative
and positive samples and the generated overall loss to find an optimized limit for the limit-based loss
during the training iterations. We conducted experiments that empirically demonstrated how well the
involved scores were learning their targeted relation patterns and performed ablation studies that show
how adding/removing each score function improves/drops the efficiency of the overall model.

In conclusion, our method showed competitive performance compared to the state-of-the-art MR
and Hit@10 on the FB15k, WN18, FB15k-237, and WN18RR benchmark datasets. Notably, it
outperforms the current best models on the benchmark dedicated to relations with the composition
pattern. Contributions to Research Question RQ1 are summarized as follows:

• Provided theoretical analysis of knowledge graph embedding models and pointed out their limitation
on learning different relation patterns.

• Developed MDE knowledge graph embedding method and Showed that MDE allows encoding
several relational patterns.

• Suggesting limit-based loss function for knowledge graph embedding.

• Proposed an algorithm to find the limits for the limit-based loss function to use in embedding
models.
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• Empirically evaluated our method, which performed competitively to the state-of-the-art in the link
prediction experiments.

Research Question 2 (RQ2)

Does learning network features of knowledge graphs improve the efficiency of KG embedding?

Graph feature-aware embedding of knowledge graphs has become possible after we resolved the
RQ1 with a model capable of intaking more information than one feature per training sample compared
to the conventional KGE methods. Based on this accomplishment, we investigated to find a solution
for the research question RQ2 in Chapter 5.

We observed that the global network factors provide a new insight to better separate and distinguish
the graph nodes. For instance, a representation vector for a node using feature-aware embedding
includes the details like degree and page rank of that node. In addition, it indicates the node’s position
regarding the whole knowledge graph. Acquiring this quantifier information in knowledge graph
embedding would make the embedding method more precise, allowing it better distinguish entities
and better predict hidden links. Thus, we aimed to make a multi-objective formulation to perform
graph feature-aware embeddings based on entities’ centrality and distance features. We developed the
GFA-NN embedding method based on this idea, and we investigated the advantages and limitations of
the model both theoretically and empirically.

The empirical comparison of the model affirms its efficiency improvement over the state-of-the-art
methods in the link prediction task. We observed a more pronounced improvement in the large-scale
knowledge graph embedding experiment. The model also beats methods dedicated to inductive
knowledge graph embedding, indicating it has inductive bias. Contributions to Research Question
RQ2, in summary, are as follows:

• Proposed a score function formulation for knowledge graph graph embedding that allows encoding
graph features beside relational learning.

• Provided the mathematical formulation of several graph features, normalizing and adopting these
features to make them compatible with relational learning.

• Proposed the GFA-NN knowledge graph embedding method: a neural network approach for
feature-aware knowledge graph embedding.

• Theoretical analyzed the learning of graph features in KGE methods, highlighting their potential
and limitations.

• Empirically evaluated graph feature aware embedding of knowledge graphs, where it outperformed
the state-of-the-art KGE methods in several benchmarks.
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Research Question 3 (RQ3)

How can we make the evaluations of embedding models reproducible?

Evaluation methods are a primary section of scientific studies, and reproducible experiments indicate
the validity of an evaluation. Therefore, the lack of reproducible evaluations for embedding models is
a crucial challenge. To address the RQ3 in Chapter 6, we developed a framework based on the FAIR
principles to generate read-only evaluation docker images. These executable images contain a fixed
executable link prediction experiment for a knowledge graph embedding method. A link prediction
investigation made by this approach is operating system-independent and device-independent. Once
an experiment is initialized in such a setting, it remains unchangeable, and the later reruns repeat the
exact copy of the initial experiment. In addition to this testing framework, we developed a usage guide
and an extension template that we published openly on Github. Contributions to Research Question
RQ3 are summarized as follows:

• Developed the Benchembedd framework that generates fixed test environments to perform repro-
ducible link prediction evaluation of KGE models.

• Presented the framework structure and provided a base for understanding the approach.

• Provided instructions for adaptation of the work in further studies to promote the application of
reproducible link prediction experiments in future works.

• Provided templates to simplify the extension and deployment of the framework to promote
reproductive link prediction studies.

Research Question 4

How can we recognize a more effective embedding method on a specific relation pattern?

To achieve our research objective, we find a potential challenge of lacking an evaluation dataset and
benchmark that tests embedding methods as link predictors against individual relation patterns. In
particular, such an evaluation dataset is required to avoid leakage between different relation patterns.
We developed an approach that extracts four relation patterns and investigates the output datasets
to recognize and bypass relation pattern leakage. We applied this approach to extract 96 datasets
in 4 different inductive settings from FB15k and WN18 datasets. We consequently conducted a
large-scale benchmark of state-of-the-art KGE methods based on these datasets. Our experiments
generate meaningful results highlighting the limitations and effectiveness of the included models
on individual relation patterns and categories of inductiveness. Particularly we compared the MDE
approach from Chapter 4 and the graph feature-aware GFA-NN method from Chapter 5, where we
observed that the addition of the graph feature in the process of learning has effectively improved the
performance of the model.
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Our Contributions to target RQ4 are summarized as follows:

• Proposed a new benchmark for link prediction task that targets investigating KGE models on a single
relation pattern basis.

• Proposed several datasets by classifying triplets into their respective classes according to their
patterns, keeping in mind the properties of both inductive and transductive types. Therefore,
we extract four categories from each class: Fully Inductive, Fully Transductive, CountBased
Inductive, and Head or Tail Inductive. Each category is further divided into patterns of Symmetry,
Anti-symmetry, Inverse, and Inductive, making of 32 datasets per category and 96 in total.

• Developed methods for extracting separated patterns and, in addition, made automatic emending
methods to avoid data leakage between detests. The datasets are also designed based on unification
to benchmark them onto different link predicting models.

• We observed a significant setback in the benchmarking of knowledge graph models. Therefore we
extended the work done by [60], keeping the missing leak-free evaluations in mind.

• Generated a fair comparison to help choose the best model and dataset combination, which is
especially beneficial for NLP Research.

• The previous research on benchmarking datasets was too general; we provided a tool-set to designate
a specific approach according to the type of datasets.

• Explored the characteristics of the datasets that can be potential performance boosters.

To sum up our contribution, we created a reproducible evaluation environment that is user-friendly
for all. We designed our benchmark datasets, keeping the ease of use in mind.

Research Question 5 (RQ5)

Does a KGE method that allows the encoding of relation patterns tackle a real-world link prediction
task more effectively than a commonly applied KGE?

This research question is investigated in Chapter 8. Because knowledge graph embedding approaches
can predict hidden links, they are directly employable as a recommender system. Accordingly, we
designed a pipeline of link prediction based on the knowledge graph embedding model developed in
Chapter 4.

The tangible outcome of this work was a Tweet recommending system that suggests the latest
research results published by researchers to physicians according to their medical learning interests
implied from their social interactions on the Twitter network. Our goal in making such a system was
to show the potential of knowledge graph embedding in solving the real-life challenge of helping
physicians stay up-to-date on their specialized topics.
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Although the proposed approach is general, in a pre-processing step, we precisely filtered out Tweets
that contain relevant research results and the sub-network of physicians and researchers in the medical
science for two main reasons: first, since the model predicts based on the existing interactions, the
filtered interaction network provides the base for the model to lay the predictions upon; and second,
learning more diverse interactions, for instance, the interaction of physicians outside their work topic
act as outlier data in the training data which decrease the performance of a KGE model.

We suggest this data filtering step as a preliminary stage for applications of KGE methods with
targeted objectives because these approaches make link predictions on the knowledge graph data,
which are heterogeneous. In contrast, de facto training data exclude irrelevant data for none KG-based
machine learning methods. Here, data pre-filtering reduces the training time and improves the model’s
effectiveness.

Contributions of this Chapter can be summarized as follows:

• Proposed a pipeline for applying the MDE machine learning method as a recommender system to
support the social good.

• Demonstrated a method for topic-based data extraction and processing stream data of Twitter to
obtain meaningful relations and generating a social knowledge graph from the harvested data.

• Proposed a formulation of link probability for one particular link in a knowledge graph based on the
average outcome of the KGE on previously learned relations.

• Experimented suggestion of connections for physicians to the latest medical study results mean-
ingfully relevant to them on Twitter data, intending to help physicians stay up-to-date in their
field.

9.2 Limitations and Future Directions

During the course of this study, we discovered three main limitations, and we report them here to be
considered in future research efforts building on our findings.

The first limitation relates to modeling the hypergraphs. Instead of edges, this type of graph includes
hyperedges. A hyperedge connects more than two vertices in contrast to regular edges. Although it is
possible to convert hypergraphs to graphs, the link prediction problem for a hypergraph also requires
considering the conversion to a regular graph; therefore, new methods try to encode the hypergraphs
without converting them to graphs. We considered this direction of study out of the scope of this
thesis. While our suggested embedding models do not directly model hypergraphs, our effort can be
extended in this direction.

The second limitation relates to the embedding of very large-scale knowledge graphs. We
experimented with embedding large-scale graphs using GFA-NN in Chapter 5. We observed that
despite producing effective embeddings, the training time of the model becomes lengthy. For instance,
the training time for ogbl-biokg, which comprises about 4.8 million train triples, was 12 days, running
on four parallel GPUs. To improve the training time limitation, we suggest applying distributed
training techniques for the embedding models, which is out of the scope of this thesis.
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The third limitation is based on our study of embedding knowledge graphs with missing entities.
The inductive link prediction experiments in our study in Chapter 5 cover this type of challenge. While
the proposed model was not targeted for this task, it was remarkably effective due to its comprehension
of graph features. A further study in this direction to find and extract relevant graph features for
inductive setting is out of the scope of this thesis, and we left it out for future works.

Based on our research results and the contributions made in this thesis, we now explore prospects
for future directions and opportunities that open up after our work.

■ Future of multiple objective embeddings: In this study, we considered multiple objective learning
of distance-based modeling of relations. Further study to combine newer objectives for modeling
additional relation patterns is beneficial in future works. For example, the extension to encode
transitivity relation patterns can be considered. For this extension, it is sufficient to involve the
projection formulation of this pattern from a recent distance-based method [80] in our suggested
combination method of scores. Similarly, the proposed multi-objective optimization method
based on independent weights can be easily extended with supplementary scores and a new set of
embedding vectors to encode multi-modal knowledge graphs.

■ Future of graph feature learning: We investigated the embedding of centrality and positional graph
features related to entities in our study. We suggest advancing this study to involve graph features
describing global features of relations. We expect future studies in this direction to improve the
embedding of very heterogeneous knowledge graphs that involve a significant number of relation
types.

■ Future of relation pattern evaluations: Our evaluation study on individual relation patterns produces
meaningful results in spotting the weakness and competency of different models. A complimentary
work can be the development of test sets with particular cases that include a calculated mix of
different relation patterns. For example, the triples with a mix of relation patterns in some cases
are more manageable for a KGE method to predict because the model might be able to encode
only one of the patterns. Although such a model would be able to make a correct prediction in the
leaked-relation pattern test, it might have trouble predicting triples with the mutually exclusive
set of relation patterns. We suggest this type of evaluation for future work as we observe these
combinations in real-world knowledge graphs.

■ Future of better handling the unbalanced set of negative and positive samples in KG learning: In
our study, we recognized that in most novel models, despite producing a high MRR value in the
link prediction task, the MR output is high as well, which indicates these models are overfitting.
The existence of numerous negative samples per positive sample is an issue in knowledge graph
modeling and is the cause of the overfit in most KGE models. We targeted this problem using
limit-based loss, while another study [18] aimed to solve this problem by deploying adversarial
negative sampling. Both these studies generate a balanced scoring combination for negative and
positive samples; however, one of the two techniques was more effective inconstantly on different
datasets. We suggest combining these approaches in future works to handle the unbalanced training
samples better.
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9.3 Closing Remarks

Knowledge graph embedding models aim to encode graphs into representation weights and deduct their
hidden relations. Learning complex knowledge graphs, however, face challenges where various relation
patterns frequently appear in the network and numerous similar entities with hardly distinguishable
neighborhoods making the embedding task difficult.

In this study, we proposed approaches to target these challenges and developed datasets and an
evaluation framework to better recognize and compare KGE models’ performance on such problems.
We suggested an end-to-end machine learning workflow for embedding models and practically explored
this workflow by deploying our suggested KGE method in a real-world application. More specifically,
we proposed and developed:

■ Proposed a multiple-objective approach for the effective embedding of knowledge graphs.

■ Proposed Graph feature-aware embeddings for better encoding of knowledge graphs.

■ Developed a benchmark and dataset for precise leak-free relation pattern benchmarking of link
predictors.

■ Developed a framework for the reproducible evaluation of embedding models.

■ Investigated the application of our multiple-distance embedding method to a real-world task with
benefits to the social good.

Future research can extend the datasets and proposed methodologies presented in this thesis as
contributions. These efforts could provide the groundwork for highly accurate complex knowledge
graph embedding. Furthermore, our thesis’ contributions are already impacting the knowledge graph
learning community; Several other studies are working on relation pattern learning utilizing our
approaches in link prediction tasks using the methods published throughout the thesis’ duration. To
contribute to the research community, we openly published all mentioned thesis contributions in code,
datasets, and article format.
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