
School of Computer Science and Statistics

Auto-generation of Blockchain-based

Distributed Applications using

Ontologies

Muhammad Uzair Qureshi
15318872

May 8, 2020

A Final Year Project submitted in partial fulfilment
of the requirements for the degree of

MAI (Electronic and Computer Engineering)

http://www.scss.tcd.ie

Declaration

I, Muhammad Uzair Qureshi, declare that the following dissertation, except where otherwise
stated, is entirely my own work; that it has not previously been submitted as an exercise for
a degree, either in Trinity College Dublin, or in any other University; and that the library may
lend or copy it or any part thereof on request.

I have read and I understand the plagiarism provisions in the General Regulations of the
University Calendar for the current year, found at http://www.tcd.ie/calendar.

I have also completed the Online Tutorial on avoiding plagiarism ‘Ready Steady Write’, located
at http://tcd-ie.libguides.com/plagiarism/ready-steady-write.

Signed: Date:

i

http://www.tcd.ie/calendar
http://tcd-ie.libguides.com/plagiarism/ready-steady-write
Uzair Qureshi

Uzair Qureshi
7th May 2020

Abstract

Blockchain has already promoted itself to solving business issues within every major domain,
from supply chain to financial institutions to the healthcare industry. This is marked as the
transition to Blockchain 2.0. However, this mass migration of industries can not yet be a
reality due to the limitations in standards and expertise of smart contracts within the various
domains and the concern of the legal validity of smart contracts.

Therefore, it is necessary to standardize concepts of smart contracts within blockchain frame-
works in relation to legal agreements and to provide a direct mapping of agreements to code.
This would allow for standardisation and re-use of smart contracts across domains and make
them legally-enforceable.

We target the R3 Corda blockchain framework and propose a novel Ontology, CordaO, that can
be used to model Corda Smart Contracts (CorDapps). We also develop a tool, CordaOntoG,
that auto-generates the relevant state, contract and flow code in Java that can be deployed and
run on a Corda network. The ontology and code generator is then evaluated with elementary
domain-specific agreements like clinical trial patient registration, car rental and invoices.

ii

Acknowledgements

First and foremost, I would like to thank my thesis supervisor, Professor Declan O’Sullivan ,
for his continuous help and expertise over the course of this dissertation. My sincere
gratitude for his patience throughout this process. I would also like to thank my
co-supervisors, Dr. Fabrizio Orlandi and Dr. Damien Graux, for their valuable assistance and
insight throughout the course of the project.

Last but not least, I would like to thank my parents, Athar and Bushra, for their constant
support throughout my academic journey.

iii

Contents

1 Introduction 1

2 Background 3

2.1 Blockchain Frameworks . 3
2.1.1 Bitcoin . 3
2.1.2 Ethereum . 4
2.1.3 Issues with public blockchains . 5

2.2 Permissioned Blockchains . 5
2.2.1 Quorum . 5
2.2.2 HyperLedger Fabric . 6
2.2.3 Corda . 6

2.3 Smart Contracts . 6
2.4 Semantic Web . 7

2.4.1 Semantic Web . 7
2.4.2 Semantic Web Architecture . 8
2.4.3 RDF . 10
2.4.4 SPARQL . 11
2.4.5 Ontologies . 12

2.5 JavaParser . 13

3 Literature Review and Motivation 17

4 Methodology 23

4.1 Corda Key Concepts . 23
4.1.1 State . 24
4.1.2 Contract . 27
4.1.3 Flow . 27

4.2 Ontology Development . 28
4.2.1 Determine Scope . 29
4.2.2 Reuse of Ontologies . 29
4.2.3 Enumerate Terms . 30

iv

4.2.4 Define Classes . 30
4.2.5 Define Properties . 31
4.2.6 Create the Instances . 32
4.2.7 RDF* to Annotate Constraints . 32

4.3 Auto-Generation Tool . 34
4.3.1 Architecture . 34

5 Evaluation 41

5.1 Invoice (IOU) . 41
5.2 Car Rental . 48
5.3 Clinical Trial Patient . 50

6 Conclusion and Future Work 53

6.1 Conclusion . 53
6.2 Future Work . 54

6.2.1 Heavyweight Ontology . 54
6.2.2 Supply Chain Pricing Contracts . 54
6.2.3 Agreement as a template of Blocks 55

6.3 Final Remarks . 55

A1Appendix 59

A1.1 Ontology Visualisation . 59

v

List of Figures

2.1 Chain of Transaction blocks in Bitcoin (1) 4
2.2 Comparison of Ethereum, Hyperledger Fabric and Corda (1) 7
2.3 Semantic Web architecture. Source: (2) 9
2.4 Sample Turtle Syntax . 10
2.5 Visualisation of Sample Spiderman Turtle Statements from Fig 2.4 11
2.6 SPARQL Queries match graph patterns in Dataset from (3) 12
2.7 Simple University Ontology. Source: (4) 13
2.8 Compilation Unit . 15
2.9 Method Declaration of Class Declaration 15
2.10 Block Statement of Method Declaration 16

3.1 Structure of a Ricardian Contract (5) . 20
3.2 Research Landscape of Smart Contract Templates (6) 21

4.1 Sequence of states representing evolution of an IOU state on ledger. Source:
(7) . 24

4.2 Instance of a sample IOU State Source: (7) 25
4.3 Transaction Proposal of Settlement Flow of IOU Source: (7) 26
4.4 Flow Sequence between two parties Source: (7) 28
4.5 Edge Representation with RDF* . 33
4.6 Graph Representation of Contract constraint with RDF* 34
4.7 CordaO Auto-Generation Tool Architecture 35
4.8 State Compilation Flow . 36
4.9 SPARQL Query Pattern for 4.4 . 38
4.10 Flow Compilation Flow . 40

5.1 IOU Issue State Machine View . 42
5.2 IOU Settle State Machine View . 43
5.3 Transaction Proposal by IssueFlow for IOU. 43
5.4 Transaction Proposal by SettleFlow for IOU. 44
5.5 Successful Issue of IOU . 45

vi

5.6 Vault of PartyA demonstrating two different IOUs 45
5.7 Amount exceeding IOU Issue constraint of $150 46
5.8 Borrower can not Issue IOU . 46
5.9 Negative Amount cant not be passed as input 47
5.10 Successfully settle IOU . 47
5.11 Settle Amount too low . 47
5.12 IOU not found . 48
5.13 Ledger rejecting transaction by Driver of Age not greater than 25. 49
5.14 Ledger rejecting transaction by Driver with an invalid license. 49
5.15 Ledger successfully registering driver for car rental. 50
5.16 Ledger rejecting transaction due to age of patient being less than 6. 51
5.17 Ledger rejecting transaction because of date not being before 2010-02-15. . . 51
5.18 Ledger rejecting transaction since this isn’t patients first visit. 52
5.19 Patient successfully added to ledger due to satisfaction to all constraints. . . 52

A1.1 Visualisation of CordaO Ontology in WebOwl 59

vii

List of Tables

viii

Nomenclature

RDF Resource Description Framework
CorDapp Corda Distributed Application
AST Abstract Syntax Tree

ix

1 Introduction

Blockchain over the years has aimed to provide a secure distributed ledger for all parties to
transact on. With the advent of this disruptive technology, businesses have seen the
potential in increased productivity for their business processes with other parties in their
network. Namely, with permissioned blockchain frameworks like R3 Corda, IBM Hyperledger
and Quorum. Moreover, ’smart contracts’ on the blockchain increase the autonomy of the
network by self-executing recurrent flows and validating them against pre-defined business
rules. This technology helps us move closer to the vision of autonomous industries.

Blockchain has already promoted itself to solving business issues within every major domain
from supply chain to financial institutions to the healthcare industry. This is marked as the
transition to Blockchain 2.0. However, this mass migration of industries can not be a reality
yet due to the limitations in standards and expertise of smart contracts within the various
domains and the ambiguity of legally-binding smart contracts.

Therefore, it is necessary to standardize concepts of smart contracts within blockchain
frameworks in relation to legal agreements and to provide a direct mapping to code that can
be deployed and run on the network and be enforceable in court. This standardisation can
be related to a semantic layer between paper contracts and the smart contracts.

Within this paper we explore the landscape of blockchain frameworks and their respective
representation of smart contracts which model business processes. We also explore their
approach to increasing legal validity of the code that runs on their network.

Furthermore, the paper explores literature on approaches taken to provide semantics of
blockchain and frameworks to generate code for blockchain using Ontologies.

We also provide an introduction to ontologies, code generation tools and key concepts of a
Corda distributed application that are used.

Finally, we develop an ontology to represent key concepts and their relationships in Corda
Distributed Applications and provide details into the implementation of the tool that
auto-generates code from triple statements. The ontology and tool is then evaluated with
elementary domain-specific agreements like patient registration, car rental and invoice

1

issuance and settlement.

Key Results:
We were able to road map the process of building a semantic medium between smart
contract code and natural-language legal agreements. The amalgamation of the fields of
blockchain, law and semantic web pose a new paradigm for the future of autonomous
industries. There is still much research to be done with collaboration from all fields to move
towards standards for code as law and law as code. Moreover, a better understanding of
smart contracts in different blockchain frameworks has been gained for purposes of
abstraction to semantic layers. Domain-specific knowledge of the smart contract platform is
necessary to be able to build new code generation tools. Hopefully in future a hybrid
ontology could morph agreements into any choice of smart contract.

Contribution:
We have developed a novel and extensible Ontology that can model Corda smart contracts
and business agreements as a knowledge graph, alongside a code-generator that can query
the agreement representation to generate smart contracts that run on the R3 Corda
platform.

The rest of the paper is organised as follows. Section 2 provides background to an overview
of current block chain frameworks and their how they view smart contracts. In Section 3, we
discuss the literature review, we lay out the work of the relevant authors in the field of smart
contract templates and legal smart contracts, and provide critique, if any. Section 4 presents
the Methodology; we lay out the development process of the Ontology and the
Auto-generation Tool . Section 5 provides a three case studies using the program and
evaluation of the results. Finally, Section 6 briefly provides future work, challenges and final
remarks.

2

2 Background

2.1 Blockchain Frameworks

The term "blockchain" originated from the Bitcoin protocol and network published by the
anonymous Satoshi Nakamoto in 2008 Nakamoto (8). Since then, blockchain technology
has been morphed and integrated into several other platforms and applications. Blockchain
now generally refers to the varying nascent distributed ledger technologies that evolved from
Bitcoin. Therefore, distributed ledgers and blockchain may be used interchangeably
throughout the paper.

2.1.1 Bitcoin

Digital artifacts are a staple of our technological revolution. However, they can be easily
copied, presenting a concern in the representation of valuable assets such as money.
Typically, third parties, such as banks, are the trusted ledger keeps, and prevent "double
spending" (9) . "Double spending" is the risk that an asset can be split twice. In banks, this
is avoided by lengthy reconciliation and settlement processes between different banks’
ledgers. When two parties transact, such as a customer and a shop, we involve a trusted
third party for the settlement process our assets. This is before bitcoin presented a unique
consensus protocol to solve this double spending problem.

At a high-level, bitcoin replaces a single ledger keeper with a network of ledger keepers.
Every node on the network holds a copy of the ledger and helps in reaching consensus about
proposed transactions that update the ledger state. Bitcoin demonstrated that mutually
distrusting parties can reach a consensus on a transaction based on a simple protocol.
However, bitcoins use-case limits the use of consensus on shared data to simply moving
funds, but the possibilities are numerous.

Proof-Of-Work

In Bitcoins blockchain, the block of transactions are appended using hashes of previous
blocks as inputs of subsequent blocks. These transactions can contain several inputs and

3

outputs.

To append a valid block to the chain, Bitcoin uses a proof-of-work algorithm, which also
helps in transaction ordering. A valid block is a well ordered set of transactions, contains a
hash of the previous block and contains a "nonce", which is produced from proof-of-work.
Nodes have to compete against each other to add these transactions to the ledger and get
rewarded. Proof-of-work is necessary in Bitcoins platform as it thwarts various forms of
attack. This process implies a considerable commitment of computing resources to gain
incentive (Bitcoin reward) and acts as a substitute for accountability. The following Fig 2.1
shows the how the trasactions are connected, deriving the term blockchain.

Figure 2.1: Chain of Transaction blocks in Bitcoin (1)

2.1.2 Ethereum

In 2014 Vitalik Buterin published a paper titled "A Next Generation Smart Contract &
Decentralised Application Platform" Buterin et al. (10), which birthed the second wave of
blockchain technology and the underlying Ethereum blockchain protocol, the public network
was running by 2015. Beyond a distributed ledger like Bitcoin, Ethereum proposed a new
paradigm of a distributed computation platform. This allowed for distributed code execution
implemented on the Ethereum Virtual Machine (EVM). The EVM is Turing-complete and
enables the deployment of smart contracts via transactions.

Gas

Ethereum introduced "gas" as a fee for computation, with every block having a gas limit.
This limits the computation executed per block. The "gas" price is then converted to Ether
spent, used to provide incentives to the Proof-of-work protocol.

The original intent of Blockchain was to provide Public Networks, and still remains its most
powerful use. It provides ease of accessibility, as you only require the client software and an
internet connection (Bitcoin and Ethereum networks). There exists no hierarchy, since all

4

nodes are equal. There will always be a basis for incentive based on the consensus
algorithms to prevent attacks.

2.1.3 Issues with public blockchains

Bitcoin and Ethereum were deployed as Public Blockchains. Their aim is to provide a single
global network for all members of society. It is a compelling vision and accounts for the
collaboration of great minds to advance distributed ledger technology. However, the vision is
not fit for enterprise needs. These public blockchains use proof-of-work, and studies have
presented proof-of-work’s issues with scalability along with its vulnerability. Rational nodes
can collude to obtain a revenue share larger than their fair share (11). Secondly, as all data
is shared with all parties and in their ledgers it poses a privacy concerns for enterprises with
valuable data as it exposes a global attacker model. It is also to be noted that malicious
actors will always find ways to exploit the network for their needs. There have been several
exploitation’s targeting Ethereum smart contracts (12). A famous exploitation being of a
prominent smart contract in Ethereum, which left the exploiter with 60M dollars. It was
hard to flag it as illegal as there was no non-code specification of what the program was
meant to do, however, the funds were revoked after a harshly debated revision of the
blockchain. Therefore, this vision of removing third-parties completely seems utopian as of
yet and constantly requires a third party, such as the maintainers of the blockchain, to
resolve disputes as they see fit.

2.2 Permissioned Blockchains

Due to the powerful consensus capable by blockchain on shared data, soon, several
enterprise-targeting blockchain platform were created. These enterprise blockchains focused
on building collaborative networks between parties with pre-built trust and known identities.
These platforms are referred to as permissioned blockchains as they require permissions to
join the network to maintain privacy and security to standard within the distributed ledger.
The main permissioned distributed ledgers are Quorum, Hyperledger Fabric and Corda.

2.2.1 Quorum

Quorum (13) is a fork of the Ethereum blockchain platform backed by JP Morgan and
Microsoft. It is essentially private Ethereum networks for enterprise with flexible choices in
consensus algorithms and privacy options.

5

2.2.2 HyperLedger Fabric

With blockchain evolving over the years, the Hyperledger foundation was set up in late 2015.
It is an open-source consortium for developing business applications hosted by the Linux
foundation. Hyperledger Fabric (14) is a permissioned distributed ledger platform that’s
allows modularity for different industry use cases. Fabric also supports private transactions
and confidential contracts.

2.2.3 Corda

In early 2016, R3 announced its working on a distributed ledger, Corda (15). Corda focused
from the beginning on heavily regulated industries, namely, the financial institution. Corda
was designed and developed to record and automate legal agreements between identifiable
parties. Its explicit purpose is to record, manage, snchronize and enforce business agreements
between trading partners. It takes a unique approach to data distribution and transaction
semantics while emphasizing features of distributed ledgers attractive to enterprises. Namely,
reliable execution of contracts in an automatable and legally enforceable fashion.

Corda Distributed Applications (CorDapps) are applications that run on the Corda
Blockchain. CorDapps closely model business processes with legal contracts in mind. It
keeps close to legal contracts by implementing collections of approvals and signatures
between parties involved for every transaction.

2.3 Smart Contracts

Ethereum was first to introduce smart contracts on their distributed ledger. A smart
contract in the EVM is an autonomous agent consisting of an internal account that encodes
agreement logic. These contracts execute deterministic code, with the correct execution
being part of the transaction validation process. Smart contracts in Ethereum are written in
Solidity, a purpose-built high level programming language.

Quorum, being a fork of Ethereum, supports both public and private contracts. Specific
private contracts can only be executed by the specified nodes in the network.

Hyperledger Fabric uses the term "Chaincode" for their smart contracts, they are used to
model business logic in their applications . Chaincode is able to be written in
Node/Go/Java.

In Corda, smart contracts can include legal prose, defining what a contract is meant to do.
A @LegalProseReference annotation is provided which provides the URL/URI to a
specification document. It is up to parties in the network to add legal weight to the code
that automates this process. This is necessary for heavily regulated industries. This form of

6

smart contract is referred to as a Ricardian Contract (16), and requires signatures from
parties involved to verify proposed transaction. Smart contracts in Corda can be developed
in any programming language that targets the JVM (Kotlin and Java).

The following figure from "Comparison of Ethereum, Hyperledger Fabric and Corda" (1)
provides a summary of the characteristics of the different Blockchain/Distributed Ledger
platforms.

Figure 2.2: Comparison of Ethereum, Hyperledger Fabric and Corda (1)

By exploring the blockchain platforms we explore which is best suited for modelling legal
agreements as smart contracts. We conclude that R3 Corda provides the best basis for the
roadmap of Legal Smart Contracts, due to its target towards regulated industries and
foundation of combining legal prose and smart contract code.

2.4 Semantic Web

2.4.1 Semantic Web

Sir Time Berners-Lee, proposed a distributed information management system which
interlinked hypertext documents, called the World Wide Web. This provided a revolutionary
platform for all to collaborate, learn, earn create and dream. However rather than solely

7

being a Web of Documents, Sir Tim Berners-Lee hoped for a Web of Data.

"I have a dream for the Web [in which computers] become capable of analyzing

all the data on the Web – the content, links, and transactions between people

and computers. A "Semantic Web", which makes this possible, has yet to

emerge, but when it does, the day-to-day mechanisms of trade, bureaucracy and

our daily lives will be handled by machines talking to machines. The "intelligent

agents" people have touted for ages will finally materialize." (17)

To make Web of Data a reality, it requires a standard format, reachable and
manageable by Semantic Web tools. The Semantic Web is thus, an extension of
the Web and builds upon it to provide standards and tools for semantic
interoperability on the Web.

Semantic Web aims to

1. Provide standards to promote common data formats for heterogeneous
data integration, whereas the Web focused on interchange of
human-oriented documents.

2. Defines Modelling languages and protocols to allow for interlinking of data,
foundationally, RDF.

2.4.2 Semantic Web Architecture

8

Figure 2.3: Semantic Web architecture. Source: (2)

The following components form the building blocks for the Semantic Web

• URIs - Providing unique identification of resources.

• RDF (Resource Description Framework) Abstract model to express
knowledge by combining simple statements about resources.

• SPARQL - Query language and set of related standards for querying RDF
graphs.

• Ontologies - Describe formal, shared conceptualisations of a domain of
interest (18). Ontologies establish common semantics between applications
on the Semantic Web.

• RDF Schema - Simple language for defining RDF Ontologies which allow
developers to define classes, properties and relations between them.

• Web Ontology Language - Ontology language built on top of RDFs and
extends it with more complex constructs, such as restrictions and
cardinality.

Finally, a logic layer consists of rules that enable inference and define semantics
of RDF data and ontologies.

9

2.4.3 RDF

RDF is the standard format for representing labelled graph data on the Semantic
Web. RDF allows expression of knowledge with triple simple statements
consisting of a subject (thing), predicate (property) and object (value).

”In RDF, a document makes assertions that particular things (people, Web
pages or whatever) have properties (such as ”is a sister of,” ”is the author of”)
with certain values (another person, another Web page). This structure turns
out to be a natural way to describe the vast majority of the data processed by
machines.” (19)

The use of URIs allows for merging of statements allowing combination of
knowledge graphs to present collective information. This makes RDF useful for
integrating information from multiple sources, be it from the Web or enterprise
information systems.

In order to exchange RDF information, RDF can be serliased with Ntriples
syntax or Turtle syntax. We use the Turtle syntax, since its compact and in
natural text form.

The following example represents statements of the Spiderman universe in
Turtle Syntax. The statements can be read as:
"Green Goblin" is a Person and he is the enemy of spiderman. "Spiderman" is a
Person and he is the enemy of green-goblin.

Figure 2.4: Sample Turtle Syntax

10

Figure 2.5: Visualisation of Sample Spiderman Turtle Statements from Fig 2.4

Vocabularies

Vocabularies define the concepts and relationships used to describe and represent
an area of concern. In practice, RDF is written in combination with vocabularies
and ontologies. Main Vocabularies are RDF,RDFS and Web Ontology Language
(OWL). The URI prior to ":" prefix defines the vocabulary of the resource.

2.4.4 SPARQL

SPARQL is the query language standardised by the W3C for RDF. SPARQL can
express queries across data sources, based on matching required and optional
RDF graph patterns, the syntax is similar to SQL but it queries Graphs rather
than relational databases. Although, SPARQL is "data-oriented" in that it is
only able to query information in models, providing no inference, many tools like
Jena (20) and Stardog, provide the impression of certain triples existing with use
of OWL Reasoning.

11

Figure 2.6: SPARQL Queries match graph patterns in Dataset from (3)

2.4.5 Ontologies

Decisions we make (intelligent systems) are based on knowledge we understand
the context of the situation/environment. Humans require common
understanding on basic concepts to understand each other, that is, we require
the same semantics. Similarly, for computers to exchange information and
reason about it, the need a syntactic representation that all software agents can
process and have a shared conceptualisation of, within a domain. Semantic web
formalizes knowledge in a way that improves decision making, and can form
basis for autonomous reasoning. Such shared conceptualisations are called
Ontologies and they are widely used in Computer Science fields like Information
Management and Natural Language Processing.

”An ontology is a formal, explicit specification of a shared conceptualization.
Conceptualization refers to an abstract model of some phenomenon in the world
by having identified the relevant concepts of that phenomenon. Explicit means
that the type of concepts used, and the constraints on their use are explicitly
defined. Formal refers to the fact that the ontology should be machine-readable.
Shared reflects the notion that an ontology captures consensual knowledge, that
is, it is not private of some individual, but accepted by a group.” (21)

Ontologies are modelled as a set of concepts (classes) and a set of properties
which link the concepts. Additional axioms can be defined to further constrain

12

and formalise the ontology.

Classes or concepts, represent general qualities and properties of a group of
individuals. Instances of classes can be defined using rdf:Class as their type, and
further defined with instances of rdf:subClassOf and more.

Properties represent relationships between subject and object. The rdf:domain
and rdfs:range define the Objects that pertain to the property’s subject and
object instances. There are several vocabularies and terms that can be used to
define concepts in Ontologies.

The following figure represents a simple Ontology and Instances using the
Ontology to define a University.

Figure 2.7: Simple University Ontology. Source: (4)

Thus, an Ontology can be defined being a:

• Knowledge model defining set of concepts and relationships between those
concepts within a specific domain.

• Model that supports automated reasoning and inference of data using
logical rules.

• Provides Knowledge sharing and reuse among people and software agents.

Web Ontology Language (OWL)

OWL provides an extended vocabulary for describing ontologies with classes,
properties more specific relations between them (e.g. range, domain, disjoint
classes etc). OWL facilitates greater machine interpretability of Web Content.

2.5 JavaParser

Code Generation is a powerful tool for programmers who write repetitive
boilerplate code for applications and services based on a specification, these can

13

be company code practices or a design methodology. For example, Data Access
Object Classes from database schema files.

Source Code in many programming languages can be represented as a tree. As
with most trees, they have a starting point, then branches form independently
from one another as methods, statements, conditions, expressions and so on.
From a single class declaration we can reach many nodes, representing fields,
methods, constructors of the class. An important distinction is that humans and
compilers can understand that a specific variable reference or method call relates
to another part of the source code, a syntax tree does not, but can be with use
of another library, JavaSymbolSolver. To model the Java language concepts,
Javaparser has tried to remain true to the official grammar specification 1 for
the naming of classes.

The following is an example extracted from JavaParser (22).

1 package com.github.javaparser;

2

3 import java.time.LocalDateTime;

4

5 public class TimePrinter {

6 public static void main(String args []){

7 System.out.print(LocalDateTime.now());

8 }

9 }

Fig 2.8 demonstrates the three children of the Source code rooting from the
Compilation Unit, the PackageDecleration, ImportDeclerations and
ClassDecleration. The method declaration can be expanded further to show its
children in Fig 2.9.

1https://docs.oracle.com/javase/specs/jls/se7/html/jls-18.html

14

Figure 2.8: Compilation Unit

Figure 2.9: Method Declaration of Class Declaration

Now we see the name, return type and parameters for the method with a block
statement which can again be further expanded to show its children (Fig 2.10)

15

Figure 2.10: Block Statement of Method Declaration

This shows how complex these trees can get from this simple example. These
Abstract Syntax trees are crucial for allowing automated generation of code as
the recurrent nodes can be manipulated and replaces with another node or
another subtree.

JavaParser (22) is a library which allows for interaction with Java Source Code
as a Java Object Representation, this Object Representation is referred to as an
Abstract Syntax Tree.

The library provides functionalities such as:

• Representation of Abstract Syntax Tree of code.

• Manipulate underlying structure of source code.

• Build own Code Generating Software.

16

3 Literature Review and Moti-

vation

Observing from first principles of computer science, contracts can be viewed as
programs and Law as an operating system. The organizational theorist Arthur
Stinchcombe once wrote that contracts are merely organizations in miniature,
and by extension all organizations are just complexes of contracts. Therefore,
contract drafting and execution is a foundation of society.

The first digital morphing of contracts is named as smart legal contracts, which
looked to digitize contracts into repositories and allow methods for document
assembly. The new phase is termed as legal smart contracts. Legal smart
contracts focus on the operational aspect of legal contracts, involving software
agents on a shared ledger fulfilling obligations between parties.

Szabo (23) presented the idea of smart contracts in 1997, described as
computerized transactions that execute the terms of a contract. Szabo,
identified a vending machine as a form of smart contract, where an autonomous
transfer of confectionery and funds occurs. The word "smart" is a relation to
the automation of the process and the term "contract" refers to the its
"tamper-proof" execution of prescribed terms.

Smart contracts are computer programs which verify and execute terms of an
agreement upon occurrence of an event. Within, distributed ledgers, these
events are the proposed transactions which aim to update state of the ledger,
the smart contract thus validates the transaction in relation to a predefined
agreement. Smart Contracts are able to leverage the trust-less immutable
nature of distributed ledgers to enable peer-to-peer, disinter-mediated
agreements enforced automatically by code.

Distributed ledgers provide a simple framework for these contracts to operate
efficiently and transfer digital property with the advantage of transparency with
a synchronized ledger.

17

Hence, Smart contracts present organizational benefits with increased efficiency,
certainty and reduction in costs. Although, their optimal success will come from
their adaptability to existing legal frameworks regulating contracts across
jurisdictions.

Currently, Blockchain is incapable of capturing nuance of contract language, we
need to provide specification of contract code, admissible to court for dispute
resolutions.

Savelyev (24), Giancaspro (25), look towards exploring the legality of smart
contracts, the concerns associated and their future landscape. Giancaspro
concludes that when courts resolve disputes they need reference to terms of the
contract, this won’t be possible due to the unintelligibility of code to judges and
lawyers. Reference to terms in legible linguistic form is necessary. Lawyers over
the years, may need to gain basic proficiency in coding to allow checking of
clauses and contractual mechanisms have been appropriately translated to
relevant programming language and guide creation of smart contract code.

Hofman (26), proposes integrating a semantic legal layer, enhanced with
jurisdiction specific legal ontologies, which could add the sufficient precision,
flexibility and enforceability to allow smart contracts to act as full legal
contracts.

The paper continues to define conditions that render a contract legally-binding.

1. Arise as a result of offer and acceptance.

2. Include legally sufficient consideration.

3. Be between parties with intent to contract.

4. Be between parties with capacity to contract.

5. Comply with formal legal requirements. (e.g. State of Frauds)

6. Be legal (e.g. can not sell organs)

7. Not be void (e.g. due to non-disclosure of material facts by one party)

These are conditions that are applied at the beginning of the Smart Contract
Lifecycle Management and, once founded, the generated code can enforce itself
on the Blockchain, legally.

Ugarte H. (27) proposes a vision of a Semantic Blockchain being the foundation
of Web3.0 in efforts of fulfilling Tim Berner Lee’s vision of Linked Data on the
Web. Ugarte, in one of his definitions describes Semantic Blockchain as

18

“. . . a distributed database that maintains a continuously-growing list of

standardized data records, using Resource Description Framework (RDF),

hardened against tampering and revision.”

(26) draws similarity to this definition to current paper registries that hold legal
contracts and records. They propose using linked data in preserving the archival
bond of the smart contracts executed on the distributed ledger.

If smart contracts are written entirely in code, courts will face challenges
applying contract law due absence of natural language specification. However,
supporting smart contracts with a semantic legal layer, where parties define
assets and terms as choice of laws, and conditions supported by robust linked
data representing contract formation, would enable legal smart contracts.

To enable to semantics of the blockchain platform they propose using
Ontologies. The Ontology aids in establishing context, functional and procedural
of the smart contract. Ontologies can also be layered to enrich the expression of
context. A further benefit in using Ontologies is they can be extended and
swapped per use case. This framework would establish archival bonds, which
links the entry of data on the Distributed Ledger to the procedural action to
establish records identity.

This is similar to how the Corda platform stores transactions. Each recorded
transaction holds hash of the smart contract code is was verified by. Merging
this current framework with the papers proposal would require the simple
addition of the semantic specification of the legal contract to link to the smart
contract code, which finally links to the recorded entry. Upon dispute of a
record on the ledger, the relevant smart contract and legal specification can be
brought up for resolution.

Barclays presented their work on Smart Contract Templates in collaboration
with UCL (6) (28) and deployed their first prototype on the Corda platform in
2016 for a derivatives agreement (29). Clack et al. (6) propose smart contract
templates that support legally-enforceable smart contracts with operational
parameters that connect the code to the agreement. The code is manually
developed with a specific legal documentation in mind and presented as a
standardized templates with configurable parameters. They focus on derivative
agreements which is a financial contract between banks. They further explore
the design landscape to increase use of common standardized code and
long-term research.

Smart Contract Templates are legal document templates created by standards
bodies and used by counter parties negotiating such contracts. These templates

19

are defined with the following criteria:

1. Automatable - executable by machine, some parts could require human
input.

2. Enforceable - Legal enforcement of rights and obligations.

3. Structure - Ricardian Contract (16) (legal prose, parameters, code).

4. Future Evolution - Increasing sophistication of parameters (higher-order
parameters, domain-specific languages).

Smart Contract Templates is inspired by the Ricardian Contract (16), which is a
triple of a prose, parameters and code. The parameters provide the final
operational details of the code. The use of parameters would increase the
standardization of code. In future, there may be an increasing use formal
language, with legal prose replaced with arithmetic and logical expressions. This
would lead to reduced ambiguity in legal prose and code.

Figure 3.1: Structure of a Ricardian Contract (5)

The following research landscape is represented in the following figure provided
by Clack et al. (6) involving legal prose and parameters, code sharing and
long-term research.

20

Figure 3.2: Research Landscape of Smart Contract Templates (6)

Another interesting paper by IBM (30), from which we derived great inspiration
for this thesis, present a novel framework for auto-generating smart contract
code by translating semantic rules as constraints to code. They demonstrate the
functionality successfully by applying it to the domain of clinical trials and car
rentals. Their paper presents the power of using semantic-web technologies to
directly generate code that executes on the blockchain. However, they used
predefined code templates for each domain example, anticipating functions such
as createPatient, already containing constraints which were set to empty strings.
Therefore, the templates were not fully autogenerated. When a JSON array of
the constraints was created from the Semantic Rules, it would manipulate the
Abstract Syntax Tree (AST) of the code to fill the empty strings. Furthermore,
they designed Domain-Specific Ontologies for each example and Constraints
using Semantic Web Rule Language SWRL which require high expertise.

In line with the above work on exploring legal smart contracts, it is clear that
specification of legal terms and assets is necessary to provide smart contracts
with legal authority, since code is obfuscated with ambiguity in meaning known
only to the coder. Providing the specification and code in conjunction
consequently increases the adoption of smart contracts and their standardization
across multiple domains. Within Corda we can add legal prose as a specification
to the deployed smart contract. However, we need to establish a direct mapping
between the legal prose and the smart contract code, otherwise there is a

21

duplication of efforts and presence of ambiguity. For this reason, we introduce a
semantic medium which is used to represent concepts of distributed applications
(smart contracts) in Corda, referred to as CorDapps. This medium acts as the
source language which can represent the operational aspects of the smart
contract code and the non-operational aspects of legal prose, similar to the
source language described in (6). The Ontology also acts as the formal language
to describe the assets, actions and constraints to model the agreement.

By providing this semantic medium for the legal prose and smart contract code
we enable use of Semantic Web Technologies, which can perform validation and
formal verification of code and obligations defined prior to deployment of
agreement to further automate the contract life cycle.

To create this semantic medium we model a novel Ontology which represents
key concepts of a Corda Distributed Application. This Ontology can then be
used by lawyers and engineers to jointly model legal smart contracts in a human
and machine readable syntax. The knowledge graph is defined, using the
Ontology, to model an agreement as a collection of triple statements.

We also present an auto-generation tool, which extracts parameters and
constraints from the triple statements to generate the CordDapp Code which
executes the agreement between parties on the Corda Blockchain.

Rather than writing boilerplate code disjoint from the legal prose, the
operational actions are defined in the semantic medium, providing a modular
representation of the agreement. This representation of the agreement can be
evolved as per use case, standardized and extended with further Ontologies such
as LKIF-Core (31), to integrate further legal semantics.

Finally, we evaluate the ontology and generation tool using the case studies
defined within the IBM paper and an Invoice issuance and settlement financial
agreement by deploying them on a simulated Corda Network.

22

4 Methodology

To revisit, we aim to build a novel Ontology for defining Corda Distributed
Applications to

• Share a common understanding of the structure of information among
people and software agents. (Auto-Generation Tool, Reasoning Agents)

• Enable reuse of domain knowledge (Medium for lawyers and Engineers to
build Smart contracts with legal specification)

• Made domain assumptions explicit. (Remove ambiguity in standalone
coding of smart contracts)

• Analyze domain knowledge. (Enable reasoning over specification for
validation)

Prior to designing the Ontology we will go over the Key Concepts in CorDapps
to be then able to extract the relevant concepts and their relationships into an
Ontology. Then, to guide our design, we follow the methodology presented by
Noy et al. (32). Once our Ontology is designed we define the auto-generation
tools’ pipeline. Throughout the process, to aid in the conception of the end
goal, we follow the most common agreement example, issuing invoices.

4.1 Corda Key Concepts

Corda is a network made up of known peers that communicate point to point to
reach agreements on updates of their ledgers.

A node on the network represents the peer. Each node maintains its own vault of
states and CorDapps. And all peers of a shared fact share identical copies. The
node abstracts away the complexities of messaging, storage, concurrency,disaster
recovery and so on from the user. So the client simply interacts with node
through RPC (Remote Procedural Call) to execute relevant business flows.

23

Thus, the CorDapps form the main drivers of network transactions. CorDapps
have 3 main components:

1. States - Facts over which agreement is reached.

2. Contracts - Guide evolution of state and define the business rules.

3. Flows - Routine the node runs to propose transactions that update the
ledger.

4.1.1 State

States are immutable objects representing shared facts on ledger known by one
of more nodes. These facts can contain arbitrary data. Lifecycle of a share fact
over time is represented by a state sequence. It evolves by creating a new
version of the state and marking existing state as historic, the unconsumed
states present the current state of the ledger 4.2.

Figure 4.1: Sequence of states representing evolution of an IOU state on ledger. Source: (7)

The main characteristics of a State are:

• State Properties

• Participants

• Reference to contract that governs its evolution

The following Fig ?? is the example of a simple invoice, loan, credit letter
example. Sometimes termed as an I-Owe-You (IOU). Within this example we
see state instantiated with properties Amount, Due, Paid and Penalty, with
participants Alice and Bob and a reference to the IOU Contract.

24

Figure 4.2: Instance of a sample IOU State Source: (7)

The behavior of states is further customized by sub-interfaces. The most
common being LinearState and Ownable State.

LinearState models shared facts for which there is only one current version at
any point in time. LinearState states evolve in a straight line by superseding
themselves. However, OwnableState represent assets that can be freely split and
merged over time. The Cash state is an example of this and is integrated
withing the corda finance library.

We model all our state classes as Linearstate states since we aim to represent
and manage single versions of "Paper Contracts" or "Information", such as, a
Patient in a Clinical Trial, an Invoice or a Car Rental.

As with most blockchain frameworks, they have an innate cryptocurrency that is
used to drive transactions and reward miners. Although Corda does not follow
proof-of-work to reward miners for compute, they do have an embedded token
that can be used as digital currency, this is the Cash State. The Corda network
has an embedded Cash CorDapp within every node which handles transfer and
issue flows.

We represent the integrated Cash State in Corda as an Ontology class to enable
representation of monetary transactional exchange in agreements.

Transactions

Transactions are built by Flows and are proposed to update the ledgers’ state to
the desired state. The transaction is then verified by the relevant contract
classes of the states involved in the transactions to decide validity of
transaction. Notaries witness such transactions and ensure the states are never

25

consumed more than once, to prevent Double-Spending.

The evolution of the states is enforced by the UTXO Model (Unspent
Transaction Output Model), similar to Bitcoins model, which maintains
immutability of ledger. Each transaction consumes zero or no input states on
the ledger and outputs zero or more new output states and presents a single link
in the states’ evolution.

Once built, the transaction is signed by parties who share the fact (Alice and
Bob in example above). The required signers only signs the transaction if
following conditions hold:

• Transaction Validation - Transaction is contractually valid and signed by all
required parties.

• Transaction Uniqueness - No other committed transaction that has
consumed any of the inputs to our proposed transaction.

We could impose different rules of a valid transaction depending on the intent of
transaction when changing a state. Commands allow us to indicate the
transactions intent, which affects how we validate the transaction.

The following Fig 4.3 shows the IOU being settled which a state change of IOU
and of the Cash state.

Figure 4.3: Transaction Proposal of Settlement Flow of IOU Source: (7)

The main components of a transactions are:

• Commands

• Input States

26

• Output States

Additional components such as notary, attachments and time windows can be
added. But we default them for our use case to model agreement rather than
infrastructure level configuration.

4.1.2 Contract

Transaction validity is verified by the Contract of the CorDapp, to impose rules
on the evolution of states over time. The contract takes the transaction as an
input and states whether the transaction is considered valid based on the
contract’s rules. The combination of State and Contract form the "Smart
Contract" in Corda.

Looking at a simple Issuance of an IOU, we can pose simple constraints such as:

• Value must be non-negative

• Lender and Borrower can not be the same identity.

• Value must not exceed $150 (Borrow Limit).

If the transaction satisfies constraints, the Contract returns otherwise throws an
exception and rejects the transaction with the failed constraint.

4.1.3 Flow

Flows execute business logic by modelling the business processes that propose
transactions and achieve specific ledger update. By installing new flows, we
allow the node to handle to new business processes.

Flows consist of two classes, the Initiator and Responder, to manage transfer
information between counterparties and achieve consensus. The transactions
are, contractually verified, signed off by nodes, then sent to notary to check for
uniqueness. Therefore for recurrent agreements, flows automate common tasks
by ensuring transactions of the agreement are contractually valid, signed off and
unique.

Again taking the IOU Example, to orchestrate the issuance of an IOU we

• Build transaction proposal for a new IOU.

• Verify and Sign transaction proposal.

• Send transaction to collect borrowers signature (Responder Flow)

• Once signed by required signers, send to notary for uniqueness.

27

• Once checked by notary, both parties commit transaction to their vaults.

This flow can be visualised in following Fig 4.4

Figure 4.4: Flow Sequence between two parties Source: (7)

The main components of the Flow are:

• Flow Properties - parameters required to fulfill business logic.

• Other party - Party with whom we share the State (fact) with to sign and
verify transaction.

• Transaction - The proposed transaction to achieve desired ledger state.

4.2 Ontology Development

As mentioned, we develop the CordDapp Ontology following the methodology
laid out by Noy et al. (32) .

It is to be noted that there is no correct way to model a domain, there’s are
always viable alternatives. The best solution depends on the application we have
in mind and the extensions that we anticipate. Ontology development is an
iterative process and can be extended and configured as per use case. The
concepts we model should be close to the logical objects and relationships in our
domain of interest.

The steps can be defined as follows:

1. Determine Scope

2. Consider Reuse

3. Enumerate Terms

4. Define Classes

5. Define Properties

6. Create Instances

28

4.2.1 Determine Scope

For this step we answer the following questions:

Which domain should be covered by the Ontology?

Our domain of interest is Distributed Applications that run on Corda as
recurrent business processes.

What should the Ontology be used for?

We aim to represent the hierarchy and relationships of an agreement as states,
contracts and flows. This representation then provides the necessary hierarchy of
parameters to generate code that can execute on a Corda network. We should
also be able to formally reason through and validate instances of the agreement
graph to highlight inconsistencies and privacy issues.

Whats types of questions should be answered by the knowledge

represented in the Ontology?

These are known as competence questions and we summarise a few as follows.
Which participants manage the evolution of the given state on the ledger?
Which properties of the state should be considered for modelling?
What contract does the state belong to?
What are the variable names of the state and their respective datatypes?
What commands are executable by the contract?
What are the constraints checked by the command?
What constraint does the condition correspond to?
What are the types and name of the variables in the expressed condition?
Is the type of the condition a binary or a temporal condition?
Are the variables in the condition input or output parameters in the transaction?
Who will use and maintain this Ontology?

Rather than writing standalone for generic recurrent business logic across an
industry, standardized knowledge bases of the agreements can be designed and
used by industries. These knowledge bases would be created by lawyers or
engineers using the proposed Ontology and be exposed in a public regulated
repository for use.

4.2.2 Reuse of Ontologies

Typically we should reuse existing Ontologies to save cost and apply any existing
tools associated with them. We use existing vocabularies such as RDF and
RDFs but there were no existing smart contract Ontlogies from our research we
could integrate. However, the proposed Ontology shall be merged in future with

29

existing legal Ontologies (31).

4.2.3 Enumerate Terms

In this step we describe the main concepts and their properties, along with
defining what we want to say about these concepts.

• State - State Name, State Properties, Property Names and Datatypes,
Reference to Contract.

• Contract - Contract Name, Commands, Constraints, Constraints
Descriptions, Condition Variables, Transaction Inputs and Outputs, Size of
Inputs and Outputs

• Flow - Flow Name, Flow Properties, Flow Properties datatypes, Transaction

• Transaction - Input State, OutputState, New State, Retrieved State,
Command, Other Party.

4.2.4 Define Classes

The benefit of modelling a Distributed Application into an Ontology is the
benefit of similarities in Object Oriented Design. In a CorDapp the main classes
are State, Contract and Flow. These classes define the collections of objects
with similar properties.

Classes

• CorDapp - Corda Distributed Application consisting of state contract and
flows.

• Cash - Embedded Cash pertaining to a node.

• State - Shared fact that exists on the ledger.

• Retrieved State - Existing State retrieved from ledger to be used as input
for new transaction.

• New State - Creation of a new state to be used as output of a transaction.

• State Property - Define State property name and datatype

• Command - Defines intent of Transaction being proposed.

• Constraint - A Business rule to validate Transaction being proposed.

• Contract - Contains command functions that verify transaction.

• Flow - Class that implements business logic.

30

• Flow Property - Parameter used to fulfill business logic.

• Transaction - Proposed Transaction built by Flow logic

• Transaction Property Type - Properties of Transaction during validation in
Contract.

4.2.5 Define Properties

Define How the Classes are related to each other.

• amount - Amount of Cash we wish to transfer.

• belongsTo - Contract to which State belongs to.

• commandName - Name of Command.

• contractName - Name of Contract Class.

• datatype - Datatype of Property variable.

• flowName - Name of Flow Class.

• flowPropertyName - Name of Flow Parameter.

• hasCommand - Command of Contract

• hasConstraint - Constraint of Command in Contract Class.

• hasDescription - Description of CorDapp or Contract.

• hasInputState - Input State of Transaction in Flow.

• hasName - Name of CorDapp

• hasOutputState - Output State of Transaction in Flow.

• hasTransaction - Transaction proposed by Flow.

• newProperties - List of Properties of New State.

• otherParty - Other Party whose signature we require for transaction.

• payee - The other party to whom we wish to transfer money to.

• properties - List of properties of State

• propertyName - Name of State Property.

• retrieveWith - LinearID provided to retrieve existing state to be used as
Input to transaction.

• stateClass - State of New or Retrieved State.

31

• stateName - Name of State Class

• txInputParam - Input Parameter of Transaction.

• txOutputParam - Output Parameter of Transaction.

• equals - Binary Operator - Ensures x equals y. P(x,y)

• lessThan - Binary Operator - Ensures x less than y. P(x,y)

• notEquals - Binary Operator - Ensures x is not equal to y. P(x,y)

• greaterThan - Binary Operator - Ensures x is greater than y. P(x,y)

• greaterEquals - Binary Operator - Ensures x is greater than or equal to y.
P(x,y)

• lessEquals - Binary Operator - Ensures x is less than or equals to y. P(x,y)

• isBefore - Temporal Binary Operator. Ensures that x is before y date.
P(x,y)

• isAfter - Temporal Binary Operator. Ensures that x is after y date. P(x,y)

4.2.6 Create the Instances

To create the instances we used Web Protege 5.0 and visualised using
WebOWL. The Ontology can be viewed in the Appendix A1.1.

4.2.7 RDF* to Annotate Constraints

Choudhury et al. (30) has implemented constraints in SWRL, a proposal
presented in 2004 and still not part of the W3C standard. Although powerful, it
requires high level expertise to define conditions using SWRL 1 and more
projects looked to model rules using SPIN 2 and even SP-ACT (33). However,
we wish to model simple static constraints based on the parameters of the
incoming transactions’ input and output states. Therefore, we take advantage of
a recent proposal to enable statement-level metadata in RDF* and SPARQL* 3,
the proposal allows for a convenient way to annotate RDF triples and query such
annotations in RDF. Such annotations are popular in other contemporary graph
data models (BlazeGraph and AnzoGraph). With RDF*, any triple that
represents metadata about another triple can contain this other triple as its

1https://www.w3.org/Submission/SWRL/
2https://spinrdf.org/
3https://www.w3.org/Data/events/data-ws-2019/index.html

32

subject or object. This can be visualised by the following example, here we want
to represent certainty of the statement "Bobs age is 23" as 90%.

Figure 4.5: Edge Representation with RDF*

we represent constraints as simple triple statements and relate to them by edge
properties. Therefore, rather than creating a knowledge base and seperate
SWRL rules. They can be defined in the knowledge base itself and queried to
retrieve the variables in question and the condition operator.

For example:

1 :constraint1 a :Constraint ;

2 :hasDescription "Gender Must be Female."^^xsd:string .

3 << :txoutsp1 :equals "Female" >> :belongsTo :constraint1 .

Listing 4.1: Constraints defined using edge triple statements and edge properties

33

Figure 4.6: Graph Representation of Contract constraint with RDF*

4.3 Auto-Generation Tool

Now that we have an Ontology with which we can model agreements as a
collection of triple statements, to auto-generate the respective code we need to
query the knowledge to get answers to our competency questions 4.2.1

4.3.1 Architecture

The tool is sectioned into the following packages 4.7:

34

Figure 4.7: CordaO Auto-Generation Tool Architecture

• Compilers - The compilers Package contains the Classes which query the
knowledge base for parameters relating to given Class being generated.

• QueryDB - Contains all the SPARQL* queries which presents the direct
mapping from knowledge base to code.

• Models - Models help in aligning the parameters with a structure
presentable as code. For example, Fields are stored in LinkedHashMaps of
variable and datatype allowing for iteration for create their getters, setters,
parties, hashCode and search in constant time O(1).

State Compilation

The State class is the foundation of the CorDapp. The initial step of all
Compilation classes is to fetch the relevant parameters for the Class then pass
them to the individual classes and methods needed to generate the final class, as
shown in Fig 4.9.

35

Figure 4.8: State Compilation Flow

We define the abstract data model that would model the fact being shared
between parties in the agreement in triple statements as follows .

1 # Defining State

2 :sp1 a :StateProperty ;

3 :propertyName "value"^^xsd:string ;

4 :datatype "Amount <Currency >"^^xsd:string .

5

6 :sp2 a :StateProperty ;

7 :propertyName "borrower"^^xsd:string ;

8 :datatype "Party"^^xsd:string ;

9 :txIdentity "payer"^^xsd:string .

10

11 :sp3 a :StateProperty ;

12 :propertyName "lender"^^xsd:string ;

13 :datatype "Party"^^xsd:string ;

14 :txIdentity "payee"^^xsd:string .

15

16 :sp4 a :StateProperty ;

17 :propertyName "dateOfIssue"^^xsd:string ;

18 :datatype "LocalDate"^^xsd:string .

19

20 :s1 a :State ;

21 :stateName "IOUState"^^xsd:string ;

22 :properties (:sp1 :sp2 :sp3 :sp4) ;

23 :hasProperty :sp1 ;

24 :hasProperty :sp2 ;

25 :hasProperty :sp3 ;

36

26 :hasProperty :sp4 ;

27 :belongsTo :contract1 .

Listing 4.2: IOU State defined in Knowledge Base

And it generates the following Corda State Class (Appendix A1.1).

Contract Compilation

As mentioned the Contract class in a CorDapp defines the business rules to
validate transaction proposing. We use edge properties to relate constraints
statements to a command. The following Figure ?? show the list of constraints
for the Issuance of an Invoice (IOU).

1 ## Define Issue Contract Constraints

2 :constraint1 a :Constraint ;

3 :hasDescription "The lender and borrower cannot be the

same identity."^^xsd:string .

4

5 :constraint2 a :Constraint ;

6 :hasDescription "A newly issued obligation must have a

positive amount."^^xsd:string .

7

8 :constraint3 a :Constraint ;

9 :hasDescription "A newly issued obligation must be less

than $150."^^xsd:string .

10

11 :constraint4 a :Constraint ;

12 :hasDescription "No inputs should be consumed when issuing

an obligation."^^xsd:string .

13

14 :constraint5 a :Constraint ;

15 :hasDescription "Only one obligation state should be

created when issuing an obligation."^^xsd:string .

16

17

18 # Conditional Constraints

19 << :txoutsp3 :notEquals :txoutsp2 >> :belongsTo :constraint1 .

20 << :txoutsp1 :greaterThan 0 >> :belongsTo :constraint2 .

21 << :txoutsp1 :lessThan 15000 >> :belongsTo :constraint3 .

22 << :txInpSize :equals 0 >> :belongsTo :constraint4 .

23 << :txOutSize :equals 1 >> :belongsTo :constraint5 .

Listing 4.3: IOU Contract Constraints defined in Knowledge Base

To retrieve the variables the following query is used.
1 SELECT ? cons ? l e f t ? b i n ? r i g h t ? desc ? l e f tT yp e ? r i gh tType ? lName ? l d a t a t y p e ?

l s t a t e C l a s s ?commandName{

37

2 ? c a : Command ;

3 : commandName ?commandName ;

4 : h a sCon s t r a i n t ? cons .

5 ? cons a : Con s t r a i n t .

6 << ? l e f t ? b i n ? r i g h t >> : be longsTo ? cons .

7 ? cons : h a sD e s c r i p t i o n ? desc .

8 ? l e f tT yp e a : txPrope r tyType .

9 ? l e f t ? l e f tT yp e ? l e f t P r o p .

10 ? l e f t P r o p : propertyName ? lName .

11 ? l e f t P r o p : da ta t ype ? l d a t a t y p e .

12 OPTIONAL {

13 ? l e f t P r o p ^: ha sP rope r t y ? l s t a t e .

14 ? l s t a t e : stateName ? l s t a t e C l a s s . }

15 BIND (da ta type (? r i g h t) AS ? r i gh tType)

16 }

Listing 4.4: IOU Contract Constraints defined in Knowledge Base

This SPARQL Query is akin to matching the following graph pattern to the
knowledge base. Then we get a list of constraints for a contract class which
belong to a command class.

Figure 4.9: SPARQL Query Pattern for 4.4

The following contraints are then generated in the Contracts’ Issue command
verify function 4.3.1, if any of these conditions fail, and
IllegalArgumentException is thrown and the transaction is rejected.

1 p r i v a t e vo i d v e r i f y I s s u e (Ledge rT ran sa c t i on tx , Set<Publ icKey> s i g n e r s) {

2 r e qu i r eTha t (req �> {

3 IOUState i ou s t a t eOu tpu t = (IOUState) tx . ge tOutpu tS ta t e s () . ge t (0) ;

38

4 req . u s i n g ("No i n p u t s shou l d be consumed when i s s u i n g an o b l i g a t i o n . " , t x .

g e t I n p u t S t a t e s () . s i z e () == 0) ;

5 req . u s i n g ("Only one o b l i g a t i o n s t a t e shou l d be c r e a t e d when i s s u i n g an o b l i g a t i o n

. " , t x . ge tOutpu tS ta t e s () . s i z e () == 1) ;

6 req . u s i n g ("A newly i s s u e d o b l i g a t i o n must have a p o s i t i v e amount . " ,

i o u s t a t eOu tpu t . ge tVa lue () . g e tQuan t i t y () > 0) ;

7 req . u s i n g ("A newly i s s u e d o b l i g a t i o n must be l e s s than $150 . " , i o u s t a t eOu tpu t .

ge tVa lue () . g e tQuan t i t y () < 15000) ;

8 req . u s i n g ("The l e n d e r and bor rower cannot be the same i d e n t i t y . " , ! i o u s t a t eOu tpu t

. ge tBor rower () . e q u a l s (i o u s t a t eOu tpu t . ge tLende r ())) ;

9 r e t u r n n u l l ;

10 }) ;

11 }

Flow Compilation

Now that we have generated the smart contract we can define the business logic
that determines how these transaction proposals come about. Contracts are
deterministic, meaning they have no access to the outside world. But, Flow have
access to Oracles and Services to retrieve information such as, Forex Exchange
Rates or Bitcoin Stock Price and so on.

We stick to a simple business logic that involves two parties either issuing a new
state onto the ledger, updating it or marking it historic (settlement of invoice or
discharge of patient from trial).

The steps for a flow involve:

• Initialising - Retrieve Input States and/or Create new state using Flow
parameters.

• Building - Build Transaction with input states, output states and command.

• Signing - Verifying Transaction with Contract and Signing.

• Collecting - Transaction sent to <otherParty> to verify and sign.

• Finalising - Notary marks uniqueness of states and parties commit
transaction.

We generate the Flow Class alongside a BaseFlow Class which contains methods
to get first Notary (used for transaction uniqueness) and a methods to retrieve
an input state with a linearId. The subsequent Flow Classes then extend this
BaseFlow class, the flow of the generation is shown in Fig 4.10.

39

Figure 4.10: Flow Compilation Flow

40

5 Evaluation

The Auto generation Tool, the sample knowledge bases of the evaluation
CorDapps, SPARQL Queries used and instructions to run tool and set up
Stardog Graph database are hosted at
https://github.com/QUzair/cordaOntoG.

We now model three different agreements to demonstrate success generation of
smart contract code from knowledge base.

5.1 Invoice (IOU)

Firstly, we model a common transactional agreement between parties. An
Invoice is a commercial document issued by a seller (lender) to a buyer
(borrower), relating to a sale transaction of goods/services as a notice for
payment. The Invoice is also termed as an IOU (I Owe You), which is what we
will be using henceforth.

Businesses don’t pay for goods and services from other businesses immediately.
Rather, they give a promise (agreement) for future payment once they are
profitable from the goods/services they received. It helps businesses improve
cash flow by having financial freedom for other businesses opportunities than if
they had to wait until their customers paid their balances in full to repay
amount due.

Defining the State

Our State will be agreement which contains:

• Parties: lender and borrower.

• amount: Value of the IOU due to the borrower. This can be represented as
an Amount of any Currency.

41

https://github.com/QUzair/cordaOntoG

Defining the Contract

For this agreement we can imply two commands: Issue and Settle.

The following Fig 5.1 is a state machine view which helps in visualising how the
state evolves within a specific flow.

When issuing an IOU, we require no states to be consumed and require only one
IOU to be outputted. We also require the amount to not be greater $150
(currency is multiplied by 100 to represent a token, therefore, 1500). Finally, we
require that the lender and the borrower be different parties.

Figure 5.1: IOU Issue State Machine View

When settling an IOU we wish there to be one input IOU state and no output
IOU state. We also wish to check that there is an output cash state and that the
amount settled to lender equals the amount in the input (current) IOU state.

42

Figure 5.2: IOU Settle State Machine View

Defining the Flows

For our Issue business logic, we want to propose a transaction that yields in a
new IOU state being created between two parties Fig 5.3 and committed to the
ledger for future settlement.

Figure 5.3: Transaction Proposal by IssueFlow for IOU.

For our Settle business logic, we want to propose a transaction that yields in the
current IOU being consumed and with the only output being a Cash state
transferred from the borrower to the lender Fig 5.2.

43

Figure 5.4: Transaction Proposal by SettleFlow for IOU.

The corresponding triple statements are in Appendix A1.2
To generate the classes we place the database URL in
src/main/java/queryDB/QueryDB.java -> dbUrl

and run src/main/java/compilers/MainGenerator.java main class.
The corresponding Classes are generated:

• IOU State Class

• IOU Contract Class

• IOU Base Flow Class

• IOU Issue Flow Class

• IOU Settle Flow Class

We can then deploy these contracts to an existing networks nodes. For testing
purposes we pass them to simulated network. The following project should be
cloned, CordaMockNetwork, to place the generated state contract and flow
classes.

When we run the simulated network we deploy a Corda network with one notary
service, and two parties. Both parties have the CorDapps deployed in their
nodes. Now we can connect to the nodes and execute the flows.

44

https://github.com/QUzair/cordaOntoG/blob/master/GeneratedFiles/IOUState.java
https://github.com/QUzair/cordaOntoG/blob/master/GeneratedFiles/IOUContract.java
https://github.com/QUzair/cordaOntoG/blob/master/GeneratedFiles/IOUBaseFlow.java
https://github.com/QUzair/cordaOntoG/blob/master/GeneratedFiles/IssueFlow.java
https://github.com/QUzair/cordaOntoG/blob/master/GeneratedFiles/SettleFlow.java
https://github.com/QUzair/cordapp-template-java

Successful Issue of IOU

The following flow is executed by PartyBs node. We successfully issue an IOU
with PartyB as the Borrower and PartyA as the lender.

Figure 5.5: Successful Issue of IOU

Once issued we can view the fact in both Party A and B’s vault.

Figure 5.6: Vault of PartyA demonstrating two different IOUs

Exceed Issue IOU amoung

If we try to exceed the limit of $150 for the IOU Issuance, the transaction fails.

45

Figure 5.7: Amount exceeding IOU Issue constraint of $150

Same Party as borrower and Issuer

If we try to execute flow from PartyA with PartyA as borrower we fail because
you can not send the flow to oneself to sign. Because we have defined the other
Party as being the "borrower", therefore only the lender can Issue IOUs.

Figure 5.8: Borrower can not Issue IOU

Negative Amount

Because the amount is not a simple int, when passing negative amount $-10,
the node views it as an invalid argument not from the contract, but from the
flow input itself. But the constraint in the contract shall be placed for full proof
purposes.

46

Figure 5.9: Negative Amount cant not be passed as input

Successfully Settle

Once the IOU is in our ledger as unconsumed, we are meant to pay for it and
settle the agreement. This is done through the settle command by passing the
id of the IOU and the amount we wish to pay.

Figure 5.10: Successfully settle IOU

Insufficient Amount to Settle IOU

In the following flow we tried paying $5 for a $10 worth IOU. The transaction
failed

Figure 5.11: Settle Amount too low

47

Non Existent IOU

If we pass an id that does not exist in the ledger or is consumed already the
transaction fails.

Figure 5.12: IOU not found

With the following results we conclude our generated CorDapp successfully
models the business logic (Flow) and the business rules (Contract) of an Invoice
Agreement.

5.2 Car Rental

The Car Rental Application is related to one of the domains evaluated by
Choudhury et al. (30). In this scenario we model an agreement between drivers
and a car rental company. Whenever a driver wishes to rent a car they must
satisfy certain conditions related to their personal information.

The constraints are defined as follows: All drivers at the time of rental must

• Meet the renting location’s minimum age requirement (25),

• Have a valid driver’s license

• A valid driving record

• Credit card in their name

Knowledge Base: Car Rental CorDapp Knowledge Base

The corresponding Classes are generated:

• CarRental State Class

• Car Rental Contract Class

• Car Rental Base Flow Class

48

https://github.com/QUzair/cordaOntoG/blob/master/CorDapp%20Knowledge%20Bases/CarRental_CorDapp.ttl
https://github.com/QUzair/cordaOntoG/blob/master/GeneratedFiles/Rental.java
https://github.com/QUzair/cordaOntoG/blob/master/GeneratedFiles/RentalContract.java
https://github.com/QUzair/cordaOntoG/blob/master/GeneratedFiles/CarRentalBaseFlow.java

• Register Rental Flow Class

Driver Age Restriction

Figure 5.13: Ledger rejecting transaction by Driver of Age not greater than 25.

Invalid License Driver

Figure 5.14: Ledger rejecting transaction by Driver with an invalid license.

Successfully Register Car Rental

49

https://github.com/QUzair/cordaOntoG/blob/master/GeneratedFiles/RegisterRentalFlow.java

Figure 5.15: Ledger successfully registering driver for car rental.

5.3 Clinical Trial Patient

The other domain modeled by Choudhury et al. (30) is a Clinical Patient Trial
agreement. This agreement is definitely something that requires regulatory
backing, since it concerns public health and is high-risk.

For this domain we model the two parties as the Investigator (One carrying out
the trial) and the Regulator (One overseeing the trial). Having the Clinical Trial
patients on a distributed ledger benefits the Regulator greatly as they can audit
the patients and have a synchronised copy of all new patients.

The following restrictions were placed for registering a new Clinical Trial Patient:

• Female patients of age 6 and older are eligible.

• Patients with a score of greater than or equal to 1 on the Sino-Nasal
questionnaire (SNQ)

• Conducted on visit 1 (V1), conducted between February 1 and February 15,
2010.

All the mentioned requirements must be fulfilled, if even one requirement is not
met we reject taking on the patient (ledger not updated).

Knowledge Base: Patient CorDapp Knowledge Base

The corresponding Classes are generated:

• Patient State Class

• Patient Contract Class

• Patient Base Flow Class

• Patient Register Flow Class

50

https://github.com/QUzair/cordaOntoG/blob/master/CorDapp%20Knowledge%20Bases/Patient_CorDapp.ttl
https://github.com/QUzair/cordaOntoG/blob/master/GeneratedFiles/Patient.java
https://github.com/QUzair/cordaOntoG/blob/master/GeneratedFiles/PatientContract.java
https://github.com/QUzair/cordaOntoG/blob/master/GeneratedFiles/ClinicalTrialPatientsBaseFlow.java
https://github.com/QUzair/cordaOntoG/blob/master/GeneratedFiles/RegisterPatientFlow.javaa

Patient Age

Figure 5.16: Ledger rejecting transaction due to age of patient being less than 6.

Invalid Date

Figure 5.17: Ledger rejecting transaction because of date not being before 2010-02-15.

Patients Visit Occurrence

51

Figure 5.18: Ledger rejecting transaction since this isn’t patients first visit.

Successfully Registering Patient for Clinical Trial

Figure 5.19: Patient successfully added to ledger due to satisfaction to all constraints.

52

6 Conclusion and Future Work

Within these chapters we provide the general an analysis of the Framework
carried out in these thesis to enable a semantic medium between operational
code on the Corda Blockchain and Legal Agreements.

6.1 Conclusion

The thesis started with proposals backed from legal experts to assess how future
businesses agreements and processes may exist on the Blockchain. Most
proposals from these papers and recent work focused on abstracting code to
provide specification of the code. To be able to abstract the operational aspects
of distributed applications on Blockchain we turned to the Semantic Web.
Semantic Web Technologies, with decades of expertise behind it, provided a
robust framework for representing, standardising and reasoning knowledge on
the Web. We further assessed different Blockchain platforms, noticing the vision
of Public Blockchains is severely hindered by anonymity. Corda seemed to
provide the best integration for the vision of legal smart contracts. It is clear
that domain specific knowledge of the Blockchain platform is necessary to build
these ontologies. As of yet, the smart contract implementation within the
different platform does vary significantly, so a single hybrid Ontology for all
platforms is not yet possible. To progress the field of legal smart contracts, we
require expertise from all domains of Law, Blockchain and the Semantic Web.
Therefore, within this thesis we hoped to present an approach for modelling
lightweight semantic agreements that can directly map to smart contract code,
and execute on a distribute ledger. To move towards autonomous industries, the
Web and Blockchain will play a huge role, as it should provide a meaningful
context for software agents, such as IOT devices in a Supply Chain, to make
decisions and transact in a secure and distributed manner.

Although, most lawyers are not experts in building knowledge bases, with the
coming paradigm of legal smart contracts, lawyers will soon need to gain

53

proficiency in programming languages to ensure obligations are modelled
correctly in legally-binding automatable code.

6.2 Future Work

Due to the time limitations associated with the project and the depth of the
task at hand, we weren’t able to fully integrate a legal Ontology or an
appropriate reasoning capability that could validate the statements prior to
deployment to the distributed ledger.

6.2.1 Heavyweight Ontology

As the current Ontology is relatively lightweight, we hope to add further
constraints and restrictions to be able to formally verify the constraints and
relationships between classes. Such as, highlighting contradicting or redundant
constraints in a command.

We should also be able to add non-operational aspects such as articles of Law to
constraints and regulatory bodies concerned with the dispute of a CorDapp.

6.2.2 Supply Chain Pricing Contracts

One of the main purposes for this thesis was to look towards enabling the
transition of manual agreements to smart contracts to enable autonomous
industries. Supply Chains currently are notoriously inefficient because they are
manually managed and contain so many interconnected parties in the chain,
aggregating inefficiencies in multitude. A prominent research field in Economics
is Supply Chain Coordination, which focuses on building Game Theory Models
for Supply Chain efficiency. These models, represent the individual parties as
mutually distrusting, and build a mathematical models to maximise profits of
the system, and react to changes in distribution of supply and demand. The
most famous of these types of contracts are the Buy-Back Contract and the
Revenue-Sharing contract. However, these contracts are not practical in real life
since human decisions render them inefficient, it becomes very hard to ensure
that the other party is also acting in your best interest and following the
protocol. Therefore, if we envision that everyone on a supply chain agrees to
follow the same protocol (enforced by the smart contract), the whole system
gains greater profit and surges or declines in Supply Chain can be dealt with
quicker. Therefore, an interesting research path would be to build the Buy-Back,
Revenue Sharing and WholeSale Pricing agreements, using the Ontology and

54

simulate a network of nodes for different Supply Chain networks and evaluate
the system and individual profit, comparing to the mathematical simulations.

6.2.3 Agreement as a template of Blocks

To abstract the building of the agreement using the Ontology further, it could
be beneficial to have a template of blocks which represent the classes with
parameters of the properties and commands that can be filled and
interconnected. This would function similar to a lot of existing document
assembly tools that generate legal prose, but, now it would also generate the
business rules and logic as code executable on a Corda Blockchain.

6.3 Final Remarks

It is hoped by the author of this thesis that, this thesis has motivated the reader
to appreciate the field of Blockchain, Law and the Semantic Web, its merits in
both the technical complexity of the field and the impact it can have in enabling
the future of efficient tamper-proof autonomous industries. It is hoped that this
Thesis provides a good basis for other Onotologies to be created for different
platforms and their respective Code Generation Tools. The author is optimistic
about enhancements to be made to CordaO Ontology and the CordaOntoG
Generation Tool. I am proud in having completed this Thesis given the breadth
of the field and my infant exposure to the field of Law, Blockchain and the
Semantic Web.

Although this year was tough and, sadly marks the end of my current Academic
career in Trinity College Dublin, I was grateful to have the support of my
Supervisor, Professor Declan O’Sullivan, my co-supervisors, Damien Graux and
Fabrizio Orlandi, my family and my friends in helping me complete this journey.
Onto the next chapter in life.

55

Bibliography

[1] Martin Valenta and Philipp Sandner. Comparison of ethereum, hyperledger
fabric and corda. no. June, pages 1–8, 2017.

[2] Samir A El-Seoud, Hosam F El-Sofany, and Omar H Karam. The semantic
web architecture and its impact on e-learning systems development.
International Journal of Emerging Technologies in Learning, 10(5), 2015.

[3] Alexander Schätzle, Martin Przyjaciel-Zablocki, Simon Skilevic, and Georg
Lausen. S2rdf: Rdf querying with sparql on spark. arXiv preprint

arXiv:1512.07021, 2015.

[4] Myung-Jae Park, Jihyun Lee, Chun-Hee Lee, Jiexi Lin, Olivier Serres, and
Chin-Wan Chung. An efficient and scalable management of ontology. In
International Conference on Database Systems for Advanced Applications,
pages 975–980. Springer, 2007.

[5] R3. Slide 71, smart contracts: Prose, parameter, code ucl, Apr 2016. URL
https://relayto.com/r3/

first-r3-smart-contract-templates-summit-all-slides-fijs0jfy/

gRNuv4sS71?hub=

barclays-smart-contract-templates-582b3a01802d7.

[6] Christopher D Clack, Vikram A Bakshi, and Lee Braine. Smart contract
templates: foundations, design landscape and research directions. arXiv

preprint arXiv:1608.00771, 2016.

[7] States, Mar 2020. URL https:

//docs.corda.net/docs/corda-os/4.4/key-concepts-states.html.

[8] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system.
Technical report, Manubot, 2019.

[9] Jake Frankenfield. Double-spending, Jan 2020. URL
https://www.investopedia.com/terms/d/doublespending.asp.

56

https://relayto.com/r3/first-r3-smart-contract-templates-summit-all-slides-fijs0jfy/gRNuv4sS71?hub=barclays-smart-contract-templates-582b3a01802d7
https://relayto.com/r3/first-r3-smart-contract-templates-summit-all-slides-fijs0jfy/gRNuv4sS71?hub=barclays-smart-contract-templates-582b3a01802d7
https://relayto.com/r3/first-r3-smart-contract-templates-summit-all-slides-fijs0jfy/gRNuv4sS71?hub=barclays-smart-contract-templates-582b3a01802d7
https://relayto.com/r3/first-r3-smart-contract-templates-summit-all-slides-fijs0jfy/gRNuv4sS71?hub=barclays-smart-contract-templates-582b3a01802d7
https://docs.corda.net/docs/corda-os/4.4/key-concepts-states.html
https://docs.corda.net/docs/corda-os/4.4/key-concepts-states.html
https://www.investopedia.com/terms/d/doublespending.asp

[10] Vitalik Buterin et al. A next-generation smart contract and decentralized
application platform. white paper, 3(37), 2014.

[11] Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin mining is
vulnerable. In International conference on financial cryptography and data

security, pages 436–454. Springer, 2014.

[12] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. A survey of attacks
on ethereum smart contracts (sok). In International conference on

principles of security and trust, pages 164–186. Springer, 2017.

[13] J Mogan. Quorum. advancing blockchain technology. En línia]. Available:

https://www. jpmorgan. com/country/US/EN/Quorum, 2018.

[14] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin,
Konstantinos Christidis, Angelo De Caro, David Enyeart, Christopher Ferris,
Gennady Laventman, Yacov Manevich, et al. Hyperledger fabric: a
distributed operating system for permissioned blockchains. In Proceedings

of the Thirteenth EuroSys Conference, pages 1–15, 2018.

[15] Mike Hearn. Corda: A distributed ledger. Corda Technical White Paper,
2019, 2019. URL
https://www.r3.com/reports/corda-technical-whitepaper/.

[16] Ian Grigg. The ricardian contract. In Proceedings. First IEEE International

Workshop on Electronic Contracting, 2004., pages 25–31. IEEE, 2004.

[17] Tim Berners-Lee and Mark Fischetti. Weaving the Web: The original

design and ultimate destiny of the World Wide Web by its inventor. DIANE
Publishing Company, 2001.

[18] Thomas R Gruber et al. A translation approach to portable ontology
specifications. Knowledge acquisition, 5(2):199–221, 1993.

[19] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web.
Scientific american, 284(5):34–43, 2001.

[20] Brian McBride. Jena: A semantic web toolkit. IEEE Internet computing, 6
(6):55–59, 2002.

[21] Rudi Studer, V Richard Benjamins, and Dieter Fensel. Knowledge
engineering: principles and methods. Data & knowledge engineering, 25
(1-2):161–197, 1998.

57

https://www.r3.com/reports/corda-technical-whitepaper/

[22] Nicholas Smith, Danny van Bruggen, and Federico Tomassetti. Javaparser:
Visited. Leanpub, oct. de, 2017.

[23] Nick Szabo. Smart contracts: building blocks for digital markets.
EXTROPY: The Journal of Transhumanist Thought,(16), 18:2, 1996.

[24] Alexander Savelyev. Contract law 2.0:‘smart’contracts as the beginning of
the end of classic contract law. Information & Communications Technology

Law, 26(2):116–134, 2017.

[25] Mark Giancaspro. Is a ‘smart contract’really a smart idea? insights from a
legal perspective. Computer law & security review, 33(6):825–835, 2017.

[26] Darra L Hofman. Legally speaking: Smart contracts, archival bonds, and
linked data in the blockchain. In 2017 26th International Conference on

Computer Communication and Networks (ICCCN), pages 1–4. IEEE, 2017.

[27] Héctor Ugarte. A more pragmatic web 3.0: Linked blockchain data. Mar
2017.

[28] Christopher D Clack. Smart contract templates: legal semantics and code
validation. Journal of Digital Banking, 2(4):338–352, 2018.

[29] R3. Barclays’ smart contract templates - presented by dr lee braine,
introduced by brad novak, Apr 2016. URL
https://vimeo.com/168844103.

[30] Olivia Choudhury, Nolan Rudolph, Issa Sylla, Noor Fairoza, and Amar Das.
Auto-generation of smart contracts from domain-specific ontologies and
semantic rules. In 2018 IEEE International Conference on Internet of

Things (iThings) and IEEE Green Computing and Communications

(GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom)

and IEEE Smart Data (SmartData), pages 963–970. IEEE, 2018.

[31] Rinke Hoekstra, Joost Breuker, Marcello Di Bello, Alexander Boer, et al.
The lkif core ontology of basic legal concepts. LOAIT, 321:43–63, 2007.

[32] Natalya F Noy, Deborah L McGuinness, et al. Ontology development 101:
A guide to creating your first ontology, 2001.

[33] Georgios Meditskos, Stamatia Dasiopoulou, Vasiliki Efstathiou, and Ioannis
Kompatsiaris. Sp-act: A hybrid framework for complex activity recognition
combining owl and sparql rules. In 2013 IEEE international conference on

pervasive computing and communications workshops (PERCOM

workshops), pages 25–30. IEEE, 2013.

58

https://vimeo.com/168844103

A1 Appendix

A1.1 Ontology Visualisation

Appendices are numbered sequentially, A1, A2, A3. . . The sections, figures and
tables within appendices are numbered in the same way as in the main text. For
example, the first figure in Appendix A1 would be Figure A1.1. Equations
continue the numbering from the main text. The CordaO Ontology file is at
(github link)

Figure A1.1: Visualisation of CordaO Ontology in WebOwl

1 package com.template.states;

2

59

3 import com.template.contracts.IOUContract;

4 import net.corda.core.contracts.Amount;

5 import net.corda.core.contracts.BelongsToContract;

6 import net.corda.core.contracts.LinearState;

7 import net.corda.core.contracts.UniqueIdentifier;

8 import net.corda.core.identity.AbstractParty;

9 import net.corda.core.identity.Party;

10 import java.security.PublicKey;

11 import java.util.Arrays;

12 import java.util.Currency;

13 import java.util.List;

14 import java.util.Objects;

15 import java.util.stream.Collectors;

16 import java.time.LocalDate;

17

18 @BelongsToContract(IOUContract.class)

19 public class IOUState implements LinearState {

20

21 public IOUState(Amount <Currency > value , Party borrower ,

Party lender , UniqueIdentifier linearId) {

22 this.value = value;

23 this.borrower = borrower;

24 this.lender = lender;

25 this.linearId = linearId;

26 }

27

28 private final Amount <Currency > value;

29

30 private final Party borrower;

31

32 private final Party lender;

33

34 private final UniqueIdentifier linearId;

35

36 public Amount <Currency > getValue () {

37 return value;

38 }

39

40 public Party getBorrower () {

41 return borrower;

42 }

43

44 public Party getLender () {

45 return lender;

46 }

47

48 @Override

60

49 public UniqueIdentifier getLinearId () {

50 return linearId;

51 }

52

53 @Override

54 public List <AbstractParty > getParticipants () {

55 return Arrays.asList(borrower ,lender);

56 }

57

58 public List <PublicKey > getParticipantKeys () {

59 return getParticipants ().stream ().map(AbstractParty ::

getOwningKey).collect(Collectors.toList ());

60 }

61

62 @Override ()

63 public boolean equals(Object obj) {

64 if (!(obj instanceof IOUState)) {

65 return false;

66 }

67 IOUState other = (IOUState) obj;

68 return linearId.equals(other.getLinearId ()) && lender.

equals(other.getLender ()) && borrower.equals(other.

getBorrower ()) && value.equals(other.getValue ());

69 }

70

71 @Override

72 public int hashCode () {

73 return Objects.hash(value , borrower , lender , linearId)

;

74 }

75 }

Listing A1.1: IOU State Generate Code

1 @prefix foaf: <http :// xmlns.com/foaf /0.1/> .

2 @prefix rdf: <http :// www.w3.org /1999/02/22 -rdf -syntax -ns#> .

3 @prefix rdfs: <http :// www.w3.org /2000/01/rdf -schema#> .

4 @prefix owl: <http :// www.w3.org /2002/07/ owl#> .

5 @prefix : <http :// cordaO.org/> .

6 @prefix xsd: <http :// www.w3.org /2001/ XMLSchema/> .

7

8 # Defining Application Parameters

9 :cdp1 a :CordDapp ;

10 :hasName "IOU" ;

11 :hasDescription "A simple application to Issue Obligations

due between a lender and a borrower" .

12

13 # Defining State

61

14 :sp1 a :StateProperty ;

15 :propertyName "value"^^xsd:string ;

16 :datatype "Amount <Currency >"^^xsd:string .

17

18 :sp2 a :StateProperty ;

19 :propertyName "borrower"^^xsd:string ;

20 :datatype "Party"^^xsd:string ;

21 :txIdentity "payer"^^xsd:string .

22

23 :sp3 a :StateProperty ;

24 :propertyName "lender"^^xsd:string ;

25 :datatype "Party"^^xsd:string ;

26 :txIdentity "payee"^^xsd:string .

27

28 :s1 a :State ;

29 :stateName "IOUState"^^xsd:string ;

30 :properties (:sp1 :sp2 :sp3) ;

31 :hasProperty :sp1 ;

32 :hasProperty :sp2 ;

33 :hasProperty :sp3 ;

34 :belongsTo :contract1 .

35

36 :txC a :StateProperty ;

37 :propertyName "AcceptableCash"^^xsd:string ;

38 :payee :sp3 ;

39 :datatype "int"^^xsd:string .

40

41 :txoutCash a :Cash ;

42 :stateName "Cash"^^xsd:string;

43 :properties (:txC);

44 :hasProperty :txC .

45

46 # Defining Commands

47 :comIss a :Command ;

48 :commandName "Issue"^^xsd:string ;

49 :hasConstraint :constraint1 ;

50 :hasConstraint :constraint2 ;

51 :hasConstraint :constraint3 ;

52 :hasConstraint :constraint4 ;

53 :hasConstraint :constraint5 .

54

55 :commSettle a :Command ;

56 :commandName "Settle"^^xsd:string ;

57 :hasConstraint :constraintS1 ;

58 :hasConstraint :constraintS2 ;

59 :hasConstraint :constraintS3 .

60

62

61 #Defining Contract

62 :contract1 a :Contract ;

63 :contractName "IOUContract"^^xsd:string ;

64 :hasCommand :comIss ;

65 :hasCommand :commSettle .

66

67 # Defining Flow Properties for IssueFlow

68 :fp1 a :FlowProperty ;

69 :flowPropertyName "amount"^^xsd:string ;

70 :datatype "Amount <Currency >"^^xsd:string .

71

72 :fp2 a :FlowProperty ;

73 :flowPropertyName "borrower"^^xsd:string ;

74 :datatype "Party"^^xsd:string .

75

76 :fp3 a :FlowProperty ;

77 :flowPropertyName "lender"^^xsd:string ;

78 :datatype "Party"^^xsd:string .

79

80 :fp6 a :FlowProperty ;

81 :flowPropertyName "externalId"^^xsd:string ;

82 :datatype "String"^^xsd:string .

83

84 # Defining Flow Properties for SettleFlow

85 :fp4 a :FlowProperty ;

86 :flowPropertyName "amount"^^xsd:string ;

87 :datatype "Amount <Currency >"^^xsd:string .

88

89 :fp5 a :FlowProperty ;

90 :flowPropertyName "linearId"^^xsd:string ;

91 :datatype "UniqueIdentifier"^^xsd:string .

92

93 # New Issued Obligation State

94 :sf2 a :NewState ;

95 :newProperties (:fp1 :fp2 :fp3 :fp6) ;

96 :stateClass :s1 .

97

98 # Retrieve State to Settle

99 :sf3 a :RetrievedState ;

100 :stateClass :s1 ;

101 :retrieveWith :fp5 .

102

103 :sf4 a :Cash ;

104 :amount :fp4 ;

105 :payee :sp3 .

106

107 # Defining Flows

63

108 :f1 a :Flow ;

109 :otherParty :fp2 ;

110 :flowName "IssueFlow" ;

111 :properties (:fp1 :fp2 :fp3 :fp6) ;

112 :hasTransaction :t1 .

113

114 :f2 a :Flow ;

115 :otherParty :fp3 ;

116 :flowName "SettleFlow" ;

117 :properties (:fp4 :fp3 :fp5) ;

118 :hasTransaction :t2 .

119

120 # Build Transaction for Issue Flow

121 :t1 a :Transaction ;

122 :hasCommand :comIss ;

123 :hasOutputState :sf2 .

124

125 # Build Transaction for Settle Flow

126 :t2 a :Transaction ;

127 :hasCommand :commSettle ;

128 :hasInputState :sf3 ;

129 :hasOutputState :sf4 .

130

131 # Transaction Parameters

132 :txInputSize :propertyName "Input Size"^^xsd:string ;

133 :datatype "int"^^xsd:string .

134 :txOutputSize :propertyName "Output Size"^^xsd:string ;

135 :datatype "int"^^xsd:string .

136 :txInputeState :propertyName "Input IOUState"^^xsd:string ;

137 :datatype "int"^^xsd:string .

138 :txOutputState :propertyName "Output IOUState"^^xsd:string ;

139 :datatype "int"^^xsd:string .

140

141 :txInputParam a :txPropertyType .

142 :txOutputParam a :txPropertyType .

143

144

145 :txIStates :txOutputParam :txInputeState .

146 :txInpStates :txInputParam :txInpState.

147 :txInpSize :txInputParam :txInputSize .

148 :txinpsp1 :txInputParam :sp1 .

149 :txinpsp2 :txInputParam :sp2 .

150 :txinpsp3 :txInputParam :sp3 .

151

152 :txOStates :txOutputParam :txOutputState .

153 :txOCash :txOutputParam :txC .

154 :txOutSize :txOutputParam :txOutputSize .

64

155 :txoutsp1 :txOutputParam :sp1 .

156 :txoutsp2 :txOutputParam :sp2 .

157 :txoutsp3 :txOutputParam :sp3 .

158

159 ## Define Issue Contract Constraints

160 :constraint1 a :Constraint ;

161 :hasDescription "The lender and borrower cannot be the

same identity."^^xsd:string .

162

163 :constraint2 a :Constraint ;

164 :hasDescription "A newly issued obligation must have a

positive amount."^^xsd:string .

165

166 :constraint3 a :Constraint ;

167 :hasDescription "A newly issued obligation must be less

than $150."^^xsd:string .

168

169 :constraint4 a :Constraint ;

170 :hasDescription "No inputs should be consumed when issuing

an obligation."^^xsd:string .

171

172 :constraint5 a :Constraint ;

173 :hasDescription "Only one obligation state should be

created when issuing an obligation."^^xsd:string .

174

175

176 # Conditional Constraints

177 << :txoutsp3 :notEquals :txoutsp2 >> :belongsTo :constraint1 .

178 << :txoutsp1 :greaterThan 0 >> :belongsTo :constraint2 .

179 << :txoutsp1 :lessThan 15000 >> :belongsTo :constraint3 .

180 << :txInpSize :equals 0 >> :belongsTo :constraint4 .

181 << :txOutSize :equals 1 >> :belongsTo :constraint5 .

182

183

184 ## Define Settle Contract Constraints

185 :constraintS1 a :Constraint ;

186 :hasDescription "There must be one input obligation."^^xsd

:string .

187

188 :constraintS2 a :Constraint ;

189 :hasDescription "The amount settled should be equal to

amount in initial contract."^^xsd:string .

190

191 :constraintS3 a :Constraint ;

192 :hasDescription "There must be no output obligation as it

has been fully settled."^^xsd:string .

193

65

194

195 << :txIStates :equals 1 >> :belongsTo :constraintS1 .

196 << :txOCash :equals :txinpsp1 >> :belongsTo :constraintS2 .

197 << :txOStates :equals 0 >> :belongsTo :constraintS3 .

Listing A1.2: IOU Agreement Knowledge Representation

66

	Introduction
	Background
	Blockchain Frameworks
	Bitcoin
	Ethereum
	Issues with public blockchains

	Permissioned Blockchains
	Quorum
	HyperLedger Fabric
	Corda

	Smart Contracts
	Semantic Web
	Semantic Web
	Semantic Web Architecture
	RDF
	SPARQL
	Ontologies

	JavaParser

	Literature Review and Motivation
	Methodology
	Corda Key Concepts
	State
	Contract
	Flow

	Ontology Development
	Determine Scope
	Reuse of Ontologies
	Enumerate Terms
	Define Classes
	Define Properties
	Create the Instances
	RDF* to Annotate Constraints

	Auto-Generation Tool
	Architecture

	Evaluation
	Invoice (IOU)
	Car Rental
	Clinical Trial Patient

	Conclusion and Future Work
	Conclusion
	Future Work
	Heavyweight Ontology
	Supply Chain Pricing Contracts
	Agreement as a template of Blocks

	Final Remarks

	Appendix
	Ontology Visualisation

