
Decentralized Infrastructure for Versioned
Linked Open Data and Scalable Curation

Thereof

a dissertation presented
by

SinaMahmoodi
to

The Department of Informatik

in partial fulfillment of the requirements
for the degree of
Master of Science
in the subject of
Computer Science

Examiners:
Prof. Hofmann-Apitius
Prof. Jens Lehmann

Advisors:
Dr. Marc Jacobs
Dr. Damien Graux

University of Bonn
December 2018

Abstract

The growing web of data warrants better data management strategies. Data silos are single
points of failure and they face availability problems which lead to broken links. Furthermore
the dynamic nature of some datasets increases the need for a versioning scheme. In this work,
wepropose a novel architecture for a linked opendata infrastructure, built on opendecentral-
ized technologies. IPFS, a P2P globally available filesystem, is used for storage and retrieval of
data, and the public Ethereum blockchain is used for naming, versioning and storing meta-
data of datasets. Triples are indexed via aHexastore, andTriple PatternFragments framework
is used for retrieval of data. We furthermore explore two mechanisms for maintaining a col-
lection of relevant, high-quality datasets in a distributed manner in which participants are
incentivized. The platform is shown to have a low barrier to entry and censorship-resistance.
It benefits from the fault-tolerance of its underlying technologies and inmost cases is expected
to offer higher availability. An analysis in terms of the FAIR principles, showing improved
findability, interoperability and accessibility for datasets published on the infrastructure, is
further provided.

i

Declaration of Authorship

I, Sina Mahmoodi, declare that this thesis, titled “Decentralized infrastructure for versioned
linked open data and scalable curation thereof”, and the work presented in it are my own. I
confirm that:

• This workwas donewholly ormainly while in candidature for a research degree at this
University.

• Where any part of this thesis has previously been submitted for a degree or any other
qualification at this University or any other institution, this has been clearly stated.

• Where I have consulted the published work of others, this is always clearly attributed.

• Where I have quoted from the work of others, the source is always given. Except for
such quotations, this thesis is entirely my own work. I have acknowledged all main
sources of help.

• Where the thesis is based onwork done bymyself jointlywith others, I havemade clear
exactly what was done by others and what I have contributed myself.

Signed:

Date:

ii

Contents

1 Introduction 1

2 RelatedWork 6

3 Background 11
3.1 IPFS . 11
3.2 IPLD . 13
3.3 Ethereum . 14

4 Decentralized Linked Data Infrastructure 16
4.1 Overview . 17
4.2 Storage . 17
4.3 Retrieval . 21
4.4 Smart Contracts . 23
4.5 SDK . 27

5 Scalable Curation 30
5.1 Overview . 31
5.2 Single-entity curation . 32
5.3 Reputation-based, distributed curation . 33
5.4 Adjudication via PredictionMarkets . 34
5.5 Token-Curated Registry . 35
5.6 Data Quality . 39

6 Results &Discussion 41
6.1 Results . 42
6.2 Discussion . 44
6.3 Analysis of TCRs . 51

7 Conclusions & FutureWork 53

References 61

iii

List of Figures

4.1 Example Hexastore Merkle-DAG for graph G. 18

6.1 Query execution times. 43

List of Tables

6.1 Performance metrics for WatDiv basic testing queries. 44

iv

Listings

4.1 Initial diff object created for publishing a graph. 19
4.2 Populated diff object created for publishing a graph. 20
4.3 State of the Graph contract in Solidity. For brevity, the rest of the contract

has been omitted. 24
4.4 SDK example for creating a new graph, and adding triples 27
4.5 SDK example for querying simple triple patterns 27
4.6 SDK example for SPARQLQuery . 28

v

1
Introduction

Over the last decade, as more and more linked data in the form of RDF [1] triples were pub-

lished, a set of data management practices [2] were proposed and adopted which aimed to

improve integration and reuse among datasets, forming the web of data, which can be seen as

a global namespace connecting individual graphs and statements. The linked data principles

[3] recommend naming things by way of HTTP-based URIs, which are dereferenceable, i.e.

1

return data in form of data dump or a SPARQL [4] endpoint, and include links to other

statements. A community effort [5] focuses on publishing datasets under open licenses [6]

and interlinking them, which has resulted in the LODCloud [7]. Semantic Sitemaps [8] and

voID [9] provide means for specifying metadata, e.g. provenance, license and versioning in-

formation, for a dataset. Recently, a wide range of stakeholders came together and proposed

the FAIR guiding principles [10] for scholarly data, which comprise of being Findable, Ac-

cessible, Interoperable and Reusable.

From a logical point of view, linked data is inherently decentralized. However, from a

physical point of view, the actual data reside on data silos which suffer from low availability

[11, 12], leading to broken links [13]. Low availability could manifest itself in several forms,

such as unreliable service, service going completely offline e.g. due to lack of funding, or

timeouts due to high demand and expensive queries putting pressure on public SPARQL

endpoints [14]. Data publishers are therefore required to undergo the costs of maintaining

a server and ensuring adherence to good data management practices, in turn leading to entry

barriers. Shortage of reliable live queryable knowledge graphsmakes it difficult for developers

to build applications which consume linked data. Furthermore, when considering dynamic

datasets [12], a lack of robust versioning scheme can lead to inconsistencies when an external

linked dataset is modified. But versioning datasets using HTTP has so far proven difficult

[15]. Another implication of the unprecedented volume of data being published in web of

data is the varying quality of datasets, which ranges from extensively curated to ones that

are of relatively lower quality. Expert quality assessment [16] and curation produces the best

result, but in large scale incurs high costs in terms of expert time and labor. A promising

affordable approach is combining expert and crowdsourced assessment [17].

2

Given the recent progress in decentralized technologies, specifically globally available P2P

filesystems and public blockchains, and in particular IPFS [18] and Ethereum [19], in this

work we explore an alternative architecture for linked data infrastructure.

Utilizing IPFS for storage and retrieval of data offers the following benefits over a data

silo:

Authenticated, immutable addressing of data IPFSobjects are addressedby their cryptographic

hash, therefore the authenticity of data can be verified against the address upon re-

trieval. Furthermore, any modification of the underlying data results in a completely

new address, providing a basis for a versioning scheme.

No single point of failure Data objects can be retrieved as long as there exists at least one node

with a replica. Nodes have the choice to ”pin” data objects they interact with, thereby

increasing replication for popular datasets.

Incentivizing provable replication Buildingon IPFS, Filecoin [20] incentivizes nodes toprov-

ably store distinct replicas of data objects.

Low barrier to entry Maintaining a highly available server would not be necessarily, but is

beneficial to store at least one replica for new datasets.

Built-in data caching Being content-addressed, IPFS objects can be cached long-termbydata

consumers and used even when offline.

The public Ethereum blockchain can be seen as a decentralized smart contract platform

with turing-complete expressiveness, based on a P2P network and a distributed consensus al-

gorithm for reaching agreement on a shared state. Smart contracts, abstractly, are persistent

3

state machines, with pre-defined procedures for state transition. Key features of Ethereum

relevant to the context of this work include fair access, data immutability and integrity [21],

and strong data availability guarantees (albeit at a relatively high cost). Digital signatures and

public-key cryptography are employed for authorization of pseudo-anonymous accounts.

Ethereum further enables trustless large scale coordination of participants around a set of

goals, by relying on cryptographic proof of properties of past behaviour and economically

incentivizing desired properties in future actions [22].

The contributions of this work include a novel architecture for a decentralized linked

open data infrastructure, based on IPFS and the public Ethereum blockchain. The design

includes an indexing scheme suitable for linked data, and a mechanism for retrieval of data

by performing triple pattern or SPARQL queries. It further outlines how smart contracts

can be employed to provide a persistent identifier for data objects stored on IPFS, to describe

and version datasets, to control write access and to ensure source of provenance. A prototype

of the aforementioned architecture has been implemented, and is available under an open

license athttps://github.com/s1na/open-knowledge. The prototype includes a Javascript
SDK, which facilitates programmatical interaction with the infrastructure, e.g. to publish

or query datasets. On this foundation, and to further explore crowdsourcing data curation

in scale, we consider employing two mechanisms, first proposed by Ethereum community

members [23, 24], which facilitate distributed, trustless, incentivized consensus on a curated

list of datasets. The mechanisms are agnostic to the domain and the actual quality metrics.

The rest of this dissertation proceeds as follows: We discuss related work in chapter 2.

To keep the work self-contained, relevant aspects of IPFS and Ethereum protocols are high-

lighted in chapter 3. Chapter 4 introduces the proposed architecture, and describes how such

4

https://github.com/s1na/open-knowledge

an architecture can be implemented. Mechanisms for scalable curation of data are outlined

in chapter 5. We then qualitatively discuss the characteristics of the platform, the degree of

FAIRness for datasets published on it, and consider attack vectors for one of the curation

mechanisms in chapter 6. Chapter 7 concludes thework, and sets forth ideas for future work.

5

2
RelatedWork

There has been extensive research on centralizedRDFdata storage and retrieval. Triple stores

such as Jena2 [25] and Sesame [26] fall into this category. A survey of such storage and query

processing schemes has been done by Faye et al. [27], in which triple stores are categorized

based onmultiple factors. These factors include native vs non-native and in-memory vs disk-

based storage solutions. Non-native solutions for example are triple stores that use an exist-

6

ing data store, such as relational databases. Hexastore [28] stores six indices, enabling effi-

cient lookup of triple patterns for each parts of the triple, including subject, predicate and

object. This gain in performance comes at a cost in storage. When it comes to querying data

from remote servers, Verborgh et al. argue that there’s a spectrum between data dumps and

SPARQL endpoints, and that there’s a trade-off along the spectrum between factors includ-

ing performance, cost, cache reuse, bandwidth, etc. for servers and clients. They propose

Linked Data Fragments [14] which lies somewhere in the middle of the spectrum. In this

design, clients turn a SPARQL query into a series of triple pattern requests that servers re-

spond to, lowering load on servers, decreasing bandwidth, etc. Centralized data repositories

can process queries very efficiently, but they are single points of failure and they have limited

scalability and availability. In this work we adopt core ideas from Hexastore and LDF and

apply them to the P2P network setting. Similarly to Hexastore, triples are indexed six times,

and stored as a Merkle DAG on IPFS. Furthermore We adopt the Triple Pattern Fragments

to deconstruct full SPARQL queries into triple patterns, and fetch the relevant triples from

IPFS. The whole aforementioned process is performed on clients.

Content distribution over P2P networks has been an area of active research during the

last two decades. Motivations over the client-server architecture include scalability, fault-

tolerance, availability, self-organization and symmetryofnodes [29]. Androutsellis-Theotokis

et al. classify P2P technologies [30] in the context of content distribution into applications

and infrastructure. P2P applications themselves are classified into file exchange applications,

such as Napster [31], Gnutella [32] and Kazaa [33], which facilitate one-off file exchange be-

tween peers, and content publishing and storage applications, such as Publius [34], Freenet

[35] and Oceanstore [36], which are distributed storage schemes in which users can store,

7

publish and distribute content securely and persistently. Technologies targeted for routing

betweenpeers and locating content havebeen classifiedunderP2P infrastructure, and include

Chord [37], CAN [38], Pastry [39] and Kademlia [40]. P2P networks also differ in their

degree of centralization. Some, like Napster, rely on a central server which holds metadata

crucial for routing and locating content, limiting scalability, fault-tolerance and censorship-

resistance, but offering efficient lookups. On the other hand, networks like Gnutella are

fully decentralized, i.e. every participating node is equal in terms of capabilities, often of-

fer better scalability, availability and robustness, at the cost of efficiency. Lua et al. review

overlay network structures, comparing structured and unstructured networks [41]. Peers in

unstructured networks like Gnutella are connected mostly randomly and they query con-

tent by flooding, random walk, etc. Whereas peer neighbours in structured networks are

more deterministic and tend to form a well-defined shape. Structured networks employ Dis-

tributedHashTables (DHTs) and place routingmetadata in particular points in the network

to achieve more efficient lookups, but by default only support exact queries.

The infrastructure proposed in this work is built on top of IPFS [18]. According to the

aforementioned taxonomy, IPFS can be classified as a fully decentralized, structured network

for content publishing and storage (as opposed to simple file exchange). For routing, it uses a

DHST based on S/Kademlia [42] and Coral [43]. It further uses BitSwap, a block exchange

protocol, similar to BitTorrent [44], in which peers roughly follows a tit-for-tat exchange

strategy. On topof these, IPFSuses a generalizationof theGit data structure, tomodel objects

and links between them via cryptographic hashes, forming a Merkle DAG.

Unstructured P2P networks have been employed in protocols such as Bibster [45] and

[46] to store RDF data and process queries. They use semantic similarity measures to form

8

semi-localized clusters and to propagate queries to peers who are most likely to contain rel-

evant data for. These protocols offer higher fault tolerance, but limited guarantees for re-

trieving query results even the underlying data exists in the network due to their propagation

mechanisms.

Filiali et al. has performed a comprehensive survey [47] ofRDF storage and retrieval over

structured P2P networks. The underlying network topologies are categorized as ring-based,

cube-based, tree-based and generic DHT-based. Focusing on data indexing and query pro-

cessing as the main challenges, a few common patterns have been observed. To index the

triples, most protocols rely on variants of hash-indexing, e.g. RDFPeers [48], or semantic

indexing, e.g. GridVine [49]. As DHTs are only suitable for exact queries by default, often

additional mechanisms need to be devised to facilitate richer semantic queries. Two general

strategies have been observed by Filiali et al., either retrieving all relevant triples from other

peers and evaluating the result of the query locally, or propagating the query and partial re-

sults through the network, as in QC and SBV [50]. Unlike the aforementioned protocols, in

this work we don’t design a custom P2P network specifically built for RDF data storage, but

use the live global IPFS filesystem, which is simultaneously being used for other purposes.

Triples are indexed as a Hexastore. To process queries, all relevant triples are fetched, and

result is evaluated using the Triple Pattern Fragments [14] framework. The proposed data

storage solution further versions datasets and ensures data integrity upon retrieval.

Sicilia et al. [51] explore publishing datasets on IPFS, either by storing the whole graph

as a single object or by storing each dereferenceable entity as an object. Furthermore they

propose using IPNS to refer to the most recent version of a dataset. In this work, datasets are

indexed in the form of aHexastore, which allows for efficient retrieval of data, and versioning

9

is handled by a smart contract on Ethereum.

English et al. [52] explore both utilizing public blockchains for the semantic web, by

improving on the current URI schemes, and storing values on the Bitcoin network, and cre-

ating ontologies for representing blockchain concepts. We share the idea that blockchains

andweb of data are complementary and can benefit from one another, and use the Ethereum

blockchain to store metadata, and perform curation for knowledge graphs.

To determine ”fitness for use” of a dataset, assessment of its quality is required. Qual-

ity is however a broad term and it can encompass a variety of metrics in different contexts.

Zaveri et al. has performed a systematic review [16] of quality assessment approaches in the

literature, arriving 18 quality dimensions and 69metrics, which can be used in an expertman-

ual curation. Sieve [53], a module for the Linked Data Integration Framework [54], can be

used in an integration pipeline to keep, discard on transform values based on specification of

quality assessment metrics as specified by the user. Another promising direction is detecting

and repairing data quality issues automatically, by adapting ideas from test-driven software

engineering, to data engineering, which has been shown [55] to efficiently reveal many is-

sues in existing datasets. When expert manual curation using quality metrics is prohibitively

costly, and automatic detection doesn’t cover all of the issues, crowdsourcing curation has

been shown [17] to be an affordable way of enhancing quality, complementing expert cu-

ration. In this work, two mechanisms that rely on a blockchain as a trustless mediator are

considered for community-based, distributed and incentivized curation of data in large scale,

the result of which is collections of datasets that are relevant for a context, or that satisfy cer-

tain quality metrics.

10

3
Background

3.1 IPFS

IPFS[18] is a peer-to-peer protocol for content-addressable storage and retrieval of data. De-

tailed workings of IPFS is out of the scope of this work, however the relevant aspects of the

distributed file system will be highlighted here.

11

3.1.1 Network Topology

IPFS is a peer-to-peer network, with no difference between the participating nodes. It uti-

lizes routing mechanisms (such as a DHT) to keep track of data storage, and block exchange

mechanisms to facilitate the transfer of data. Every node stores IPFS objects in their local

storage.

3.1.2 Replication

These objects could be published by the node, or retrieved from other nodes and replicated

locally. It’s important to note that every node only stores objects which they care about, and

not an arbitrary subset of the whole data set.

3.1.3 Content Addressing

Objects in IPFS are comprised of immutable content-addressed data structures (such as files),

that are connected with links, forming aMerkle DAG (directed acyclic graph). Addressing is

done using cryptographic hashes. Most often the hash function used is SHA-256, however, as

the protocol is designed using self-describing identifiers, the protocol is agnostic to the actual

function. The links that connect the objects, are themselves hashes of the target object, which

is stored in the source object.

The aforementioned model lends several important characteristics to the IPFS protocol.

Content can be identified uniquely by its hash, and after retrieval, the integrity of it can be

verified against the hash that was used to address it. Furthermore, even the smallest change

in an addressed content, results in a completely new object, with a new hash. Therefore, the

original version of the content remains intact, giving way to object permanency.

12

IPFS, however, does not guarantee persistence, only permanence. A piece of content can

always be referred by its hash, but it doesn’t necessarily exist in the nodes of the network at

all times.

3.2 IPLD

IPLD* is a data model that aims to provide a unified address space for hash-linked data struc-

tures, such as IPFS objects, git objects, Ethereum transaction data, etc., which would allow

traversing data regardless of the exact underlying protocol.

The benefits of such a data model include protocol-independent resolution and cross-

protocol integration, upgradability, self-descriptive data models that map to a deterministic

wire encoding, backward-compatibility and format-independence.

3.2.1 CID

A key aspect of IPLD, is a self-describing content-addressed identifier format, called CID†.

In short, aCIDdescribes an address alongwith its base, versionof theCID format, format

of the data being addressed, hash function, hash size and finally the hash (address). This

allows CID to address objects from various protocols.

As an example, the CID z43AaGF23fmvRnDP56Ub9WcJCfzSfqtmzNCCvmz5eudT8dtdCDS,
describes the Ethereum block hash0x8a8e84c797...in v1 format of CID, haseth-blockas
data format andkeccak256as hash function.

*https://github.com/ipld/specs
†https://github.com/ipld/cid

13

3.2.2 DataModel

IPLD defines merkle-dag, merkle-links and merkle-paths among other things. Merkle-dag is

as we saw before, a graph, the edges of which are merkle-links. A merkle-path, is a unix-like

path, that traverses within objects, and across objects by dereferencing merkle-links. The fol-

lowing example demonstrates how these concepts relate to one another. The object contains

information about a book, with amerkle-link that points to a different object, which contains

data regarding the author.

1 {
2 ”title”:”AsWeMayThink”,
3 ”author”:{
4 ”/”:”QmAAA...AAA”//linkstothenodeabove.
5 }
6 }

Given the hash QmBBB...BBBfor the object, it’s possible to access the author’s name via

the merkle-pathQmBBB...BBB/author/name.

3.3 Ethereum

For the purposes of this study, Ethereum smart contracts can be seen as state machines, that

are deployed to the network alongwith an initial state, and the code necessary for future state

transitions, by way of invoking public functions.

Upon deployment, they will be assigned an address, which can hence be used to interact

with them. This interaction takes place, by crafting a transaction containing the target ad-

dress, the sender, value of ether to be transferred, and if target is a contract, the input data

14

passed to the contract.

Transactions are broadcast to the network, and so-called miners propose blocks which

contain a list of the previously broadcast transactions. Every other node, upon receiving a

block, runs all transactions inside, and validates the computed state, against the state put

forth by the miner.

Miners receive a reward in ether, the native currency of the network, for helping secure

the network, and to protect against Sybil attacks[56], miners compete for proposing blocks

by solving a Proof of Work[57].

As mentioned, every node in the network verifies every block, which imposes a limit on

the size and frequency of blocks, which results in a limited number of slots for transactions.

Users, compete for the limited slots, by sending gas (in ether) along with their transactions,

which theminer earns for including the transaction in a block. Gas also acts as a deterrent for

spamming the network. Miners, often employ the simple strategy of including transactions

which have the most payoff.

15

4
Decentralized Linked Data Infrastructure

Thefirsthalfofthiswork involves designing and implementing a decentralized linked

data platform (OpenKnowledge, orOK). This chapter will cover the aforementioned design

and how it was implemented.

16

4.1 Overview

Open Knowledge relies on two open technologies. First, IPFS for the actual storage and re-

trieval of raw data, and Ethereum, for tracking ownership, versioning and other metadata

belonging to the knowledge graph, and later on, as will be discussed, for decentralized cura-

tion of datasets.

Permissioned, centralized triplestores often store all inserted triples in a single index. How-

ever, this is not desirable in a permissionless setting where any entity has write access to the

same store, meaning, entities can even publish triples that are in conflict with others already

in the triplestore. Hence, in OK, knowledge graphs are not only conceptual, but they are ac-

tually stored in separate indices, that are managed by their corresponding publishing entity.

The knowledge graphs are still connected by the URI scheme, and it is possible to do feder-

ated queries across multiple knowledge graphs. One can imagine knowledge graphs to be the

counterpart of servers which contain a single dataset (as opposed to multi-dataset reposito-

ries).

The access control mechanism is controlled on the blockchain level, and the P2P storage

layer is agnostic to access. Due to the immutable nature of IPFS, this introduces no conflict,

as each modification to an existing object results in a totally new object (with a new address),

regardless of who has published the modified dataset.

4.2 Storage

Each knowledge graph is indexed as a Hexastore [28] on IPFS. However, the Hexastore is

not stored as a single data object, but is rather broken into smaller data nodes, which are

17

connected via links, forming an IPLDmerkle-dag.

4.2.1 Index structure

To expand on that, each knowledge graph has a root object, with 6 keys, namelyspo,sop,
pso,pos,osp,opswhere the value of each key is a link to another object containing the
triples for that subindex.

Each subindex is itself a merkle-dag of depth 3. It contains the first part of the triple, with

links to objects containing the second part, which in turn have links to objects containing the

third part. The leaves are a simple boolean, indicating that the triple with part 1, 2 and 3 exists

in the index.

SPO

OSP

G PSO <P1>

<P2>

<P3>

P <S1> <O1>OP1S1 <S1 P1 O1>SP1

Figure 4.1: ExampleHexastoreMerkle-DAGforgraphG.

As an example, consider graph G, as shown in figure 4.1. The figure only displays the

merkle-path to the triple<S1P1O1>, via the subindexpso. P is the set of all predicates inG.

If <P1>is one of those predicates, by traversing the link for<P1>, we arrive at the object SP1,
which is the set of all subjects inG for which at least one triple exists with predicate<P1>. In a
similar manner, if <S1>is a subject in SP1, by traversing the link, we arrive at the objectOP1S1,

which is the set of all objects in G for which triples exist with the triple pattern<S1P1?O>.
Traversing the link for<O1>we arrive at the leaf object{”exists”:true}.

18

In figure 4.1, only the path for subindexpsois shown. However, the same triple is indexed

under the other subindices. Therefore, if G has the root hashQmAA...AA, the merkle-paths

QmAA...AA/pso/P1/S1/O1,QmAA...AA/sop/S1/O1/P1, etc. would all betrue.
Please note that, one of the requirements of IPLD is that the keys of an object exclude

a pre-defined set of special characters, including/. Due to the fact that URIs often contain

such characters, a sanitization stepmust be performed to escape such characters before storing

them. In Open Knowledge, all URIs are encoded using percent-encoding*, as specified in

RFC3986.

4.2.2 Publishing a graph

An initial nested object O is created in memory, which will be filled with the given triples

from the set T. The initialO is as follows:

Listing 4.1: Initialdiffobjectcreatedforpublishingagraph.
1 {spo:{},sop:{},pso:{},pos:{},osp:{},ops:{}}

Each subindex is populated with triples from T in a nested manner. For example, the

populatedO given T = {< abc >,< mbn >}will be as follows:

The next step is to store the populatedO on IPFS, according to the index structure. Be-

cause the data objects closer to the root of the index have links pointing to the objects closer

to the leaves, storing must be done bottom-up.

First, the static object {”exists”:true} (henceforth L, and we denote its hash by

Lh) is put on IPFS. This object only needs to be stored once and can be used for every graph.

Then, all objects with height 3 are stored on IPFS, with links pointing to L. Following the
*https://tools.ietf.org/html/rfc3986#section-2.1

19

Listing 4.2: Populateddiffobjectcreatedforpublishingagraph.
1 {
2 spo:{
3 a:{b:{c:true}},
4 m:{b:{n:true}}
5 },
6 pso:{
7 b:{a:{c:true},m:{n:true}}
8 },
9 ...
10 }

example given in listing 4.2, the objects at height 3would be{c:Lh }and{n:Lh }. Each
of these objects will produce a hash, which will be used for linking in the higher levels. The

same process happen for objects at every height, until we compute the hash for the root of

the graph object, which itself contains links to each of the subindices (spo,pso,...).

4.2.3 Updating a graph

To update an existing graph, a similar procedure takes place. The difference is that, instead

of adding all the triples to a nested objectO, and putting them on IPFS, it will be calculated

which parts of the existing index have been modified, andO will only contain the difference

between the existing graph and the new one. Then, those objects that have been modified

are updated, again from bottom to top. However, when a data object down the index is

updated, the links pointing to it will become obsolete. Therefore, the parents of that object

in the tree also need to be updated, and change is propagated to the root. Therefore, adding

even a single triple, requires 4 updates, and it will definitely result in a new root hash, thereby

granting immutability to the graphs.

20

4.3 Retrieval

As seen in theprevious section, triples of a knowledge graph are stored in the formof amerkle-

dag on IPFS. Merkle-paths allow querying triple patterns, but not other features of an ad-

vanced query language such as SPARQL. It is however possible to perform a subset of all

SPARQL constructs, by combining the results of several triple pattern searches. First, we

will demonstrate how a simple triple pattern search could be performed, and then discuss

how full SPARQL queries, either on single graphs or a federation thereof, could be executed

by using triple patterns as building blocks.

4.3.1 Triple Patterns

A triple pattern, is a triple where any of the parts can be a variable instead of a concrete value.

In the simplest case, it’d be possible to query the existence of a triple, that has no variable,

in the knowledge graph. In this case, the merkle-path for the triple<abc>would look like
QmAA...AA/spo/a/b/cwhich returnstrueif the triple exists, and throws an error otherwise.

Given a graph G which has root hash Gh and a triple pattern T, the algorithm for con-

structing the corresponding merkle-path P and retrieving the values at this path is given be-

low:

1. Initialize P toGh

2. Parse T to get list of fixed and variable parts

3. Compute best subindex by bringing fixed parts first, and appending variable parts

4. Add subindex to P

21

5. Append values for fixed parts to merkle-path, separated by/

6. Fetch result (R) of P from IPFS

7. If result is nonempty, construct triples by adding the values for fixed parts to the results

which were returned for the variable parts, and return them

As an example, running the algorithmover a knowledge graphwhich contains[<abc>,
<fbc>], withT=<?sbc>, will result inP=QmAA...AA/pos/b/candR=[a,f], and
the algorithm will return[<abc>,<fbc>].

4.3.2 SPARQLQueries

Although querying triple patterns and compositions thereof would suffice for some applica-

tions, it falls short for others. In order to allowSPARQLqueries,OpenKnowledge builds on

the Linked Data Fragments framework[14] by implementing the Triple Patterns Fragments

interface. Bydoing so, theTPF client coulddecompose a SPARQLquery into triple patterns,

retrieve the corresponding responses, and compute the final SPARQL response therefrom.

In implementing the TPF interface, a few points must be taken into account.

• TPF has been design with REST APIs in mind. The client sends HTTP requests to a

centralized server, and receives HTTP responses. In Open Knowledge, the client and

the implementation of the TPF interface reside on the same node, and they commu-

nicate via intra-process means.

• The givenTPF interface implementation runs on a server and fetches data from a local

database, whereas in Open Knowledge, triples are stored across peers, and in case the

22

required triples are not replicated locally, each triple pattern query is translated into

requests to fetch triples from other peers.

• Pagination and control functions such asnextPage, are a requirement of the TPF in-

terface. Currently pagination is done after fetching all of the triplesmatching a pattern.

This can however be further optimized by storing size metadata in the indices.

Federated SPARQL queries are performed in a similar manner, by utilizing the TPF in-

terface. However, TPF requests the result of triple patterns from servers via HTTP, whereas

in Open Knowledge, all triple pattern queries are done simply over different graphs which

exist on the same P2P filesystem.

4.4 Smart Contracts

So far we’ve seen the structure of indices, how knowledge graphs are published and updated,

and how queries are performed over graphs. Each graph G is identified by the multihash of

the root of its index, and updating the graph results in a completely new and unpredictable

root hash. As a result, data consumers need a means for tracking the history of changes toG

and consequently its root hashes, in order to be able to perform queries.

In this section, two smart contracts,GraphandSimpleRegistrywill be introduced,which
facilitate tracking thehistory of graphs and theirmetadata, and improving findability bynam-

ing them.

23

4.4.1 Graph

TheGraphsmart contract is meant to represent a single dataset, maintained by a single entity.

It tracks the history of the graph, stores relevant information such as version, and points to

additional metadata that the author wishes to attach to their dataset.

When creating a new knowledge graph, the publisher must publish the RDF triples on

IPFS, as outlined in the previous section, and deploy an instance of theGraphcontract, pro-
viding the root hash of the index as input. The deployed instance has a permanent address,

which they candistribute todata consumers. Consumers can thenquery theEthereumblockchain

to fetch the state of the aforementioned contract instance, find the current root hash which

they can use to perform queries. To update the knowledge graph, they update the index on

IPFS, and make a transaction to the contract, providing the new hash as input. Consumers

who are subscribing to events emitted by Ethereum, will be informed of the new root hash.

The smart contract holds the following state fields:

Listing 4.3: StateoftheGraphcontractinSolidity.Forbrevity,therestofthecontracthasbeenomitted.
1 contractGraph{
2 addresspublicowner;
3 bytes32publicid;
4 bytes32publicroot;
5 bytes32publicmetadata;
6 bytes32publiclicense;
7 uintpublicversion;
8 }

24

Ownership

In listing 4.3,ownerrefers to the Ethereum account who deployed the smart contract. From

then on, onlyowneris able to modify the state of c, but ownership can easily be transferred

to other accounts by submitting a transaction and invoking the methodsetOwner.
Please note there’s no inherent difference between the address of an external account and

that of a contract. Therefore, the ownercould be the address of a multisignature contract,

enabling complex signature schemes, such as(t,n)-threshold, for updating the state.

History

The fieldrootis an IPFS hash which points to the root of the knowledge graph’s hexastore

index. When G is updated,ownersends a transaction to c, updatingroot. This removes the

need for a side-channel to announce new versions of g, and the need for maintaining a list of

previousroots, as Ethereum full-archive nodes by default store all of the previous states.

Furthermore, versions ofG are automatically tagged by an auto-incrementversionfield,
which can be used to query specific versions of G without referring to the full IPFS hash in

SPARQL, as will be discussed in the next section.

Metadata&Attribution

The smart contract also keeps an optional fieldmetadata, which in a similar manner toroot,
is an IPFS hash. The IPFS object identified by metadatashould contain additional infor-

mation about the knowledge graph, ideally in an IPLD-compatible format. The structure

and semantics of metadatahas been left to individual graphs, but they could potentially in-
clude information about the authors, citations to other graphs and a website link for further

25

information.

4.4.2 Simple Registry

TheSimpleRegistrycontract (R) acts as a knowledge graph name registry, and a list for data

consumers to find knowledge graphs. Without it, data consumers would have to know the

address for every knowledge graph, andwould have to specify that address in their queries. R

allows registering graphs under a unique name (first-come first-served), and later on request

the contract address for a certain graph with its name.

It’s important to note that, this contract is also openly available, and an instance of it can

be deployed by any party. Data producers can decide which registry they want to be a part of.

SimpleRegistryalso has a convenience methodnewGraph(bytes32_name)for deploy-
ing an emptyGraphcontract and registering a name for it in one transaction.

4.4.3 Upgradability

The code for a smart contract is immutable, and cannot bemodified after deployment. There

are, however, circumstances which necessitate modifications to an existing contract, such as

when a bug has been discovered, or when upgrading can improve interoperability by adopt-

ing a standard that came into being after the contractwas deployed. With those cases inmind,

theSimpleRegistryemploys a work-around that allows upgrading the contract. This has to

be done, however, with care, and only with the agreement of all parties involved.

The mechanism makes use of a proxy contract, in addition to contract which contains

the logic. The proxy contract acts as a wrapper to the logic contract, and is the interface with

which the users interact. It stores the state, and a pointer to the current logic contract, and

26

it delegates every incoming transaction, by means of theDELEGATECALLEVM opcode to the

logic contract. During an upgrade, a new instance of the logic contract is deployed, and the

proxy is invoked to update its pointer to the new contract.

4.5 SDK

The Javascript SDK brings the aforementioned parts together and provides a uniform and

simple interface to developers who want to include Open Knowledge in their applications,

effectively hiding much of the complexity. It has been designed in a way that would allow

swapping the underlying technologies. It implements the procedures that were detailed in

the previous sections for creating, updating and querying knowledge graphs.

The implementation details of the SDK are out of the scope of this work, however to

showcase how a developer would use it, a few examples are given below:

Listing 4.4: SDKexampleforcreatinganewgraph,andaddingtriples
1 letmanager=awaitok.newGraphManager(’myGraph’)
2 lettx=awaitok.addTriples([[’subject’,’property’,’object’]],’myGraph’)

Listing 4.5: SDKexampleforqueryingsimpletriplepatterns
1 letres=awaitok.getTriples(null,’http://dbpedia.org/ontology/influenced’,null,’

dbpedia’)

To give an overview of how the different parts come together, we’ll investigate listing 4.6

briefly. The SDK validates the SPARQL query, and extracts the knowledge graph on which

the query should be executed. Please note the FROM<openknowledge:dbpedia>on line 4.

This is a valid SPARQL IRI, which specifies the scheme asopenknowledgeand the name of

27

Listing 4.6: SDKexampleforSPARQLQuery
1 letres=awaitok.execute(‘
2 PREFIXdbr:<http://dbpedia.org/resource/>
3 PREFIXdbo:<http://dbpedia.org/ontology/>
4 FROM<openknowledge:dbpedia>
5 SELECT*
6 {
7 dbr:Lucky_Starr_and_the_Big_Sun_of_Mercurydbo:author?o.
8 ?sdbo:influenced?o
9 }LIMIT15
10 ‘)

the graph.

If the graph wasn’t cached locally, the SDK queries theSimpleRegistrycontract to find
the address of dbpedia’s respective Graphcontract. It then consults the Graphcontract to
fetch the root of the hexastore index on IPFS.

At this point, the SDK can construct the Triple Pattern Fragments client, and ask IPLD

for the decomposed triple patterns, combine the results and return them to the caller in pages,

according to the algorithm specified in sections 4.3.1 and 4.3.2.

Previous versions

Bydefault, whenperformingqueries over a namedknowledge graph as in listing 4.6, the SDK

uses the latest version of the graph. This could fail in some cases:

• If a the knowledge graph has been updated just shortly before, it might take a while

until there are enough replicates in the network to respond with the requested triples.

• Or, due to a mistake, or on purpose, the root that’s submitted to the Graph contract

points to an invalid data structure.

28

If the query fails over the most recent version, the SDK falls back to previous versions.

In addition to the fallback behaviour, the SDK supports running queries over specific

versions of a graph, by adding the version to the FROMpart of the query, as in the example

FROM<openknowledge:dbpedia:2>, where2is the version.

29

5
Scalable Curation

Lowbarriertoentrywithin adecentralized infrastructure, couldpotentially increase the

already high growth rate of the number of datasets being published in the web of data. This

poses a findability issue for data consumers. With a growing number of datasets, it becomes

increasingly costlier for consumers to find knowledge graphs suitable for their purposes, and

30

upon finding graphs, for them to gauge their quality. This highlights the need for scalable

curation mechanisms, which we will try to address in the following chapter.

5.1 Overview

Free participation and censorship-resistance in Open Knowledge (refer to chapter 6 for dis-

cussion) has two sides. On the one hand, these characteristics ease the publication of useful

and high-quality data for everyone. On the other hand, they make the infrastructure prone

to being flooded with low-quality and less relevant data.

Any entity can easily create as many knowledge graphs as desired. The gas costs act as a

deterrent for spamming the network. Even so, the number of legitimate graphs could poten-

tially increase to be high enough, as to make the cost of finding suitable graphs among them

non-trivial, assuming there exists a channel fromwhich consumers can find the address of all

graphs.

However, because Graphcontracts have a unique and persistent identifier, namely the

address of the contract, it’s possible to create public lists (or collections) of graphs that are

relevant for a givenpurpose or satisfy certainquality requirements,which consumers can refer

to. Upon finding a graph in such a list, consumers can provide the graph contract address as

input to the SDK (section 4.5), and execute queries against it.

Relevance is a context-dependant quality, and each context might call for a different set

of trade-offs. Therefore, there likely won’t be a single most-relevant list, but rather a plethora

of lists, maintained through various mechanisms. Each knowledge graph could be listed in

multiple of collections, and a global quality score of such a graph could bemeasured by taking

the average score of the graph across collections.

31

The goal is therefore to consider curation mechanisms, the output of which is a list of

valid and relevant knowledge graphs for data consumers. In the following sections, mech-

anisms with different trade-offs, ranging from a curation by a committee of experts, to a

crowd-sourced mechanism which is distributed and incentivized will be discussed.

5.2 Single-entity curation

5.2.1 Manual

An entity E (e.g. expert committee) assesses knowledge graphs manually and maintains a

collection of the relevant/high-quality ones. E defines what is considered relevant or high-

quality, and the rules of the selection process. Often, data publishers would have to submit

their datasets to be assessed by E. Data consumers subscribe to the list based on prior trust

of E. In large scale, this approach could become prohibitively costly.

5.2.2 Algorithmic

An entity E selects a relevance function r, a set of rules R, and designs a program which au-

tomatically selects the graphs in the curated list according to their relevance score (r(g)) and

R. It remains to be seen if such algorithmic assessments can determine quality or relevance.

As has been shown, they can however be used for pre-filtering by detecting ”bad smells” [55]

with a low cost.

32

5.3 Reputation-based, distributed curation

The SimpleRegistrycontract as specified in section 4.4.2, has no relevance function, and

only one rule, namely that no other knowledge graph exists with a given name.

Any entity e can add knowledge graphs to the list, but no entity can remove graphs from

the list. Effectively,SimpleRegistryis an append-only log, which due to low costs of includ-

ing a graph, provides no filtering of graphs by itself. But already there’s a shift from the two

previous mechanism, and the shift comes down to the fact that no single entity has control

of the items in the list.

SimpleRegistrycan further be extented, in a way that every entity i has a reputation wi,

and they can vote for knowledge graphs in the list withweightwi. Therefore, thismechanism

has one rule for including graphs, which is that no other graph with the given name exists in

the list, and the relevance function r(g) =
∑N

i=0 wi (or a normalized variant thereof), where

wi = 0 if i has not cast a vote for g. Simple registry can be seen as a special case of reputation-

based registry, where ∀wi : wi = 0.

In this theoreticalmethod, any entity can add a graph to the registry, and the graphwould

be assigned a relevance score, based on the votes of independent entities who have a good

sense of what is relevant in the given context (due to their reputation weight). The caveat

however is that assigning reputation to entities in a public blockchain is an open problem*.

A trusted entity needs to be introduced, which attests to the reputation of other individuals.

*https://github.com/ethereum/wiki/wiki/Problems

33

5.4 Adjudication via PredictionMarkets

As seen in chapter 4, Open Knowledge only stores the root hash of the index stored on IPFS,

and not the index itself in the Ethereum smart contract. The main reason behind that, is

transaction costs that are incurred due to storage.

The smart contract has no way of verifying whether the hash h actually points to a valid

knowledge graph stored on IPFS.However, usingMerkle proofs, or a zk-SNARK[58] proof,

it’d be possible to prove to the smart contract, that a valid graph index would result in h as

root of the index. Although verifying this proof is much cheaper than sending or storing the

whole graph index, the transaction cost is still high enough to make it infeasible to do for

every graph update.

However, if we have the expensive method M for verifying the validity of a graph on-

chain (e.g. a zk-SNARK verifier), by utilizing prediction markets, it’d be possible to check a

larger number of graphs for validity, with only a smaller subset of them needing to revert to

M for verification [23].

Any entity e1 could claim that a given graph g is invalid by creating a bet of size x in the

prediction market. If e2 doesn’t agree with g being invalid, they’d put a bet of size y on the

opposite side.

If, after a pre-specified period has passed, no other entity has challenged the bet, gwould

hence be considered as invalid. Otherwise, verifying viaM the winning side is determined.

Each entity in the winning side is rewarded proportional to their bet, a part of the bets of the

losing side.

The process can be further optimized to deter incorrect betting and volume manipula-

34

tion, by having the amount won to be only 75% of the amount lost. The other 25%, could

for example be distributed to producers of valid graphs.

The rationale here is that, verifying the validity of a graph is much cheaper done off-

chain, than on-chain. Therefore, users would be incentivized to ”fish” invalid graphs. They

are disincentivized to bet against a valid graph, because others can challenge the bet in the

market, and an on-chain verification would result in the loss of their bet.

This mechanism, could also be used as a pre-filter for other mechanisms.

5.5 Token-Curated Registry

Token-curated registry (hereafter TCR) [24] is a mechanism, in which rational actors are

incentivized to maintain a decentrally-curated list. As the name suggests, TCRs rely on a

native token, which has a value relative to another base currency (fiat currencies, such as

EUR).Apart fromconsumers of the curated list, whichdesire a high-quality list of knowledge

graphs, other actors require tokens to interact with the TCR.

5.5.1 Actors

Actors of a TCR include candidates, voters and challengers. Please note that, these character-

izations are notmutually exclusive. A candidate, is an actor, whowishes to add a graph to the

list, and stakesN tokens along with the application. Challenger, is an actor, who believes the

item that a candidate proposed, does not belong in the list, and is willing to stakeN tokens

to challenge the application. When a challenge occurs, a voting period starts, during which,

token holders can cast a vote, either for or against the item in question. Votes are weighted

proportional to the number of tokens the token holder specifies. The tokens would not be

35

spent during a vote. After the voting period comes to an end, the side with most token-

weighted votes wins, and depending on the outcome, either the candidate or the challenger

loses a portion of their stake, and this portion is split among the winners, in proportion to

the number of tokens they participated with.

5.5.2 Rewarding honest behaviour

The rationale behindTCRs is that, rational voterswho seek to increase their long-termprofit,

would only vote to accept items that have a relative higher quality, which increases usefulness

among consumers, resulting inmore demand among candidates to be on the list, that in turn

increasing the value of the native token with respect to the base currency. This is in addition

to their short-term benefit of being rewarded with more tokens, if they vote for high-quality

items.

5.5.3 Disincentives

The risk associated with losing the stake, disincentivizes candidates to apply for a graph,

they’re aware has low quality or is invalid. At the same time, challenging a high quality graph

also comes with the risk of losing a portion of challenger’s stake. If this was not the case, par-

ticipants would have been incentivized to challenge every application, effectively requiring a

vote on every application, and thereby reducing the efficiency of the mechanism.

Vote-splitting

The aforementioned spec failed to address the ”nothing at-stake” problem for voters, or in

particular, the ”vote-splitting” issue, in which, a rational strategy for voters could be to split

36

their tokens in half, and vote for both side, thereby earning revenue regardless of the outcome

of the vote, and without putting in any effort. TCR 1.1 † addresses this issue, by slashing a

portion of the minority bloc’s tokens, and adding it to the rewards of the majority’s bloc.

5.5.4 Commit-reveal voting

Due to Ethereum transactions being public, during a voting period, voters can see the current

tally, and vote with the majority, without inspecting the item in question. This can be pre-

vented, by splitting the voting period into two phases: first, all voters make a cryptographic

commitment to a vote, after the commit period has come to an end, everyone must reveal

their vote, by submitting the secret used to make the commitment. Consequentially, the

tally of the votes is unknown by everyone other than the voter until the end of the commit

period. This effectively prevents voters from basing their decisions on how others are voting.

5.5.5 Listing item status

Graphs are added to the list, either if they face no challenge after application, or if they are

challenged, and voters vote for inclusion of the graph. The stake, which is a requirement of

applying to the TCR, remains locked while the item is in the list. The candidate, can, at any

moment withdraw the stake, thereby removing the item from the list.

Furthermore, even after a graph has been listed, it can be challenged and therefore re-

moved from the list. This is inevitable, because an append-only list, could grow large enough

to lose its usefulness, and as such, when higher quality graphs are added to the list, lower qual-

ity graphs can be challenged and removed, in order to maintain a limited number of slots in
†https://medium.com/@ilovebagels/token-curated-registries-1-1-2-0-tcrs-new-theory-and-dev-updates-

34c9f079f33d

37

the list.

Challenging a graph after it has been listed could furthermore be necessary in cases where,

after an update the new updated graph no longer adheres to the standards of the list.

5.5.6 Variants

Themechanism discussed until now, would result in an unordered list of graphs, potentially

with a finite number of graphs. Various other mechanisms have been proposed, that build

on the basic idea of a TCR to make it suitable for different applications.

Layered TCR

In a layeredTCR ‡, items first apply for admission into theL0TCR,which has a lower quality

bar. At any point, an item in levelLi, can apply for admission intoLi+1, and can be challenged

to drop to Li−1.

Nested TCR

In a nestedTCR §, a tree of TCRs is formed, inwhichTCRs in the leaf nodes point to graphs,

but other nodes in the tree have other TCRs as items of their list. In the case of a linked data

platform, the hierarchy, could represent categories of data, with TCRs further down the tree

having more specialized categories.
‡https://blog.oceanprotocol.com/the-layered-tcr-56cc5b4cdc45
§https://medium.com/@DimitriDeJonghe/curated-governance-with-stake-machines-8ae290a709b4

38

5.6 DataQuality

Missing from the aforementioned curation mechanisms is a definition of data quality, or fit-

ness for use. Data quality assessment processes would differ among mechanisms, depending

on their requirements and purposes. When quality is to be determined by a select commit-

tee of experts, systematic assessments [16] could be employed, which is subject to prohibitive

costs in larger scales.

Whereas in the more decentralized mechanisms, such systematic assessment by all partic-

ipants is unfeasible, specially that intuitively the probability of being an expert decreases as

participation becomes more decentralized. On the other hand, suchmethods are suitable for

large scale, and they incur lower costs. To further improve on these methods, a promising

direction is the use of automatic syntactic validation and detection of ”bad smells” [55] to

help participants in assessing quality.

Furthermore, systematic assessment by experts, and decentralized usefulness assessment

can be combined, as they’ve been shown [17] to be complementary.

5.6.1 Implementation

An open source implementation of the smart contracts necessary for a generic TCR has been

made available by the original proposer of TCRs ¶. In order to integrate TCRs with Open

Knowledge, a Javascript library ‖ has been implemented, which handles most of details nec-

essary in using the TCR smart contracts, such as state management. Thetcr.jslibrary, has
been integrated into the open-knowledgeJavascript SDK, to provide a simple interface to

¶https://github.com/skmgoldin/tcr
‖https://github.com/planet-ethereum/tcr.js

39

users ofOpenKnowledge to interact with a TCR, by creating new graphs, applying for them

to be listed, challenging graphs, etc. The items in the TCR, are addresses of Graph(section
4.4.1) contracts.

40

6
Results & Discussion

In this chapter, the results of a benchmark performed on the prototype implementation will

be presented. Next, qualitative characteristics of the design, including the FAIR principles,

will be discussed. In the end, a potential attack vector on the TCR curation mechanism will

be outlined.

41

6.1 Results

To verify the correct functionality of the spec, the source code (https://github.com/s1na/
open-knowledge) includes a test suite, which comprises of three categories of tests. First, each

Solidity smart contract has an accompanying test, which checks the initial state of the con-

tract, as well as correct state transitions upon invocation of the contract methods. Second,

modules of the SDK have accompanying unit tests, which aim to verify the functioning of

that module in isolation. For this purpose, two key components with which many of the

modules interact, namely IPFS and Ethereum, have been mocked with an in-memory object

that adheres to the IPFS interface and an in-memory deployment of the smart contracts. Fi-

nally, the integration test cases test the system as a whole by storing triples and querying the

stored triples.

To gain further insight into the consequences of the design, specifically the indexing de-

sign, and to highlight potential bottlenecks for future work, we generated a WatDiv [59]

dataset with scale 1 which contains 107665 triples, stored the dataset onOpenKnowledge and

performed the 20 ”basic testing” queries provided in the WatDiv (v0.6) packaging, compris-

ing of linear queries (L), star queries (S), snowflake-shaped queries (F) and complex queries

(C). The benchmark was executed on a personal laptop with Intel(R) Core(TM) i7-2640M

CPU@2.80GHz, SSDSA2BW16 disk and 8GBofmemory, running a Linux kernel (v4.19.1).

By default the SDKmaintains a cache of results fetched from IPFS. Tomeasure query execu-

tion times, each query has been executed 5 times with a warm cache, and 5 times with a cold

cache. Results of the queries have been compared for correctness against the ARQ engine *.

Storing the dataset comprises of twomain phases, constructing the index tree locally and

*https://jena.apache.org/documentation/query/index.html . Accessed: November 2018

42

https://github.com/s1na/open-knowledge
https://github.com/s1na/open-knowledge

storing the tree on IPFS from leaves to the root. Constructing the tree locally took 1503 ms,

and storing it on IPFS took 18.52 minutes and translated into 318972 IPFSPUTrequests.
Figure 6.1 displays execution times measured for the aforementioned queries in a loga-

rithmic scale. The difference between default and w/o cache traces is in caching the results of

IPFSgetrequests in the SDK.Table 6.1 outlinesmeasurements ofmetrics during each query,

providing additional insight into factors potentially influencing the execution times. Triple

patterns denotes the number of triple patterns each SPARQL query is decomposed into by

Triple Pattern Fragments client, IPFS gets is the number of GETrequests to IPFS, Repeated
paths is the number of paths that had been requested from IPFS during the same query and

returned tripl denotes the total number of triples that have been returned from IPFS to

construct the final SPARQL result.

Figure 6.1: Queryexecutiontimes.

43

Query Triple patterns IPFS gets Repeated paths Returned triples
L1 131 403 79 1897
L2 26 225 3 387
L3 27 253 1 1107
L4 11 34 1 39
L5 13 296 45 297
S1 375 6849 152 8357
S2 13 990 1 1205
S3 14 305 10 664
S4 9 725 1 752
S5 16 220 1 242
S6 6 1405 3 1510
S7 3 1424 13 1499
F1 11 1743 10 2201
F2 27 2135 104 2235
F3 9 2212 1 3552
F4 271 5269 3748 6565
F5 363 68196 62629 72297
C1 51 8343 6057 10120
C2 183 17895 14906 36216
C3 3672 6851 3148 53821

Table 6.1: PerformancemetricsforWatDivbasictestingqueries.

6.2 Discussion

Open Knowledge (OK) can be seen as a global linked open data repository which facilitates

storing knowledge graphs and retrieving triples from either single graphs or a multitude of

them. To validate its functionality with larger datasets and to highlight potential emerging

bottlenecks in the design for future work, a benchmark was performed as described in the

previous section. In particular, themetrics shown in table 6.1 point to the number of decom-

posed triple patterns and IPFS requests as a potential factor that correlates with execution

time. The repeated paths metric further reemphasizes the benefits of a cache for intermedi-

44

ate results retrieved from IPFS. In the rest of this section, the characteristics of OK will be

compared with centralized infrastructures qualitatively.

6.2.1 Characteristics

Free participation Any entity is able to query knowledge graphs. Likewise, any entity is able

to store knowledge graphs. The transaction fee for deploying aGraphcontract can be
seen as the only barrier to storing graphs, which can be avoided by only publishing the

graph on IPFS and not deploying a contract. Consumers would still be able to use the

graph, if they have access to the root hash.

Censorship-resistance No entity can prevent others from storing or querying knowledge

graphs.

Fault tolerance Open Knowledge inherits the fault tolerance properties of its underlying

technologies, i.e. IPFS and Ethereum.

Availability In a centralized storage setting, data publishers run a server, the availability of

which equals the availability of the dataset. In a P2P storage setting, availability of a

dataset depends on the availability of all the peers which store a replica of the dataset.

Availability is typically measured by the percentage of uptime of a given resource dur-

ing a period. If the probability of one of these peers being available atmoment t during

a given period (normalized uptime) is Pi(t), the availability of the dataset can be cal-

culated to be P(t) = 1−
∏n

i=0(1− Pi). Therefore, if the data publisher runs an IPFS

node on the same server and pins the dataset, the availability of the dataset published

onOpenKnowledgewouldbe equal to that of a centralized storage scheme, if no other

45

replica exists, and strictly greater, if at least one other replica with Pi(t) > 0 exists.

Secure Versioned URIs The infrastructure allows for various URI schemes with different

trade-offs. Using root hashes to refer to datasets ensures data authenticity for retrieval.

Furthermore the underlying data behind a root hash never changes, which is a key fea-

ture in Cool URIs †. In contrast, changes in the data behind a HTTP-based URI,

don’t get reflected in the URI by default. Furthermore DNS domains can expire, and

be transferred to different owners, or face other attack vectors such as DNS spoofing.

On the other hand, root hashes don’t have the simplicity feature of Cool URIs. If that

is desired, data publishers can assign ENS [60] domains to their datasets which still

ascertains data authenticity (as they point to root hashes themselves which will ulti-

mately be used to retrieve data) and they keep a history of the content they refer to,

and are DoS-resistant.

Access Control AGraphcontract can only be updated by the respectiveowner. Correctness
of this behaviour is verified using unit tests, which can be found in thetest/directory
of the repository.

6.2.2 FAIR principles

The widely accepted FAIR guiding principles [10] put forth a set of metrics that aim to mea-

sure data management strategies. A FAIR data repository leads to better knowledge discov-

ery, evaluation and reuse.

Publishing data on Open Knowledge instead of a server improves FAIRness on several

metrics, particularly with regards to Findability, Accessibility and Interoperability. Data
†https://www.w3.org/TR/cooluris/

46

publishers can further improve FAIRness by adopting community endorsed standards for

the metadata of the graph. Here, we discuss in detail how publishing on Open Knowledge

affects each of themetrics. For each of the core principles, the specific metrics are listed, along

with a discussion of howOpen Knowledge fares for that metric.

Findable

1. (meta)data are assigned a globally unique and eternally persistent identifier.

The root hash of the index of a specific version of a document stored on IPFS, acts as

a globally unique and eternally persistent identifier. Furthermore, theGraphcontract
address, acts as a globallly unique and eternally persistent identifier for the metadata

of a knowledge graph.

2. data are described with rich metadata.

A Graphcontract contains itself the most necessary metadata regarding a knowledge

graph, and it furthermore stores an IPFS multihash which points to a document with

all the complementary metadata of that knowledge graph, such as provenance and li-

censing information. The exact format and attributes of such document is left open

for publishers, as long as the format adheres to IPLD.

3. (meta)data are registered or indexed in a searchable resource.

Graphcontracts are indexed and searchable on a public distributed ledger technology.
The complementary metadata is also stored on IPFS, it is indexable by its hash, and

searchable by IPLD.

4. metadata specify the data identifier.

47

The Graphcontract stores the multihash pointing to the most recent version of the

knowledge graph. Furthermore, identifiers for previous versions of the knowledge

graph are also publicly available, as Ethereum has a public state history.

Accessible

1. (meta)data are retrievable by their identifier using a standardized communications pro-

tocol.

IPFS and IPLD which are used for storing and retrieving data are standardized, but

the specs are not yet fully finalized. The specs, and their stability, can be tracked at

https://github.com/ipfs/specsandhttps://github.com/ipld/specs.
There are various ways of retrieving the metadata stored on the Graphcontract on

Ethereum. The standardized JSON-RPC API of an Ethereum client can be found at

https://github.com/ethereum/wiki/wiki/JSON-RPC.

2. the protocol open, free, and universally implementable.

Both protocols mentioned above are open, free and universally implementable, and

there are already multiple implementations of each.

3. the protocol allows for an authentication and authorization procedure, where necessary.

Modifying an existing Graphcontract is protected, and access is granted only to the

entity controlling the private key (in case of an external account, otherwise the smart

contract that owns the graph) of the Ethereum account which is the currentownerof
the contract. Otherwise, publishingnewdata, or querying existingdata is purposefully

left unauthenticated and open for free participation. If needed however, the data on

IPFS can be encrypted, and a list of public keys that are allowed access, added to the

48

https://github.com/ipfs/specs
https://github.com/ipld/specs
https://github.com/ethereum/wiki/wiki/JSON-RPC

metadata of a knowledge graph, to limit read access to those who control the private

keys for the aforementioned whitelisted public keys.

4. metadata are accessible, even when the data are no longer available.

Ethereum smart contracts will exist as long as there exists at least one full node, unless

they call theselfdestructopcode. Since theGraphcontract doesn’t call this opcode,
their lifetime is that of the Ethereum network.

Interoperable

1. (meta)data use a formal, accessible, shared, and broadly applicable language for knowl-

edge representation.

TheHexastore model for the knowledge graph stored on IPFS, assumes a triple-based

data structure, and the JS library includes a parser for various RDF representations

such as N3, turtle, etc. The exact format of the metadata document is left to data pub-

lishers, but due to the requirement of it being an IPLD-supported format, it can be

selected from a variety of widely-used formats such as JSON, YAML, Protobuf, XML

and RDF.

2. (meta)data use vocabulari that follow FAIR principl .

The platform is agnostic to the vocabularies used in knowledge graphs. It’s recom-

mended however that data publishers use standards that are widely accepted among

the scientific community, such as the ones outlined by the FORCE11 Data Citation

ImplementationWorking Group for data citation [61] in the metadata document of a

knowledge graph.

49

3. (meta)data include qualified referenc to other (meta)data.

Similar to other knowledge graphs, documents stored on Open Knowledge can use

IRIs to refer to other documents. Data publishers can furthermore add references to

other knowledge graphs in the metadata document, e.g. by referring to their Graph
contract address or their IRI.

Reusable

1. meta(data) have a plurality of accurate and relevant attribut .

The exact attributes included in metadata is left to data publishers. As mentioned

before, it is recommended to use standards that are widely accepted among the com-

munity.

2. (meta)data are released with a clear and accessible data usage license.

TheGraphcontract stores the license for the knowledge graph, as specified by the data
publisher.

3. (meta)data are associated with their provenance.

Data publishers are expected to include provenance information in the metadata doc-

ument of their knowledge graph.

4. (meta)data meet domain-relevant community standards.

The platform itself is agnostic to metadata and data standards.

50

6.3 Analysis of TCRs

When evaluating the security properties of TCRs, we encountered a theoretical attack ‡ on

SchellingCoin § which can be extended to TCRs. A description of this attack is outlined for

TCRs in the rest of this section.

6.3.1 P+ epsilon Attack

If instead of the uncoordinated choice model, TCRs were to be analysed under the stricter

bribing attacker model, a new attack vector opens up. Bribing attacker model is similar to

uncoordinated choicemodel, inwhich all participants are assumed tohave separate incentives

anddonot coordinate together, but it also assumes the possibility that there’s an attackerwith

a budget, who is willing to pay participants if they take certain actions.

In this case, if the reward for voting honestly isP, the attacker could offer a reward ofP+ε

for votingX, which changes the payoff function of rational agents, and incentivizes them to

vote X, which has a higher payoff. If 51% of participants are rational, and vote X, they will

win, and the attacker has managed to change the result of the vote, with 0 cost.

A requirement for this attack is that participants can prove they have voted as the attacker

demands. This is possible, because after votes are revealed, nodes can determine how any

account has voted by building a history of the EVM events the TCR contract has emitted.

Not only an attacker could observe how a participant has voted, verifying the vote of a

participant and paying out the reward can be done trustlessly, as to completely eliminate the

need for trust between participant and attacker, which makes the attack easier.
‡https://blog.ethereum.org/2015/01/28/p-epsilon-attack/ . Accessed: November 2018
§https://blog.ethereum.org/2014/03/28/schellingcoin-a-minimal-trust-universal-data-feed/ . Accessed:

November 2018

51

The attacker would create a smart contract which can verify Modified Merkle-Patricia

(MPT) trie proofs of the inclusion of an event log in one of the most recent 256 blocks. The

limitation of 256 blocks is due to the fact that smart contracts can access the block hashes of

only the last 256 blocks, given the block number. Then, the participant, after having votedX,

generates theMPTproof, and submits it to the smart contract alongwith the block header in

which it was included. The block header contains the hash of the receipts trie, which contains

all of the event logs. Therefore, the smart contract can verify the proof that L is included in

ReceiptsTrie with root hash ReceiptHash, and test that against the ReceiptHash provided in

the block header. Finally it should be verified that hash of the block header sent by participant

is indeed the hash of one of the last 256 blocks. After verification, the smart contract can

payout the reward.

Verifying claims trustlessly incurs a transaction fee for the participant. In the case that

expected reward ε is higher than estimated transaction fee, every participant is incentivized to

voteX and prove that to the attacker.

52

7
Conclusions & Future Work

In this dissertation, we proposed a novel architecture for a fully decentralized linked data

infrastructure, which has a very low barrier to entry, is censorship-resistant and benefits from

fault-tolerance properties of its underlying open technologies. The availability of datasets

published onOpenKnowledge is dependant on their demand, but is expected to be equal or

higher than a centralized storage scheme inmost cases. By publishing their knowledge graphs

53

on this infrastructure, data producers can improve the FAIRness of their datasets. In order

to ensure reusability, producers must take care however to adopt community-wide standards

to describe the metadata, as the infrastructure doesn’t enforce howmetadata is specified.

On theother endof the spectrum, data consumers haveopen and free access to all datasets,

they have access to the metadata of datasets and can query specific versions, and generally

benefit from a FAIRer dataset. Data consumers are not limited to human agents, and the

aforementioned apply likewise to machine agents. Due to immutability of each version of

a dataset, consumers can cache the data objects they interact with long-term, and perform

queries even while offline. By replicating these data objects, they are at the same time con-

tributing to the availability of those datasets.

In addition to the platform, we explored two mechanisms which allow a community to

come to consensus over a collection of datasets which they find relevant or high-quality in

a distributed manner, by utilizing smart contracts to align the incentives of participants. As

observed, due to their complexity, TCRs have a bigger attack surface, and although some of

the attacks have been covered andmade economically expensive by later revisions, we believe

more testing and analysis are still required before it is ascertained they are not vulnerable in

a production setting. Specifically, under the bribing attacker model, we looked at the P+

epsilon attack. Finding solutions for the attack are left to future work.

To better understand the trade-offs of a decentralized infrastructure, we plan to exper-

iment with various indexing schemes, which could potentially reduce number of requests

to IPFS, thereby improving query performance. Implementing the platform in a low-level,

high-performance language such as Rust, which is also accessible in web applications by com-

piling to WASM, optimizing it, and then evaluating the retrieval performance against other

54

P2P and centralized RDF datastores could also paint a better picture on how a decentralized

infrasturcture could compare with a centralized one.

IPFS replicates a document on every node that interacts with it. Therefore, more popu-

lar knowledge graphs are expected to be highly replicated. However, IPFS doesn’t guarantee

persistence. If the node that published a document goes offline, and there’s no other replica,

that document won’t be accessible until the node comes back online. This might lower ac-

cessibility for knowledge graphs that have less demand. Future works can improve on this by

incentivizing nodes to replicate pieces of data and asking them to provide proof-of-replication

[62].

Size of knowledge graphs influence publication, retrieval and query performance, repli-

cation rates and even the efficacy of the curationmechanisms. Hence evaluating the effects of

graph size can be an interesting direction for future works. We hypothesize that smaller but

more interconnected graphs lead to better results for the aforementioned metrics. Smaller

graphs can be maintained better, even by entities with less resources, they have lower index

size which improves retrieval performance, consumers are more likely to replicate specific

graphs they interact with regularly as opposed to a single large graph containing all triples.

Furthermore, quality assessment of smaller graphs have lower costs which could improve

TCR efficacy, as if the cost of assessment is higher than a threshold, participants might be

incentivized to vote randomly, or not vote at all when a dataset is challenged.

The URI scheme used in the platform can further be extended to express not only graph

names and integer versions, but also specific versions of datasets (by specifying the root hash

of their index tree), and even specific triple parts. Oneother promisingdirection is usingENS,

which is resistant to DoS and man-in-the-middle attacks, for naming knowledge graphs.

55

References

[1] W.W.W. Consortium et al., “Rdf 1.1 concepts and abstract syntax,” 2014.

[2] T. Heath and C. Bizer, “Linked data: Evolving the web into a global data space,” Syn-
thes lectur on the semantic web: theory and technolo , vol. 1, no. 1, pp. 1–136, 2011.

[3] T. Berners-Lee, “Linked data - design issues.”https://www.w3.org/DesignIssues/
LinkedData.html, 2006. Accessed: October 2018.

[4] S. Harris, A. Seaborne, and E. Prud’hommeaux, “Sparql 1.1 query language,” W3C
recommendation, vol. 21, no. 10, 2013.

[5] “Linkingopendata.” https://www.w3.org/wiki/SweoIG/TaskForces/
CommunityProjects/LinkingOpenData, 2010. Accessed: October 2018.

[6] S. Auer and S. Hellmann, “The web of data: Decentralized, collaborative, interlinked
and interoperable,” in Proceedings of the 8th International Conference on Language
Resourc and Evaluation (LREC-2012), 2012.

[7] “The linked open data cloud.”https://www.lod-cloud.net, 2010. Accessed: Octo-
ber 2018.

[8] R. Cyganiak, H. Stenzhorn, R. Delbru, S. Decker, and G. Tummarello, “Semantic
sitemaps: Efficient and flexible access to datasets on the semantic web,” in European
Semantic Web Conference, pp. 690–704, Springer, 2008.

[9] K. Alexander, R. Cyganiak, M. Hausenblas, and J. Zhao, “Describing linked
datasets.,” in LDOW, 2009.

[10] M. D.Wilkinson, M. Dumontier, I. J. Aalbersberg, G. Appleton, M. Axton, A. Baak,
N. Blomberg, J.-W. Boiten, L. B. da Silva Santos, P. E. Bourne, et al., “The fair guid-
ing principles for scientific data management and stewardship,” Scientific data, vol. 3,
2016.

56

https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
https://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
https://www.lod-cloud.net

[11] I. Ermilov, M. Martin, J. Lehmann, and S. Auer, “Linked open data statistics: Col-
lection and exploitation,” in International Conference on Knowledge Engineering and
the Semantic Web, pp. 242–249, Springer, 2013.

[12] T.Käfer, A.Abdelrahman, J.Umbrich, P.O’Byrne, andA.Hogan, “Observing linked
data dynamics,” in Extended Semantic Web Conference, pp. 213–227, Springer, 2013.

[13] E.Rajabi, S. Sanchez-Alonso, andM.-A. Sicilia, “Analyzing broken links on theweb of
data: An experimentwith dbpedia,” Journal of the Association for Information Science
and Technolo , vol. 65, no. 8, pp. 1721–1727, 2014.

[14] R. Verborgh, M. Vander Sande, O. Hartig, J. Van Herwegen, L. De Vocht,
B. De Meester, G. Haesendonck, and P. Colpaert, “Triple pattern fragments: a low-
cost knowledge graph interface for the web,” Web Semantics: Science, Servic and
Agents on the World Wide Web, vol. 37, pp. 184–206, 2016.

[15] H. Van de Sompel, R. Sanderson, M. L. Nelson, L. L. Balakireva, H. Shankar, and
S. Ainsworth, “An http-based versioning mechanism for linked data,” arXiv preprint
arXiv:1003.3661, 2010.

[16] A. Zaveri, A. Rula, A. Maurino, R. Pietrobon, J. Lehmann, and S. Auer, “Quality
assessment for linked data: A survey,” Semantic Web, vol. 7, no. 1, pp. 63–93, 2016.

[17] M. Acosta, A. Zaveri, E. Simperl, D. Kontokostas, S. Auer, and J. Lehmann, “Crowd-
sourcing linked data quality assessment,” in International Semantic Web Conference,
pp. 260–276, Springer, 2013.

[18] J. Benet, “Ipfs-content addressed, versioned, p2p file system,” arXiv preprint
arXiv:1407.3561, 2014.

[19] G. Wood, “Ethereum: A secure decentralised generalised transaction ledger,”
Ethereum project yellow paper, vol. 151, pp. 1–32, 2014.

[20] “Filecoin: A decentralized storage network.”https://filecoin.io/filecoin.pdf,
2018. Accessed: October 2018.

[21] X. Xu, I. Weber, M. Staples, L. Zhu, J. Bosch, L. Bass, C. Pautasso, and P. Rimba, “A
taxonomy of blockchain-based systems for architecture design,” in Software Architec-
ture (ICSA), 2017 IEEE International Conference on, pp. 243–252, IEEE, 2017.

[22] V. Buterin, “Introduction to cryptoeconomics,” 2017.

57

https://filecoin.io/filecoin.pdf

[23] V. Buterin, “Scaling adjudicationwith predictionmarkets.”https://ethresear.ch/
t/list-of-primitives-useful-for-using-cryptoeconomics-driven-internet-social-media-applications/
3198, 2018. Accessed: November 2018.

[24] M. Goldin, “Token-curated registries 1.0.” https://docs.google.com/document/
d/1BWWC__-Kmso9b7yCI_R7ysoGFIT9D_sfjH3axQsmB6E, 2018. Accessed: November
2018.

[25] K. Wilkinson, C. Sayers, H. Kuno, and D. Reynolds, “Efficient rdf storage and re-
trieval in jena2,” in Proceedings of the First International Conference on Semantic Web
and Databas , pp. 120–139, Citeseer, 2003.

[26] J. Broekstra, A. Kampman, and F. VanHarmelen, “Sesame: A generic architecture for
storing and querying rdf and rdf schema,” in International semantic web conference,
pp. 54–68, Springer, 2002.

[27] D. C. Faye, O. Curé, and G. Blin, “A survey of rdf storage approaches,” Revue
Africaine de la Recherche en Informatique et Mathématiqu Appliqué , vol. 15,
pp. 11–35, 2012.

[28] C.Weiss, P. Karras, andA. Bernstein, “Hexastore: sextuple indexing for semantic web
datamanagement,” Proceedings of the VLDB Endowment, vol. 1, no. 1, pp. 1008–1019,
2008.

[29] R. Hasan, Z. Anwar, W. Yurcik, L. Brumbaugh, and R. Campbell, “A survey of peer-
to-peer storage techniques for distributed file systems,” in Information Technolo :
Coding and Computing, 2005. ITCC 2005. International Conference on, vol. 2, pp. 205–
213, IEEE, 2005.

[30] S. Androutsellis-Theotokis and D. Spinellis, “A survey of peer-to-peer content distri-
bution technologies,” ACM computing surveys (CSUR), vol. 36, no. 4, pp. 335–371,
2004.

[31] L. Napster, “Napster,”URL: http://www. napster. com, 2001.

[32] G. P. Specification, “v0. 4,”Available fromWorldWide Web: http://www9. limewire.
com/developer/gnutella protocol 0.4. pdf, vol. 155, 2003.

[33] K. F. S. Network, “Kazaa,” 2002.

[34] M. Waldman, A. D. Rubin, and L. F. Cranor, “Publius: A robust, tamper-evident
censorship-resistant web publishing system,” in 9th USENIX Security Symposium,
pp. 59–72, 2000.

58

https://ethresear.ch/t/list-of-primitives-useful-for-using-cryptoeconomics-driven-internet-social-media-applications/3198
https://ethresear.ch/t/list-of-primitives-useful-for-using-cryptoeconomics-driven-internet-social-media-applications/3198
https://ethresear.ch/t/list-of-primitives-useful-for-using-cryptoeconomics-driven-internet-social-media-applications/3198
https://docs.google.com/document/d/1BWWC__-Kmso9b7yCI_R7ysoGFIT9D_sfjH3axQsmB6E
https://docs.google.com/document/d/1BWWC__-Kmso9b7yCI_R7ysoGFIT9D_sfjH3axQsmB6E

[35] I. Clarke,O. Sandberg, B.Wiley, andT.W.Hong, “Freenet: Adistributed anonymous
information storage and retrieval system,” inDesigning privacy enhancing technologi ,
pp. 46–66, Springer, 2001.

[36] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gummadi,
S.Rhea,H.Weatherspoon,W.Weimer, et al., “Oceanstore: An architecture for global-
scale persistent storage,” inACM SIGARCH Computer Architecture News, vol. 28,
pp. 190–201, ACM, 2000.

[37] I. Stoica, R.Morris, D. Karger,M. F. Kaashoek, andH. Balakrishnan, “Chord: A scal-
able peer-to-peer lookup service for internet applications,”ACM SIGCOMM Com-
puter Communication Review, vol. 31, no. 4, pp. 149–160, 2001.

[38] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, A scalable content-
addressable network, vol. 31. ACM, 2001.

[39] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems,” in IFIP/ACM International Confer-
ence on Distributed Systems Platforms and Open Distributed Processing, pp. 329–350,
Springer, 2001.

[40] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer information system
based on the xor metric,” in International Workshop on Peer-to-Peer Systems, pp. 53–
65, Springer, 2002.

[41] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “A survey and comparison of
peer-to-peer overlay network schemes,” IEEE Communications Surveys & Tutorials,
vol. 7, no. 2, pp. 72–93, 2005.

[42] I. Baumgart and S. Mies, “S/kademlia: A practicable approach towards secure key-
based routing,” in Parallel and Distributed Systems, 2007 International Conference
on, pp. 1–8, IEEE, 2007.

[43] M. J. Freedman, E. Freudenthal, and D. Mazieres, “Democratizing content publica-
tion with coral.,” inNSDI, vol. 4, pp. 18–18, 2004.

[44] B. Cohen, “The bittorrent protocol specification,” 2008.

[45] P. Haase, J. Broekstra, M. Ehrig, M. Menken, P. Mika, M. Olko, M. Plechawski,
P. Pyszlak, B. Schnizler, R. Siebes, et al., “Bibster–a semantics-based bibliographic
peer-to-peer system,” in International Semantic Web Conference, pp. 122–136,
Springer, 2004.

59

[46] J. Zhou,W.Hall, andD.DeRoure, “Building a distributed infrastructure for scalable
triple stores,” Journal of Computer Science and Technolo , vol. 24, no. 3, pp. 447–462,
2009.

[47] I. Filali, F. Bongiovanni, F. Huet, and F. Baude, “A survey of structured p2p systems
for rdf data storage and retrieval,” in Transactions on large-scale data-and knowledge-
centered systems III, pp. 20–55, Springer, 2011.

[48] M.Cai andM. Frank, “Rdfpeers: a scalable distributed rdf repository based on a struc-
tured peer-to-peer network,” in Proceedings of the 13th international conference on
World Wide Web, pp. 650–657, ACM, 2004.

[49] K. Aberer, P. Cudré-Mauroux, M. Hauswirth, and T. Van Pelt, “Gridvine: Building
internet-scale semantic overlay networks,” in International semantic web conference,
pp. 107–121, Springer, 2004.

[50] E. Liarou, S. Idreos, and M. Koubarakis, “Evaluating conjunctive triple pattern
queries over large structured overlay networks,” in International Semantic Web Con-
ference, pp. 399–413, Springer, 2006.

[51] M.-A. Sicilia, S. Sánchez-Alonso, andE.García-Barriocanal, “Sharing linkedopendata
over peer-to-peer distributed file systems: the case of ipfs,” in Research Conference on
Metadata and Semantics Research, pp. 3–14, Springer, 2016.

[52] M. English, S. Auer, and J.Domingue, “Block chain technologies& the semantic web:
a framework for symbiotic development,” in Computer Science Conference for Uni-
versity of Bonn Students, J. Lehmann, H. Thakkar, L. Halilaj, and R. Asmat, Eds,
pp. 47–61, 2016.

[53] P. N.Mendes, H.Mühleisen, and C. Bizer, “Sieve: linked data quality assessment and
fusion,” in Proceedings of the 2012 Joint EDBT/ICDTWorkshops, pp. 116–123, ACM,
2012.

[54] A. Schultz, A. Matteini, R. Isele, C. Bizer, and C. Becker, “Ldif-linked data integra-
tion framework,” inProceedings of the Second International Conference on Consuming
Linked Data-Volume 782, pp. 125–130, CEUR-WS. org, 2011.

[55] D. Kontokostas, P.Westphal, S. Auer, S. Hellmann, J. Lehmann, R. Cornelissen, and
A. Zaveri, “Test-driven evaluation of linked data quality,” in Proceedings of the 23rd
International Conference on World Wide Web, WWW ’14, (New York, NY, USA),
pp. 747–758, ACM, 2014.

60

[56] J. R. Douceur, “The sybil attack,” in International workshop on peer-to-peer systems,
pp. 251–260, Springer, 2002.

[57] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.

[58] E. B. Sasson, A. Chiesa, C.Garman,M.Green, I.Miers, E. Tromer, andM.Virza, “Ze-
rocash: Decentralized anonymous payments frombitcoin,” in 2014 IEEE Symposium
on Security and Privacy (SP), pp. 459–474, IEEE, 2014.

[59] G. Aluç, O. Hartig, M. T. Özsu, and K. Daudjee, “Diversified stress testing of rdf
data management systems,” in International Semantic Web Conference, pp. 197–212,
Springer, 2014.

[60] “Ethereum name service.”https://ens.domains/, 2018. Accessed: October 2018.

[61] J. Starr, E. Castro, M. Crosas, M. Dumontier, R. R. Downs, R. Duerr, L. L. Haak,
M. Haendel, I. Herman, S. Hodson, J. Hourclé, J. E. Kratz, J. Lin, L. H. Nielsen,
A. Nurnberger, S. Proell, A. Rauber, S. Sacchi, A. Smith, M. Taylor, and T. Clark,
“Achieving human and machine accessibility of cited data in scholarly publications,”
PeerJ Computer Science, vol. 1, p. e1, May 2015.

[62] B. Fisch, “Poreps: Proofs of space on useful data.” Cryptology ePrint Archive, Report
2018/678, 2018. https://eprint.iacr.org/2018/678.

61

https://ens.domains/
https://eprint.iacr.org/2018/678

	Introduction
	Related Work
	Background
	IPFS
	IPLD
	Ethereum

	Decentralized Linked Data Infrastructure
	Overview
	Storage
	Retrieval
	Smart Contracts
	SDK

	Scalable Curation
	Overview
	Single-entity curation
	Reputation-based, distributed curation
	Adjudication via Prediction Markets
	Token-Curated Registry
	Data Quality

	Results & Discussion
	Results
	Discussion
	Analysis of TCRs

	Conclusions & Future Work
	References

