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Abstract

The fast-growing rate of the web of data from various sources poses a storage and retrieval
problem. These data are compiled in the form of statements; subject, predicate, and object,
which invariable form an RDF graph. SPARQL Query Language is one of the query languages
to query RDF data. Querying this RDF (Resource Description Framework) graph with millions
of triples may pose a retrieval bottleneck. Consequently, optimizing disk space to store such
a quantity of data is of optimal significance. Compressing this data will optimally save disk
space for storing this large amount of data. Data compression technique is a way to achieve this.
Data compression becomes a cost-effective way of saving disk space. This is why compression
techniques are of utmost importance to enable easy retrieval of the RDF data.

The main focus of this thesis project is to build a scalable SPARQL Query Engine evaluator
with SPARQL-to-SQL translator on the compressed RDF data using direct mapping technique;
which can handle simple and complex SPARQL queries in SANSA [1] for effective retrieval.
This compressed RDF data are in a dictionary ID format. Our system in SANSA will be able to
query this dictionary value data and translate the SPARQL queries to SQL queries. We evaluate
the scalability of the query engine by its capacity to scale big compressed datasets.

Keywords: RDF, Query-Engine, Large-Scale, SPARQL, SQL, Direct-Mapping, Sparklify,
Compression, Scalability



Chapter 1

Introduction

As the Data Web continues to grow, the capacity to retrieve and exchange data through a Re-
source Description Framework, RDF, is becoming highly essential [2]. Performance and scal-
ability are a major issue in this scenario, and their resolution is heavily related to the efficient
storage and retrieval of semantic data [3]. Currently, scientists and businesses are increasingly
interested in the RDF data format [2]. RDF is the standard language for the representation of
information on the Semantic Web, the evolution of the World Wide Web 1 aimed at providing
Well-founded infrastructure to publish, share and query structured data [4] and modelling in-
formation in the form of triples (subject, predicate and object) to allocate a single system for
structuring and linking data. SPARQL is the W3C RDF query recommendation 2 [5]. It is a
graphic-matching language, built on top of the triple models, i.e. RDF triples, in which each
subject, predicate, or object can be a variable. This means that eight separate triple models
are possible in SPARQL (i.e. variables are preceded by a symbol in the pattern ?): “(S,P,O),
(S,?P,O), (S,P,?O), (S,?P,?O), (?S,P,O), (?S,?P,O), (?S,P,?O), and (?S,?P,?O)” [6]. SPARQL
generates more complicated queries (generally referred to as Basic Graph Patterns, BGPs)
by joining triple pattern sets, resulting in unnecessary intermediate outcomes processing for
SPARQL queries. For example, we can use the SPARQL query to retrieve documents pub-
lished by Albert Einstein from the local RDF in Listing 1 below:

Listing 1.1: A SPARQL Query to get all the written articles by Albert Einstein [7]

1 SELECT ?title WHERE {
2 ? article < hasTitle > ? title .
3 ? article <hasAuthor> ?author .
4 ?author <hasName> Albert Einstein .
5 }

The above Listing Listing 1.1 Shows a simple SPARQL query where the dot shows each of the
joins. The entire query pattern can be seen in the RDF dataset as a graph pattern which requires
matching. It may also include predicates that enhance the complexity of query assessment.
Typically, a Relational Database Management System (RDBMS) enables various databases,

1https://onlinelibrary.wiley.com/doi/full/10.1111/tgis.12496
2https://www.w3.org/TR/rdf-primer/

1
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each with various tables with field columns and information rows. SQL (structured query lan-
guage) is the language used to access the information in these tables 3. Although compression
techniques on RDF data reduce storage space by creating an N-triples dictionary of (S, P, O)
in the form of IDs rather than string; which in turn makes it possible to write efficient queries
to query the already compressed RDF data. For the compressed RDF data (dictionaries) to
be scalable, the system should be able to manage a straightforward, effective and complicated
SPARQL query for easy retrieval.
The relational databases are still the most used despite the advent of the semantic web due to
its elevated efficiency in handling a large quantity of data through semantic filters, and it is,
therefore, necessary to establish a link between the two heterogeneous structures in order to
bridge the divide between them [8]. On this note lies why the goal of this thesis which is to de-
sign a SPARQL Query Engine with SPARQL-to-SQL paradigm over the compressed RDF data
using direct mapping technique Which can manage SPARQL queries that are easy and compli-
cated [9]. Our system should be capable of handling simple queries with features like Simple
SELECT, SELECT with single WHERE Condition and query with Multiple FILTER and com-
plex queries with features like SELECT with Nested FILTER (filter predicates like comparison
operators: (<=, <, =, >, >=), logical operators: (!, &&, ||) and arithmetic operators: (+,
−)) and FILTER functions (STRLEN, SUBSTR, STRENDS, CONTAINS, RAND, IN, NOT
IN, STRBEFORE, STRAFTER, and REPLACE) 4, DISTINCT, GROUP_BY, OPTIONAL and
aggregate functions: COUNT(∗) 5 and then convert the SPARQL query to SQL.

1.1 Questions
The question below has been set as a guideline to achieve this aim.

1. How Scalable is a SPARQL query engine (evaluator) over compressed data?

2. How efficient is SPARQL-to-SQL re-writer over compressed data?

3. How accurate is the SPARQL-to-SQL translator over compressed data?

1.2 Objectives
The objective of this thesis is to build a Query Engine using SPARQL-to-SQL paradigm over
the compressed RDF data upon the Query Layer of SANSA Stack to enable faster and efficient
retrieval of the compressed RDF data; which is the main objective of our system SANSA-Stack
(Query Layer).

3https://medium.com/metaphorical-web/from-sql-tables-to-sparql-graphs-4aa2dda65a46
4https://en.wikibooks.org/wiki/SPARQL/Expressions_and_Functions
5https://github.com/SmartDataAnalytics/Sparqlify/supported-sparql-language-features

2
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1.3 Thesis Structure
The rest of this chapter looks into the pre-process that gave way to the designing of our
SPARQL query engine SPARQL-to-SQL on a compressed RDF data (dictionaries). The fol-
lowing chapters are organized as follows. Chapter two, which is the Background of study,
focuses on the presentation of the terms and methods used in this thesis to familiarize the
reader with the platform on which we are working. Chapter three Related Work shortly dis-
cusses the current work concerning SPARQL query engines and SPARQL-to-SQL translator
and compression of RDF N-triple data. Chapter four Approach provides extensive data on how
to implement the solution, and our system code sample is mentioned. Our application is eval-
uated in a distributed two nodes cluster in chapter five Evaluation. Chapter six Conclusions
and Future Work concludes the report with a view to future research work by summarizing
execution.

3



Chapter 2

Background

2.1 Semantic Web
The semantic web is the W3C’s vision of a web of linked data 1. It is a network of data con-
nected in such a manner that machines can efficiently process on a worldwide scale [10, 11]. It
was developed as an accepted structure that enables data to be shared and reused across system
boundaries and allows individuals (e.g. people, organization, etc.) to develop such as web-
based data stores, build vocabulary, write information processing laws, use RDF as a flexible
information model and use ontology to portray data semantics. RDF and SPARQL are the
technologies that powered linked data [12]. The semantic web can be described as an enhance-
ment to the current web in which information has a well-defined meaning and therefore makes
it easier for machines and humans to communicate; furthermore, it also enables the commu-
nication of information in a semantic web format and makes machines perceive hyperlinked
information.

Figure 2.1: Semantic Web Architecture 2[13]

1https://www.w3.org/standards/semanticweb/

4
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. We can see from figure 2.1 the involvement of data like RDF, OWL and XML.

2.1.1 RDF Model
At the core of an RDF lies a model to represent named properties and their corresponding
values 3. In other words, it has become an approach to model information or conceptualizes
any domain to be executed on the web; via different data serialization formats and syntax
notation. Below are some of the most popular serialization formats:

1. N3 4, which is a text format with advanced features beyond RDF.

2. N-Quads 5, which is a superset of N-Triples for serializing multiple RDF graphs.

3. JSON-LD 6, a JSON-based serialization.

4. N-Triples 7, which is a text format focusing on simple parsing.

5. RDF/XML 8, which is an XML-based syntax that was the first standard format for serializ-
ing RDF.

6. RDF/JSON 9, which is an alternative syntax for expressing RDF triples through the use of
a simple JSON notation.

7. Turtle 10, which is a text format focusing on human readability.

Figure 2.2 below show a simple example of an RDF triple:

Figure 2.2: Example of an RDF Triple

As illustrated in Figure 2.2 above; subjects and objects are depicted as nodes while predi-
cates as arcs [14].
N-Triples N-Triples11 is a simple text and line-based format for RDF graph encoding. The
general form of each triple can be described as < Sub ject >< Predicate >< Ob ject >, which
is separated by white space and terminated by ’.’ after each triple.

1. The subject contains URIs and blank nodes.
2https://en.wikipedia.org/wiki/File:Semantic_web_stack.svg
3https://www.w3.org/TR/WD-rdf-syntax-971002/
4http://www.w3.org/DesignIssues/Notation3.html
5https://www.w3.org/TR/n-quads/
6https://www.w3.org/TR/json-ld/
7https://www.w3.org/TR/n-triples/
8https://www.w3.org/TR/rdf-syntax-grammar/
9http://www.w3.org/blog/SW/2011/09/13/the-state-of-rdf-and-json/

10https://www.w3.org/TR/turtle/
11https://www.w3.org/TR/n-triples/
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2. The predicate contains URIs.

3. The object contains URIs, blank nodes, and or literals

We describe URIs, blank nodes, and literals as follows:

1. URIs provide an easy and extensible method for resource identification. This can be used
for anything – examples may include places, people or even animals.

2. Blank nodes or for anonymous resources that are not assigned. For example, no
literal or no URI is given.

3. Strings, Booleans, data, and more are values that are identified through literals.

2.1.2 SPARQL
SPARQL [6] is a query language used in semantic web to retrieve structured, semi-structured
and unstructured data. SPARQL can query RDF data through graph pattern with their conjunc-
tions and disjunctions. The findings of the SPARQL query can be either result sets or RDF
graphs 12. For instance, one might consider the following example of query RDF data in a
SPARQL base on a chain pattern from a LUBM benchmark [15]:

Listing 2.1: Example SPARQL Graph Query [16] in figure 2.3

1 SELECT * WHERE {
2 ?x advisor ?y .
3 ?y teacherOf ?z .
4 ?z type Course }

Figure 2.3: Query RDF Data in SPARQL [17]

2.2 SQL
SQL is a unique programming language that is designed for database management and is used
by a variety of applications and organizations 13. It is especially useful when handling struc-
tured data where there are relations between individual data entities/variables and based ini-
tially on relational algebra and tuple relational calculus. SQL includes many different kinds of

12https://www.w3.org/TR/rdf-sparql-query/
13https://www.khanacademy.org/computing/computer-programming/sql
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statements which can informally be classified as subsidiary languages: Data Query Language
(DQL), Data Definition Language (DDL) and Data Manipulation Language (DCL) 14. The
SQL range comprises information query, information manipulation (insert, update and delete),
information definition (schema development and alteration) and data access control 15.

2.3 Jena
Jena 16 “is a Java framework for the development of Semantic Web application. It provides
a programmatic environment for RDF, RDFS, OWL, SPARQL and includes a rule-based in-
ference engine” [18]. Jena offers APIs for multiple format RDF parsing and RDF writing in
different formats are supported. The Jena package also provides ARQ, the query engine that
implements SPARQL 1.1 Specifications.

Figure 2.4: The Architecture Overview [19]

2.3.1 Jena ARQ Parser
Jena provides the argument parser that parses the interface arguments and sets the rest of the
context program for execution 17. Jena supplies an argument parser [19] which passes through
the interface arguments and set the rest as a context object. The global object is known as a
context that can be used by other classes to set and read data on the context level.
The QueryFactory class parses, validates and populates the Query object. Encapsulation of
all properties and methods about a query structure is what is known as the Query class. A
SPARQL query is what is known as the internal representation of a Query. The Query holds
the information of a projected variable list, basic graph pattern and the query operators like

14https://en.wikipedia.org/wiki/SQL
15https://howlingpixel.com/i-en/C-O-U-N-T-R-Y
16https://jena.apache.org/
17https://jena.apache.org/documentation/javadoc/arq/org/apache/jena/riot/RDFParser.

html
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DISTINCT, FILTER, LIMIT, OPTIONAL, ORDER BY and GROUP BY which are features imple-
mented in our SPARQL-to-SQL query engine. We used the Jena ARQ OpVisitor interface for
parsing SPARQL to SQL, which gives us more options to walk through SPARQL query and do
not need to force-parse the SPARQL queries in the case of manual String Manipulation. It
saves us the hassle of string manipulation for parsing SPARQL to SQL [19].

2.4 Big Data
As the world continues in its fast pace of digitization, gobs of structured and unstructured data
are generated every single day, which are later analyzed for business purposes. This data are
generated by all kinds of devices such as the Internet, sensors, social networks, mobile devices,
computer simulations, and satellites [20, 14]. The enormous volumes of these datasets are what
is known as big data. This data is so massive and complicated that traditional data-processing
systems cannot deal with them 18 [14]. Many researchers have suggested techniques in recent
years for reducing data volume when it is stored.
Big Data goes beyond storage capabilities and processing. Hence, Big Data is define as 3Vs 19:
volume of data, variety of data, and velocity of data.

1. Volume of data: Data is gathered from organizations or companies through business
transactions, social media, information from sensors, airlines, etc.

2. Variety of data: Data streams have unparalleled speed and enhanced in a timely way.
Sensors and intelligent metering drive the need to deal with information overflow in real-
time operations.

3. Velocity of data: Data is discovered in many distinct forms and can be classified
based on structures such as numeric or unstructured data such as text-based papers, emails,
videos, audio files, financial transactions, etc.

The storage posed a big problem; however, new technologies like Hadoop MR and Apache
Spark has reduced the issues [21].

18https://elysiumpro.in/big-data-analytics-projects/
19https://intellipaat.com/tutorial/hadoop-tutorial/big-data-overview/
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Hadoop 20 is an open-source framework technology that helps to store, access and obtain
vital resources from massively distributed big data files of data over many computer systems at
low cost, with an extraordinary level of fault-tolerance and significant scalability.
Features of Hadoop Include:

1. Distributed. A Hadoop cluster consists of several connected machines together.

2. Scalable. In order to process data fast, new machines can be added.

3. Fault tolerant. If any machine fails, since many machines work together, the machine
can be replaced.

4. Open Source. Apache Hadoop is an open-source project 21. This means that its code can
be modified under business requirements. We used the Hadoop Distributed File System
(HDFS) for storage and MapReduce for data processing [22].

The Figure 2.5 illustrates the parts of the Hadoop architecture; its structure of the HDFS
and the Map-Reduce. The HDFS is used to store and process big datasets, while MapReduce is
a way to split a computation job into a distributed collection of files. A Hadoop cluster consists
of a single master node and several slave nodes; a data node is included in the master node.
The name node, the job tracker and the task tracker; the slave node acts as a data node and a
task tracker; and the work tracker manages the work schedule [22].

Figure 2.5: Hadoop Architectures [14]

HDFS
A distributed file system for commodity hardware execution is the Hadoop File System

(HDFS) 22. It is used for storing and processing of massive datasets with a cluster (that is,
a group of machines in a LAN) of commodity hardware. It differs from others because it is

20 https://hadoop.apache.org/
21https://data-flair.training/blogs/features-of-hadoop-and-design-principles/
22http://web.mit.edu/mriap/hadoop/hadoop-0.13.1/docs/hdfs_design.pdf
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exceptionally fault-tolerant, and can sustain itself on cheaper hardware. Moreover, it is suitable
for an application with substantial datasets. HDFS uses, by default, blocks of data with a size
of 128 MB. Each of these blocks is replicated three times. Multiple versions of a block prevent
data loss owing to a specific node failure.

Figure 2.6: HDFS Architecture [23, 14]

Figure 2.6, describes how replications are achieved when the size of the block of data
exceeds the maximum size (which is 128 MB). HDFS has a larger block size to bring down the
amount of time required to read the complete file. During processing, smaller blocks provide
more parallelism. When multiple copies of a block are available, data loss due to node failure
is prevented. HDFS features below [24, 14]:

1. NFS access. By using this feature, HDFS can be mounted as part of the local file system,
and users can upload, browse, and download data on it.

2. High availability. This feature is done by creating a standby Name Node.

3. Data integrity. When blocks are stored on HDFS, computed checksums are stored
on the data nodes as well. Data is verified against the checksum.

4. Caching. Caching of blocks on data nodes is used for high performance. Data nodes
cache the blocks in an off-heap cache.

5. Data encryption. HDFS encrypts data at rest once enabled. Data encryption and de-
cryption happen automatically without any changes to the application code.

6. HDFS re-balancing. The HDFS re-balancing feature re-balances the data uniformly
across all data nodes in the cluster.
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MapReduce [25] is a programming model that provides an easy way to parallel complex
tasks. MapReduce is influenced by a functional programming language that provides maps and
reduces primitives. MapReduce has an environment that handles the issue of task allocation,
fault tolerance, location of information over a distributed file system and provides an abstraction
to achieve programming logic in Map and Reduce techniques [19]. This model is similar to a
parallelization split, and aggregation, where a task to be performed on a dataset, is managed by
running the job on a data split block in parallel and then aggregating the results of all functions
to provide the final solution. The map resembles the split phase, and the reduce resembles the
aggregation. Hadoop can run MapReduce programs in a variety of languages, such as Python,
Ruby, Java. MapReduce is split into the following two phases:

1. The map phase: Is where data is processed for the first time, which is the time when all
the complex logic and business rules are specified.

2. The reduce phase: Known as the second part of processing, here processing such as
summation is specified. Each phase has (key, value) 23 pair; the first and the second phase
are composed of an input and output(I/O). We can define our map function and reduce the
function.

Listing 2.2: Map Reduce concept

1 Map
2 (k1, v1) > l i s t (k2, v2 )
3

4 Reduce
5 (k2, l i s t ( v2 ) ) > l i s t (k3 , v3 )

From the listing 2.2 above, the Map and Reduce functions have rigid agreements. The map
receives an input key / value pair and generates an intermediate key / value pair list 24. The
MapReduce framework ensures that all keys resulting from the map stage output are grouped
and given as input to the Reduce function, which recognizes the key and the value list as
input, and lists key/value pairs as output. The MapReduce framework automatically parallelizes
programs written in this style. MapReduce environment framework does not expect any unique
parallel cluster; a simple cluster of commodity machines can be used to create a MapReduce
cluster [19].

23https://en.wikipedia.org/wiki/Attribute-value_pair
24https://dataweb.infor.uva.es/projects/hdt-mr/
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Figure 2.7: Architecture HDFS 25

Figure 2.7 shows how the job tracker sends code for the Task Tracker to run, and then
how CPU and memory are assigned to the tasks tracker and therefore, the worker nodes are
monitored.

2.5 Data Compression
Data compression reduces the number of bits necessary for representing the data 26. Data com-
pression is the process of modifying, encoding or converting the data structure of large datasets;
such that the data consumes less disk or memory space. It can be used in all formats of data
(text, pictures, sound and video). There are two types of techniques [26, 14] in compression:
lossless and lossy compression.

25https://en.wikipedia.org/wiki/Attribute-value_pair
26https://searchstorage.techtarget.com/definition/compression
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Figure 2.8: Types of Data Compression

1. Lossless compression [26], uses compressed data to recreate the original data using
data compression algorithms. The compressed data is the same as the previous version
before compression, i.e. bit for bit, no data loss. Lossless compression is frequently used
to compress “executable code, text files and numeric data, as programs that process such
data do not tolerate error in the data” 27.

2. Lossy compression is also known as compression that is irreversible [26, 14] where the
original data is thrown away, and an incorrect approximation is used during data encoding.
Precisely, it is used when working with images, videos or audio files.

2.6 HDT
HDT (Header, Dictionary, Triples) [27] is a robust RDF data structure and binary serialization
model that keeps large datasets compressed to save room while preserving search and browsing
activities without prior decompression 28; making it an optimal model for storing and sharing
RDF datasets on the Web.

Below are a few facts about HDT:

1. The file size is smaller than other RDF serialization formats, which implies less
cost to the supplier of bandwidth, but also less time to download for users.

2. The HDT file is indexed already. Users of RDF dump want to do something use-
ful about the data. By using HDT, the file will be downloaded and browsed/questing in
a reasonable amount of time rather than spending time using parsing and indexing tools
they never remember setting up and tuning.

27http://ecomputernotes.com/computer-graphics/basic-of-computer-graphics/
data-compression

28http:/www.rdfhdt.org/what-is-hdt/
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3. High performance querying. The bottleneck database is usually slow access to the
disk. HDT’s internal compression techniques make it possible to store most of the in-
formation (or even the entire dataset) n the main memory, which is several orders of
magnitude faster than the disk. [27].

4. Highly concurrent. HDT is read-only, and queries per second can be displayed with
different threads.

2.6.1 Dictionary

The main objective of the dictionary is to contribute to compactness by assigning a unique
dataset ID to each component [27, 14]. Therefore, using the dictionary implies two prin-
cipal and minimum operations 29:

(a) locate(element): returns the distinctive identifier of the element when it appears
in the dictionary.

(b) extract(id): returns the component ID in the dictionary if it occurs.

The dictionary is divided into sections based on whether the term is used in the subject,
predicate, or object roles [27, 14]. In semantic web data, however, it is quite common that
the URI appears in one of the triple as a subject and another triple as an object. We can
use 4-section in collecting the triples called shared subject-object to avoid repeating these
terms twice in subjects and sections of objects [27, 14].

Figure 2.9 below shows the 4-section dictionary operation and how the IDs of the cor-
responding terms are assigned. Each section is lexicographically sorted, and for each
term, correlative IDs are assigned from 1 to n [27]. It should be a noted that the shared
Subject-Object part uses a lower range of IDs for subjects and objects; e.g. if there exist
m terms that are interchangeably played as subject and object, all respective IDs x such
that x < = m belong to this shared section [27].

Figure 2.9: Organization of HDT dictionaries in four parts [27]

HDT allows well-defined techniques of dictionary representation 30. Catalogue of terms
can be managed by everyone in different ways as quickly as they perform the compulsory

29http://www.rdfhdt.org/technical-specification/
30http://www.rdfhdt.org/technical-specification/
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locate/extract operations. They can also initiate additional enhanced activities such as
full-text searches, prefix searches, or even periodic search expression.

2.6.2 Triples

HDT recommends a term known as BitmapTriples (BT); Triple encoding, which arranges
the data in such a way that uses the advantage of graph redundancy to retain the data
compactly. Also, this encoding can be easily mapped into a data structure that allows
performing basic retrieval operations [27].

BT requires triples, such as subject-predicate-object (SPO), to be sorted in a specific order.
BT can manage all triple orders [27].

Figure 2.10: Description of Bitmap Triples.

From the Figure 2.10 Therefore, the very first tree represents all triples rooted in the sub-
ject as 1; the second tree reflects all triples rooted in the subject as two and so on [27].
Each tree consists of three stages: the root represents the subject, the second stage lists all
predicates concerning the subject, and lastly, the leaves represent all objects for their path
(subject, predicate). Predicate stages and concentrations of objects are also sorted [27].

Then the model of the BT forest is physically encoded layer by layer. At the subject top
layer, which is the correlation list of one to the total number of corresponding assigned
IDS subject in the dictionary and the triple SPO order. Therefore, the subjects do not need
to be encoded and remain implicit, that is; the first evidence of spatial saving of space [27].

“The predicate layer is stored using I a series of predicate IDs (Sp); ii) a bit sequence
(Bp) comprising one bit per component in Sp: A 1 bit suggests that the predicate is the
first child of its parent subject in the tree; the remaining siblings are labelled with 0. This
enables knowing which subject is associated with each predicate by counting the amount
of 1’s in the bitmap up to that place, or even finding the range of predicates connected
with the n− th subject by placing the n− th and (n+ 1)− th 1 in the bitmap” [27] 31.
Similarly, a series of object IDs (So) together with a bit sequence (Bo) are used to store
the object layer. Each 1 bit reveals the first object of each parent’s predicate, permitting
traversals up and down in the tree [27].

31http://www.rdfhdt.org/technical-specification/
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2.6.3 Querying HDT-encoded datasets

The SPARQL [28] 32 triple patterns are query atoms for fundamental RDF retrieval. That
is, all triples comprising the model (s;p;o) (where s, p and o may be variable) must be
acquired directly from the encoding of the triples. Once mapped to the main memory,
there is a possibility to access an HDT-encoded dataset directly. However, it does not
immediately support all kinds of triple patterns in this framework; it is limited to SPO,
SP?, S?? and ??? queries [27]. As a result, once the HDT-encoded data is loaded into the
memory hierarchy, the representation is slightly enriched with additional succinct data
structures to support the existing triple patterns to be effectively resolved. HDT-FoQ:
HDT Querying Focused is on the final fully queriable representation [27].

2.7 Scala and Spark

2.7.1 Scala

Scala is a programming language for general purposes 33. “It was designed by Martin
Odersky in the early 2000s at the Ecole Polytechnique Federale de Lausanne (EPFL), in
Switzerland 34. Scala source code is designed to be compiled into Java bytecode to run on
a Java virtual machine (JVM); ” Java libraries can be used straight in Scala [29]. Unlike
Java, Scala has many functional programming features 35. In the latest years, demand for
Scala has increased dramatically due to Apache Spark 36. Scala is the world’s fourth most
demanded programming language. Some of the biggest businesses like LinkedIn, Twitter,
FourSquare and more use it extensively.

2.7.2 Spark

Apache Spark [30] is one of the recent techniques to handle big data rapidly and eas-
ily. It is an open-source project on Apache that was first published in February 2013
and exploded in popularity owing to its velocity and ease of use. It was developed at
UC Berkeley’s AMPLab [24]. Spark is considered today to be a flexible alternative to
MapReduce[14].
Spark can use the data stored in various formats:

• HDFS
• Cassandra
• Other formats

Some of the Spark features are [24, 14]:

(a) Easy development. Multiple native APIs such as Java, Scala, R, and Python.
32https://www.w3.org/TR/rdf-sparql-query/
33https://www.scala-lang.org/
34https://en.wikipedia.org/wiki/Martin_Odersky
35https://en.wikipedia.org/wiki/Java_bytecode
36https://www.infoworld.com/article/3216144/spark/the-rise-and-predominance-of-apache-spark.

html
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(b) Optimized performance. Caching, optimized shuffle, and catalyst optimizer.
(c) High-level APIs. Data frames, data sets, and data sources APIs.

SparkSQL

Spark SQL is Apache Spark’s module for working with structured data 37. Using SQL or
a familiar DataFrame API 38, SparkSQL allows for query structured information within
Spark programs. Usable in Scala, Python, R and Java. Executing SQL queries is one use
of SparkSQL.

Spark RDDs

Resilient distributed datasets (RDDs) are a distributed abstraction of memory that enables
programmers to conduct fault-tolerant in-memory computations on a huge cluster. It al-
lows effective data reuse in a wide spectrum of applications and fault-tolerant, parallel
data structures. Spark RDDs are generated by transforming data into stable storage using
data stream operators such as map, group-by, filter; they can also be stored in memory
through parallel operations [14].

• Resilient. Resilient means that if data in memory is lost, it can be recreated or
recomputed.

• Distributed. It distributes data across clusters.
• Datasets. Initial data can come from a file.

There are two kinds of activities that the RDD supports (it is also used for any computa-
tional data processing)[14]:

(a) Transformation. This implies changing a dataset from one dataset to another
dataset. Any alteration of data leads to a transformation: for instance, by multiplying
numbers, adding a number, adding two distinct datasets, or joining two datasets. The
transformation utilizes the following functionality [14]:

• map(), is used to convert the dataset into a different one based on our logic. For
example, if we want to multiply a number by 2, we can use RDD.map(x > x2).

• flat map() is used for our dataset.
• filter() should filter only the desired element.
• distinct() should give only the distinct elements from the dataset.
• union() should join two datasets.

(b) Action. This mean doing computation on our dataset.
• First
• Collect
• Count
• Take

37https://spark.apache.org/sql/
38https://spark.apache.org/docs/latest/sql-programming-guide.html
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Four primary features of a resilient distributed dataset (RDD) are [14]:

(a) A distributed information collection.
(b) Fault-tolerant.
(c) It can handle parallel operation.
(d) It can use many data sources.

Figure 2.11: Overview of Spark RDDs [31, 14]

2.8 Local Versus Distributed Systems

Local Systems

A local process utilizes a single cluster’s computing resources; this implies that it will
take more time to process information if a large dataset is operation [14].

Distributed System

The computer resources can be accessed on a variety of networked computers, which is
comparable to a local system with incredibly fast processing. Hadoop distributes a dataset
through various clusters or computers. Distributed machines also benefit from easy scal-
ing (more machines can be added). They also include fault tolerance, which means that
if one machine fails, the entire network can continue to function [14]. However, if a
computer comes down in a local cluster, the entire system will go down [14].
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Figure 2.12: View of the Local and Distributed Systems [31, 14]

2.9 Hadoop Versus Spark

Both Hadoop and Spark are big data frameworks. We found that when processing a big
dataset, Spark is faster than Hadoop. However, a word-count instance can also be com-
pared with the Scala programming language by using Hadoop and Spark [14].

Table 2.1: Apache Spark Versus Hadoop [32, 14]
Apache Spark Versus Hadoop

Apache Spark Hadoop
It is easier to program and [33] has no
necessity for abstraction.

Hard to program and needs abstractions.

Written in Scala. Written in Java.
Developers in the same cluster can execute
streaming, batch processing, and machine
learning.

The generation of reports is used here to
help find answers to historical queries [33].

Interactive mode built-in [33]. No interactive mode included, except for
tools like Pig and Hive [33].

Programmers can edit the information via
Spark Streaming in real time [33].

Enable a batch of saved data to be
processed [33].

Table 2.1 explains the fundamental distinction between Apache Spark and Hadoop.
Figure 2.13 below provide a perspective of both frameworks. The memory-based computation
in disk and memory should be explained here.
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Figure 2.13: View of Hadoop Versus Spark [34, 14]
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Chapter 3

Related Work

The size of RDF data increases every second as data providers publish their data in RDF format.
Compression of RDF data plays a huge role in big data applications [14]. In this chapter, we
give an overview of the work related to our work. There are already existing approaches for
SPARQL engine over RDF data, but few works are done over compressed RDF data like HDT
MapReduce [35], Fast Search of Semantic Data on Compressed Indexes [36]). Here we are
going to look at some of these work done concerning our work.

3.1 SPARQL Query Engine Techniques and Compression
Techniques

3.1.1 Header Dictionary Triple
HDT [27] is a robust RDF data structure and binary serialization model that keeps large datasets
compressed to save room while preserving search and browsing activities without prior decom-
pression 1; making it an optimal model for storing and sharing RDF datasets on the Web.
Our approach in designing the SPARQL-to-SQL query engine is drawn from HDT technol-
ogy which enables us to build projection fields on the compressed index value (subject hdt,
predicate hdt and object hdt).

3.1.2 HDT-MR
HDT-MapReduce [35] enhances the HDT-java library by implementing MapReduce as a com-
putational framework for large HDT serialization. HDT-MR works in linear time with dataset
size and has proven to be capable of serializing datasets up to 4.42 billion triples, maintaining
HDT compression and retrieval functionality 2. We are mentioning this approach for robust
information reason, but it is outside the scope of this work.

1http:/www.rdfhdt.org/what-is-hdt/
2https://github.com/rdfhdt/hdt-mr
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3.1.3 Fast Search of Semantic Data on Compressed Indexes
This is a trie-based index layout techniques 3 reducing its representation room to im-
prove efficiency [36]. In order to support (symmetrically) all three selection models with one or
two wildcard symbols, the index materializes three distinct triple permutations. By leveraging
well-engineered compression methods, demonstrate that this structure is already as compact as
the literature’s most space-efficient competitor, and on average for all selection models is 2 ÷
4X faster [36].

3.1.4 RDFMatView: “Indexing RDF Data for SPARQL Queries”
RDFMatView [7] is based on materialized queries which are offline. RDFMatView SPARQL
query indexes 4, a cost model for evaluating their potential impact on query performance and
a rewriting algorithm for using SPARQL query indexes. It also creates and compares differ-
ent techniques for integrating these indexes into an existing SPARQL query engine. Prelimi-
nary findings indicate that RDFMatView strategy can drastically reduce the processing time of
queries compared to normal query processing [7].

3.1.5 Sesame
Sesame [12]: RDF and RDF Schema Generic Architecture is an architecture that is used in
both RDF and RDF schema to store and explicitly query large volumes of metadata effectively.
Sesame design and execution are autonomous of any specific storage device. Therefore, sesame
can be applied in several storage systems, such as relational databases, triple stores or object-
oriented databases, without changing the query engine or other functional modules. Sesame
supports competitiveness control, autonomous transport of RDF and RDFS data, as well as an
RQL query engine, an RDF query language that provides RDF semantics native help [12].

3.1.6 RDF-3X
RDF-3X [37]: “a RISC-style Engine for RDF” is SPARQL Implementation that accomplishes
exceptional performance by seeking RISC-style architecture with streamlined architecture and
very well-designed, purist data structures and activities. RDF-3X’s capture points are:

(a) A generic RDF storage and indexing solution that removes the need for tuning to the
physical design.

(b) A powerful yet easy query processor, which uses fast fusion, joins to the greatest
extent possible, and

(c) A query optimizer to select optimal join orders using a cost model based on a statis-
tical synopsis for complete join paths.

RDF-3X presents index compression to decrease Hexastore’s use of space. RDF-3X produces
its indexes with three rows over a single table and then stores them in a compressed cluster [14].

3https://arxiv.org/abs/1904.07619
4https://edoc.hu-berlin.de/handle/18452/3141
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3.1.7 Dcomp
Dcomp [38, 14]: approach target a common attribute where there is an enormous amount of du-
plicates. Then it focuses on eliminating redundant triples. To store a distinctive value, Dcomp
generates a subject, predicate, and object dictionary. “All triples in the dataset can then be
rewritten by changing the terms with their matching ID. Hence, the original dataset is now
modelled over the dictionary created and the resultant ID-triples representation”. Dictionaries
are managed in a dataset according to their role:

• A common S, and O organize all conditions in the dataset that perform subject roles
and object roles and mapped to the range [1, |SO|].

• S arranges all subjects which does not play the part of an object and are mapped to
the range [|SO|+1, |SO|+ |S|].

• O arranges all objects which does not play a role in the subject and are mapped to the
range [|SO|+1, |SO|+ |O|].

• P predicates are all mapped to [1, |P|].

3.1.8 k2-Triples
k2-Triples [6, 14]: This is a method used for compressed, self-indexed constructions that
were initially developed for web graphs, proposed a K2 model depicting pairs in sparse bi-
nary matrices (subject, object) that are efficiently indexed in compressed space through k2-tree
structures achieving the most compressed representations in terms of the cutting-edge baseline.

3.1.9 Huffman Coding
The Huffman coding 3.1: is one of the most common methods that is used to remove redun-
dant data, targeting each character’s count frequency input. The primary task of this method
is to substitute or assign shortcodes to a more commonly occurring symbol (i.e. a redundant
string or symbol) and longer codes where the occurrence is less frequent. One instance we can
consider is a dataset “that uses only the characters A, B, C, D & E” [39]. Each character must
have a weight depending on how often it is used before a pattern is assigned.
The example on figure 3.1 explains this approach.

Character A B C D E
Frequency 17 12 12 27 32
Table 3.1: Huffman Coding [39]

3.1.10 Lempel-Ziv Compression
The Lempel-Ziv [39, 14] to save data space, the method depends on recurring patterns which
are based on generating an indexed dictionary utilizing a string of compressed symbols. The
lowest sub-string is obtained from the remaining uncompressed version under the algorithm
unless it can be discovered in the dictionary. The algorithm then keeps a copy of this sub-string
in the dictionary, which makes it a new entry and gives it a value within the index.
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3.1.11 RLE
RLE [39, 14]: This is a method that provides excellent data compression with numerous runs of
the same value. It substitutes sequences of the same symbols from a dataset. The primary logic
behind this method is to replace repeating items with one symbol occurrence, followed by the
number of occurrences.
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Chapter 4

Approach

This thesis project follows the work of Abakar Bouba [14] thesis work; who worked on “RDF
Data Compression Techniques in a Highly Distributed Context”. Before we talk about our
implementation; which is an extension of his contribution, we would like to talk about his work
and the framework where both projects are running on (SANSA-Stack [1]) to give a broad
overview linking to our implementation.

4.1 SANSA-Stack Architecture

4.1.1 Introduction
The work here uses SANSA [1], an open source 1 engine for information flow processing to
perform distributing computation on a enormous scale across RDF datasets. It offers distribu-
tion of data, communication and faults tolerance to manipulate huge RDF graphs and apply
machine learning techniques to scale information. SANSA’s main idea is to combine the dis-
tributed computer frameworks in Spark and Flink with the semantic technology stack. 2 [1].

Figure 4.1: A SANSA Framework overview combining Distributed Analytics (left) and Semantic Tech-
nologies (right) into a Scalable Semantic Analytics Stack (top of the diagram) [1]

1https://github.com/SANSA-Stack
2http://sansa-stack.net/
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Our implementation, which we called Scalable SPARQL query engine over large-scale
compressed RDF, is deployed over a SANSA-Stack project. There are currently five layers
in the SANSA Stack: RDF, Query, Inference, Machine Learning, and OWL layer. We used
the query for this project 3. However, the RDF Compression [14] which is also deployed on
SANSA project used the RDF 4.

SANSA-RDF
SANSA-RDF 5, holds the bottom layer of the SANSA Stack, a read / write data layer, by
enabling users to read and write n-triple, N-Quad, RDF / XML, and Turtle format. It also
support Jena interfaces 6 for processing RDF data.

Figure 4.2: An Overview of SANSA-RDF Engine 7

SANSA-QUERYING
SANSA-Querying 8, an RDF graph is a significant source for extracting and searching infor-
mation from the related underlying data. SPARQL takes the description as a query and returns
it as a set of bindings or as an RDF graph. SANSA offers three SPARK representation formats,
namely; Resilient Distributed Datasets (RDD), Spark GraphX and Spark Data Frames, which
is graph parallel computing. In our implementation, we used Jena ARQ OpVisitor 9 interface
for parsing SPARQL to SQL on the querying layer on figure 4.3.

3https://github.com/SANSA-Stack/SANSA-Query
4https://github.com/SANSA-Stack/SANSA-RDF
5http://sansa-stack.net/introduction/
6https://jena.apache.org/
7http://sansa-stack.net/libraries/#RDF_OWL_API
8http://sansa-stack.net/introduction/
9https://jena.apache.org/documentation/query/index.html
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Figure 4.3: An Overview of SANSA-Querying Engine 10

4.2 System Design of RDF Data Compression Techniques in
a Highly Distributed Context

The RDF compression method focuses on decreasing an RDF dataset’s space requirement by
eliminating or replacing small value duplicate records and facilitating queries on top of com-
pressed records [14]. It must be assured that the significance of a record stays intact, and by
reversing the process, it should be feasible to recreate the same records. RDF compression
combines the methods of vertical partitioning and star schema to represent and store data. For
each attribute that includes the distinctive values zipped with an index, it produces a dimension
table. In other words, there is a single central fact table which contains the subject, predicate,
and object reference index numbers pointing to value in a dimension table. A dimension table
only stores distinctive values which render it small enough for in-memory datasets to continue
and process. Their system’s major contributions are as follows:

• Using a dictionary strategy to compress RDF data.
• To use Spark RDDs to store the results of a query in memory (RAM).

4.2.1 RDF Dictionary Compression Architecture
To implement the RDF dictionary compression method, Spark and not Hadoop was used. Using
Spark RDDs; maintain compressed data in-memory; Spark will split the data into a disk if
there is no memory available to suit all the data that will speed up the process of collecting and
processing compressed RDF data effectively [14].

RDF data Compression

The approached below was used for the system:
(a) RDF files were loaded through the SANSA API; then the RDF was transformed and

distributed across the cluster node in Spark RDD. SANSA utilizes the RDF data

10http://sansa-stack.net/libraries/#RDF_Query_API

27

http://sansa-stack.net/libraries/##RDF_Query_API


model to represent triple graphs with S, P and O. The RDF dataset may include many
graphs and note information on each, enabling any of SANSA’s decreased layers
(querying) to generate queries involving more than one graph of information [1].
The key dataset is developed as the main construction block for Spark based on an
RDD data structure. RDDs function as record databases in memory that could be
performed with other bigger clusters concurrently [40, 14].

(b) The compressed RDD was subsequently maintained into an HDFS that offers a scal-
able, tolerance of failure. With the RDF dictionary compression algorithm, parti-
tioned RDD was compressed and persisted in the distributed Hadoop cluster. The
HDFS ensured that the data were uniformly split throughout the cluster node in order
to guarantee balanced input and output.

(c) Instead of loading the RDF files sequentially from a local file system on the applica-
tion (re)start, the application loaded the RDF in memory (RAM) from HDFS cluster
nodes where each spark executor is responsible for reading from one or more HDFS
nodes [14].

The method of compression is as follows:
(a) Read the data frame of the raw RDF dataset. Use Spark to distribute the RDF dataset

vertically.
(b) Extract each field’s distinctive values. Zipping that unique index value eliminates

duplicate data and reduces space. Each value is subsequently referenced by its index
number rather than its value.

(c) Generate a data table from the raw data frame input by replacing the real value with
the respective reference index number.

(d) This creates a central fact table which stores reference index numbers; these refer to
dictionary tables (subject, predicate, and objects dictionaries).

(e) The fact table guarantees that relationships between values are untouched and that a
raw dataset can be recreated [14].

4.2.2 RDF Data Compression Algorithm
The compression algorithm uses both RDF vertical partitioning and star schema characteristics.
The compression algorithm divides the dataset vertically; as a result, we receive N partitions
for an N-triple dataset — one partition for each triple [14]. The suggested system is imple-
mented over the SANSA project, which includes five parts: an implementation of RDF data
compression; data loader; query engine (where the application is located); record scheme. It
was observed that the data had too many duplicates after evaluating the dataset. This prob-
lem was targeted in the compression technique by storing a single value in a dictionary, which
means that all the duplicate value were removed and stored only one record copy. Each unique
subject, predicate, and object value is stored in the dictionary once (key, value) by assigning
a unique number to a string value [14]. Transformed RDD triples contain only the distinctive
number that corresponds to them. The method of compression takes the following steps to
compress the data:
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4.3 Our Architectural Approach
Our Scalable SPARQL Query Engine on top of the compressed RDF Data [14] focuses on
SPARQL query evaluator with SPARQL-to-SQL conversion using direct mapping of the index
value (dictionaries). The query engine can query large compressed RDF datasets using direct
mapping. In direct mapping technique on the compressed index value (hdt schema), the re-
sulting SQL translation directly reflects the name of database schema element such that neither
structure nor vocabulary is changed. In other words, the results output of the SPARQL queries
should be the same with the results output of the SQL queries. The SPARQL-to-SQL translator
was designed through defining projection fields on top of the compressed index values of sub-
ject hdt, object hdt and predicate and then; the query conditions like getWhereCondition(),
getDistinct() etc. On the following section, we are going to explain the architectural
overview of our approach:

• Input Data must be in RDF File.
• RDF file will be converted and compressed with HDT based approach defined in

SANSA Spark package.
• Convert SPARQL queries that works on RDF dataset should be work on com-

pressed/Indexed dataset.
• Same result should be produced with Both the query.
• Input SPARQL query must have only three columns subject, predicate and object (?S

?P ?O).
• Where condition should have a condition in below order

(a) Subject Condition.
(b) Predicate Condition.
(c) Object Condition.

4.4 Architecture
Our system design, map the SPARQL query directly on the compressed index dataset (subject
hdt, predicate hdt and object hdt) and convert the SPARQL query to SQL and also execute the
SQL query on the compressed index dataset.

4.5 Modules
The entire work is divided into three module

4.5.1 RDF Data Compression Module
This is an existing component under SANSA [1] stack 11. It implemented a compression system
that has a feature like optimizing the space on the disk by avoiding duplicates [14]. The idea of
RDF data compression is to reduce the data size by maintaining a single copy for each record

11https://github.com/SANSA-Stack
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and using the vertically partitioning technique on the dataset. As a result, the compression
technique provides an excellent compression ratio, from 70% to 82%.

Figure 4.4: An Overview of the RDF Data Compression [14]

Scala and Spark software frame are used for the implementation of the system.

Record Schema Module

The record schema module offers the intermediate dataset with schema-related data [14]. Two
kinds of schema are return:
Dictionary schema

(a) INDEX (Numeric)
(b) NAME (String)

We have the subject, predicate and object dictionary from the dictionary schema, where each
dictionary will have the name and index number as shown in the figure 4.5 [14].

Fact table schema A central table containing only the numerical values of subject, predicate,
and object Which enables us to maintain relations between the three dictionaries (See the dic-
tionary schema below).

(a) SUBJECT_INDEX (Numeric)
(b) PREDICATE_INDEX (Numeric)
(c) OBJECT_INDEX (Numeric)
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Figure 4.5: Visualization of Record Schema [14]

4.5.2 SPARQL to SQL Translator
The key component of our query engine accepts SPARQL query and returns the SparkSQL
query. It has leveraged Apache Jena framework’s OpVisitor that splits the SPARQL queries
into various components like projection fields, Where condition, Count/Distinct, filter functions
and arguments etc. As of now below, functionalities of SPARQL is supported. The component
is written in a way that it could be easily extended with minimum code.

• Simple Select without condition.
• Select with single Where Condition.
• Select Query with Multiple filters.
• Select with Distinct.
• Select with single Filter.
• It supports below filter functions

(a) STRLEN
(b) SUBSTR
(c) STRENDS
(d) CONTAINS
(e) RAND
(f) STRBEFORE
(g) STRAFTER
(h) REPLACE

• Filter Logical and comparison operators supported
(a) AND
(b) OR
(c) Greater than (>)
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(d) Less Than (<)

(e) Greater than Equal to (>=)

(f) Less Than Equal to (<=)

(g) Equals to (=)

SPARQL to SQL Translation Code

Listing 4.1: Translation Technique using Spark and Scala

1

2 package net . sansa_stack .examples.spark . hdt
3

4 import ...
5

6 // Read the RDF Data Frame and convert into the compressed Data Frame creating
Subject_hdt , Object_hdt and Predicate_hdt with column side S,O,P containing the
index number.

7 class TripleOpsQuery
8 {
9 val log=LoggerFactory.getLogger("TripleOpsQueryy")

10

11 def parseValue(value : String ) : String ={
12 value . replace ("<","") . replace (">","")
13 }
14

15 // Function convert SPARQL Projection fields to SQL Projection
16 def getProjectionFields () = {
17 var result = ""
18

19 for ( i <− 0 to queryScanner. varList . size () − 1) {
20 val name=queryScanner.varList. get ( i ) .getVarName
21

22 if (name.equalsIgnoreCase("S")){
23 result +=s"${TripleOps.SUBJECT_TABLE}.name as subject, "
24 }
25 else if (name.equalsIgnoreCase("O")){
26 result +=s"${TripleOps.OBJECT_TABLE}.name as object, "
27 }
28 else if (name.equalsIgnoreCase("P")){
29 result +=s"${TripleOps.PREDICATE_TABLE}.name as predicate, "
30 }
31 }
32 // remove extra comma at the end of the triples
33 result . reverse . replaceFirst (" , " , "") . reverse
34 }
35

36 // Function to convert SPARQL WHERE Conditions to SQL.
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37 def getWhereCondition(): String = {
38 var tempStr = ""
39 for ( i <− 0 to queryScanner.whereCondition. size ()−1)
40 {
41 if (!queryScanner. subjects . get ( i ) . toString () . toLowerCase(). contains ("?s") ){
42 tempStr += s" ${TripleOps.SUBJECT_TABLE}.name='${queryScanner.subjects.get(i

)}' and"
43 }
44 if (!queryScanner. objects . get ( i ) . toString () . toLowerCase(). contains ("?o") ){
45 tempStr += s" ${TripleOps.OBJECT_TABLE}.name='${queryScanner.objects.get(i)}'

and"
46 }
47 if (!queryScanner. predicates . get ( i ) . toString () . toLowerCase(). contains ("?p") ){
48 tempStr += s" ${TripleOps.PREDICATE_TABLE}.name='${queryScanner.predicates.

get(i)}' and"
49 }
50 }
51 tempStr=tempStr. reverse . replaceFirst ("dna","") . reverse
52 if (tempStr. length>5) {s" where (${tempStr})" }
53 else {""}
54

55 // Function to convert SPARQL DISTINCT Conditions to SQL.
56 def getDistinct () : String = {
57 if (queryScanner. isDistinctEnabled ){
58

59 var groupBy=""
60 for ( i <− 0 to queryScanner. varList . size () − 1) {
61 if (queryScanner. subjects . contains (queryScanner. varList . get ( i ) ) ) {
62 groupBy += s"${TripleOps.SUBJECT_TABLE}.name, "
63 }
64 else if (queryScanner. objects . contains (queryScanner. varList . get ( i ) ) ) {
65 groupBy += s"${TripleOps.OBJECT_TABLE}.name, "
66

67 } else if (queryScanner. predicates . contains (queryScanner. varList . get ( i ) ) ) {
68 groupBy += s"${TripleOps.PREDICATE_TABLE}.name, "
69 }
70 }
71 "group by "+ groupBy.reverse . replaceFirst (" , " , "") . reverse
72 }
73 else
74 {
75 ""
76 }
77 }
78

79 // Function to convert SPARQL FILTER Condition to SQL.
80 def getFilterCondition () : String ={
81 var strCondition =""
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82

83 for ( i <− 0 to queryScanner. filters . size ()−1)
84 {
85 strCondition += FilterCondition .getHDTFilter(queryScanner. filters . get ( i ) )
86 println (" Condition Processed : "+ strCondition )
87 }
88

89 strCondition = strCondition . reverse . replaceFirst ("dna","") . reverse
90 if ( strCondition . length>5) s"where ${ strCondition }" else ""
91 }
92

93 // Important function that convert the SPARQL Query to SQL
94 def getQuery(queryStr : String ) ={
95

96 queryScanner. reset
97 // val queryStr="SELECT ?resource WHERE { ?resource ?x ?age . FILTER (?age >= 24)}

"
98 val query = QueryFactory. create ( queryStr )
99 val op = Algebra.compile(query)

100 OpWalker.walk(op, queryScanner)
101 val result =s" select ${ getProjectionFields ()}from ${TripleOps.HDT_TABLE} inner

join ${TripleOps.SUBJECT_TABLE} on ${TripleOps.HDT_TABLE}.s=${TripleOps.
SUBJECT_TABLE}.index" +

102 s" inner join ${TripleOps.OBJECT_TABLE} on ${TripleOps.HDT_TABLE}.o=${
TripleOps.OBJECT_TABLE}.index" +

103 s" inner join ${TripleOps.PREDICATE_TABLE} on ${TripleOps.HDT_TABLE}.p=$
{TripleOps.PREDICATE_TABLE}.index" +

104 s" ${getWhereCondition()} ${ getFilterCondition ()} ${ getDistinct ()}"
105 result
106 }
107

108 // To check the SPARQL conversion to SQL Accuracy
109 def execute (spark :SparkSession, rdfTriple : RDD[org.apache.jena.graph. Triple ] , query:

String ) : Unit ={
110

111 var queryops=new TripleOpsQueryNew()
112

113 var df=spark. sql (queryops.getQuery(query))
114 val count= rdfTriple . sparql (query) .count ()
115 println (s"SparQL Query : ${query}")
116 println ("Spark SQL: "+queryops.getQuery(query))
117 println ("SparQL Query Count: "+ count)
118 println (s"Spark SQL Count: ${df.count ()}")
119

120 }
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The codes are explained below 12.
(a) Line 7 Read the RDF data frame and convert it into the Compressed data frame by

creating Subject_hdt, Object_hdt and Predicate_hdt with column S.O.P containing
the index values.

(b) Line 16 We create the SPARQL projection fields to SQL projection which is user-
defined, i.e., the user define what they want to see based on (?S, ?O and ?P).

(c) Line 32 Removes extra comma at the end of the triples
(d) Line 36 We defined the function here to convert SPARQL WHERE conditions to

SQL to be able to execute this feature. Where there is a dot (.) tells the system that
there is a WHERE condition between the two triples. Splitting all conditions by (.)
and evaluate conditions one by one.

(e) Line 56 We defined the function to convert SPARQL DISTINCT conditions to SQL.
The system can handle SPARQL queries with this feature and convert the queries to
SQL.

(f) Line 56 We created the SPARQL FILTER conditions to SQL here to be able to
handle most of SPARQL filter features like SELECT with Nested FILTER (filter
predicates like comparison operators: (<=, <, =, >, >=), logical operators: (!,
&&, | |) and arithmetic operators: (+, −)) and FILTER functions (STRLEN, SUB-
STR, STRENDS, CONTAINS, RAND, IN, NOT IN, STRBEFORE, STRAFTER,
and REPLACE)

(g) Line 56 Here we created the most important function getQuery that per-
forms the actual SPARQL to SQL conversion using INNER JOIN from
TripleOps.SUBJECT_TABLE on (TripleOps.HDT_TABLE).s appending it to
(TripleOps.OBJECT_TABLE).index. Doing the same for object and predicate as
well.

(h) Line 109 We created a function here to check for the accuracy of SPARQL-to-SQL
conversion through SPARQL Query and SQL Query count and also the time it took
to execute each query. The number of SPARQL Query count should be the same with
the number of SQL Query count.

Below is one of the examples of SPARQL-to-SQL translation query

Listing 4.2: Example: Select Query with Where Condition

1

2 SELECT ?S ?O ?P WHERE
3 {
4 ?S <http : // www4.wiwiss.fu−berlin.de/bizer /bsbm/v01/vocabulary/

productPropertyTextual4 > ?P .
5 }

12https://github.com/ibhadavid/SANSA-Examples
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Listing 4.3: Query Result

1

2 Resut Query:
3

4 select subjects_hdt .name as subject , objects_hdt .name as object , predicates_hdt .name
as predicate from hdt inner join subjects_hdt on hdt . s= subjects_hdt . index inner
join objects_hdt on hdt .o=objects_hdt . index inner join predicates_hdt on hdt .p=
predicates_hdt . index where ( objects_hdt .name='http :// www4.wiwiss.fu−berlin.de/
bizer /bsbm/v01/vocabulary/ productPropertyTextual4 ' ) and 1=1

4.5.3 Query Engine
The query engine is the entry point of the project, which accepts input data source and queries
to be executed on the data source. As an outcome, it returns the result of SPARQL Query count
and the SQL Query count and their runtime.
The system accepts the N-triple dataset and query, then validate the query if it is a SPARQL
query. Apply compression technique (vertical compression technique on the dataset) to remove
redundancy, optimized the disk space and compressed the dataset to 70-80%. The SPARQL
query is applied on the compressed dataset, and the SPARQL to SQL translator converts the
SPARQL queries to SQL queries. The SQL queries are executed on the compressed dataset,
and the result of the SQL count is validated with the result of the SPARQL query count. Below
is the query engine processing flow:
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Figure 4.6: Query Engine Steps
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Chapter 5

Evaluation

We implemented and design SPARQL-to-SQL Query Engine over the compressed RDF Data
using direct mapping techniques as already discussed in chapter 4. To be able to evaluate our
system overall efficiency, we ran some simple and complex SPARQL Query over the com-
pressed RDF datasets based on the SPARQL features we implemented in the SPARQL query
engine to ascertain the answer to the research question below:

(a) How Scalable is SPARQL query engine (evaluator) over compressed data?
(b) How efficient is SPARQL-to-SQL re-writer over compressed data?
(c) How accurate is the SPARQL-to-SQL translator over compressed data?

To understand the efficiency of the SPARQL-to-SQL Query Engine on the compressed RDF
data, and better explain the research question, we take a look at the following points below:

• We compare the SPARQL Query count to that of the SQL Query count and record
the results on the compressed RDF data.

• We record the time it took for the query to run for the compressed RDF data on
different data sizes to ascertain scalability for both Sparklify [41] and SparkSQL.

5.1 Configuration of the Cluster
To evaluate how scalable with Spark and Scala our SPARQL-to-SQL Query Engine is, we
deployed the system on the cluster of Smart Data Analytic 1 that has the following configuration
to test for scalability:

• Three servers with a total of 256 cores
– 1 cluster manager and 2 worker nodes.

• Operating system: 16.04.4 LTS.
• Scala version: 2.11.8.
• Spark version: 2.3.1.
• Memory: 1.70TB.

1http://sda.tech/
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5.2 Methodology
Our evaluation criteria for the compressed RDF data by our SPARQL query engine with a two
nodes cluster is in term of the accuracy of the query count for Sparklify and SparkSQL queries.
The results of the queries were evaluated consecutively on the different datasets. All the queries
were run automatically on the query engine over the compressed data, and the counts were
recorded to test dataset scalability. The SPARQL Query Engine over the compressed data was
verified by comparing the Sparklify query count over the SQL query count; the ability to scale
from small of 204.6MB datasets to large datasets of up to 21.5GB. We query the compressed
RDF data and record the individual query count to Sparklify and SQL query count and their
runtime. This step is repeated three times, and the mean query time values are recorded.

5.3 The System
Our SPARQL query engine with SPARQL-to-SQL translator is a scalable system built with
Scala and Spark. We compare our SPARQL Query Engine system mainly by the basis of being
able to query the compressed RDF dictionary datasets and convert SPARQL queries to SQL
queries in SANSA. Our system main feature is to convert SPARQL queries to SQL queries and
to measure the runtime for scalability on different data sizes.

5.4 Experimental Setup

5.4.1 Benchmarks
To evaluate our system, we used two kinds of the dataset; Berlin SPARQL Benchmark
(BSBM) [42] and Lehigh University Benchmark (LUBM) [43]. To analyze our system, we
assume the datasets into three categories; small medium and large dataset:

(a) BSBM [42] is a very well-known benchmark, built for e-commerce, in which
many products are available through various companies, and users of these products
can review them. This benchmark enables us to produce the three datasets as follows:

i. 841,931 triples [216.1MB]
ii. 12,005,557 triples [3.1 GB]

iii. 81,980,472 triples [21.5 GB]
(b) LUBM [43]: The domain ontology in LUBM benchmark are characterized in terms

of publications, Universities, course-work and different department groups. The
following datasets are generated with the help of the above benchmark:

i. 1,163,215 triples [204.6 MB]
ii. 17,705,050 triples [3.1 GB]

iii. 69,080,764 triples [12.3 GB]
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We performed five types of SPARQL queries in each of the benchmarks above to be able to
evaluate our system, and these queries were converted to SQL as well (see accuracy tables 5.4
and 5.5).

5.4.2 Benchmarks Queries
We evaluated the SPARQL query engine with five different SPARQL queries on each of the
benchmark.

BSBM Benchmark

(a) Query one with COUNT(*) feature and the equivalent converted SQL
Query: Compressed Datasets:

1 SPARQL Query:
2 SELECT (COUNT(*) AS ?A) WHERE { ?S ?P ?O }
3

4 SQL Query:
5 select count(*) from hdt inner join subjects_hdt on hdt . s= subjects_hdt .

index inner join objects_hdt on hdt .o=objects_hdt . index inner join
predicates_hdt on hdt .p= predicates_hdt . index where 1=1 and 1=1

Listing 5.1: Query on the Compressed Data

Listing 5.1 above is a query that will return all values with As in subject, predicate
and object triple.

(b) Query two with DISTINCT feature and the equivalent converted SQL
Query: Compressed Datasets:

1 SPARQL Query:
2 SELECT DISTINCT ?S ?O ?P WHERE { ?S ?P ?O }
3

4 SQL Query:
5 select subjects_hdt .name as subject , objects_hdt .name as object ,

predicates_hdt .name as predicate from hdt inner join subjects_hdt
on hdt . s= subjects_hdt . index inner join objects_hdt on hdt .o=
objects_hdt . index inner join predicates_hdt on hdt .p= predicates_hdt .
index where 1=1 and 1=1 group by subjects_hdt .name, objects_hdt .
name, predicates_hdt .name

Listing 5.2: Query on the Compressed Data

Listing 5.2 above is a query that will return all distinct values of subject, predicate
and object triple.
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(c) Query three with OPTIONAL feature and the equivalent converted
SQL Query: Compressed Datasets:

1 SPARQL Query:
2 SELECT ?s ?p WHERE {
3 ?s ?p <http : // www4.wiwiss.fu−berlin.de/bizer /bsbm/v01/ instances /

dataFromProducer2/Product92> .
4 OPTIONAL { ?s <http://www4.wiwiss.fu−berlin.de/bizer /bsbm/v01/vocabulary/

productPropertyTextual1 > ?o }
5 }
6

7 SQL Query:
8 select subjects_hdt .name as subject , predicates_hdt .name as predicate

from hdt inner join subjects_hdt on hdt . s= subjects_hdt . index inner
join objects_hdt on hdt .o=objects_hdt . index inner join predicates_hdt
on hdt .p= predicates_hdt . index where ( objects_hdt .name='http ://

www4.wiwiss.fu−berlin.de/bizer /bsbm/v01/ instances /dataFromProducer2/
Product92' or ( predicates_hdt .name='http :// www4.wiwiss.fu−berlin.
de/bizer /bsbm/v01/vocabulary/ productPropertyTextual1 ' ) ) and 1=1

Listing 5.3: Query on the Compressed Data

Listing 5.3 above is a query that will return all product92 except the product92 prop-
erties.

(d) Query four with PREFIX feature and the equivalent converted SQL
Query: Compressed Datasets:

1 SPARQL Query:
2 PREFIX foo: <http: // www4.wiwiss.fu−berlin.de/bizer /bsbm/v01/ instances />

PREFIX hoo: <http :// www4.wiwiss.fu−berlin.de/bizer /bsbm/v01/
vocabulary/> SELECT ?S ?O ?P WHERE { foo:ProductType2 ?P ?O .}
limit 10

3

4 SQL Query:
5 select subjects_hdt .name as subject , objects_hdt .name as object ,

predicates_hdt .name as predicate from hdt inner join subjects_hdt
on hdt . s= subjects_hdt . index inner join objects_hdt on hdt .o=
objects_hdt . index inner join predicates_hdt on hdt .p= predicates_hdt .
index where ( subjects_hdt .name='http :// www4.wiwiss.fu−berlin.de/
bizer /bsbm/v01/ instances /ProductType2' ) and 1=1

Listing 5.4: Query on the Compressed Data

(e) Query five with WHERE with FILTER feature and the equivalent
converted SQL Query: Compressed Datasets:
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1 SPARQL Query:
2 SELECT ?S ?O ?P WHERE { ?S ?P ?O . FILTER ( STRLEN(?S) >= 40 ) . }
3

4 SQL Query:
5 select subjects_hdt .name as subject , objects_hdt .name as object ,

predicates_hdt .name as predicate from hdt inner join subjects_hdt
on hdt . s= subjects_hdt . index inner join objects_hdt on hdt .o=
objects_hdt . index inner join predicates_hdt on hdt .p= predicates_hdt
. index where 1=1 and length ( subjects_hdt .name) >= 40

Listing 5.5: Query on the Compressed Data

(f) Query six with WHERE without FILTER feature and the equivalent
converted SQL Query: Compressed Datasets:

1 SPARQL Query:
2 SELECT ?S ?O ?P WHERE { ?S ?P ?O }
3

4 SQL Query:
5 select subjects_hdt .name as subject , objects_hdt .name as object ,

predicates_hdt .name as predicate from hdt inner join subjects_hdt
on hdt . s= subjects_hdt . index inner join objects_hdt on hdt .o=
objects_hdt . index inner join predicates_hdt on hdt .p=
predicates_hdt . index where 1=1 and 1=1

Listing 5.6: Query on the Compressed Data

To analyze the scalability of our system, our dataset have been classified into three classes and
they are generated from BSBM and LUBM datasets; ranging from 204.6 MB to 21.5 GB.
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Dataset Description: Small Sized

Shown below is the small datasets sizes with its respective triples; subjects, predicates and
objects in the table 5.1

Dataset Size (MB) Triples Subjects Predicates Objects
BSBM 216.1 841,931 78,478 40 178,604
LUBM 204.6 1,163,215 183,426 18 137,923

Table 5.1: Small Dataset Description

Dataset Description: Medium Sized

Shown below are the sizes of the medium datasets with its respective triples; subjects, predi-
cates, and objects as shown in table 5.2

Dataset Size (GB) Triples Subjects Predicates Objects
BSBM 3.1 12,005,557 1,091,609 40 2,221,346
LUBM 3.1 17,705,050 2,781,793 18 2,070,590

Table 5.2: Medium Dataset Description

Dataset Description: Large Sized

Shown below is the large datasets sizes with its respective triples; subjects, predicates and
objects in the table 5.3

Dataset Size (GB) Triples Subjects Predicates Objects
BSBM 21.5 81,980,472 7,410,953 40 12,467,580
LUBM 12.3 69,080,764 1,084,7184 18 8,072,360

Table 5.3: Large Dataset Description
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5.5 Experiments & Results

5.5.1 System Accuracy
The accuracy of our system will be our primary focus to measure the success of the project. We
consider the result row count as primary success criteria. If the result of SQL on compressed
data and result count of SPARQL matches, then we consider it as a success.

SPARQL-to-SQL Translation Accuracy for BSBM Datasets

The table Table 5.4 below show the accuracy of SPARQL-to-SQL conversion and the runtime
for each query for BSBM datasets.

#SPARQL Query #Our Approach Query Count #Our Approach Query Time(second) #Sparklify Query Count #Sparklify Query Time(second)
Query 1 841931 2 841931 29
Query 2 87810 2 87810 10
Query 3 1 2 1 29
Query 4 841931 9 841931 33
Query 5 6 19 6 34

Table 5.4: SPARQL to SQL Translation Accuracy BSBM Datasets

SPARQL-to-SQL Translation Accuracy for LUBM Datasets

The table Table 5.5 below show the accuracy of SPARQL-to-SQL conversion and the run-time
for each query for LUBMB datasets.

#SPARQL Query #Our Approach Query Count #Our Approach Query Time(second) #Sparklify Query Count #Sparklify Query Time(second)
Query 1 1163215 1 1163215 21
Query 2 232863 1 232863 9
Query 3 1 1 1 22
Query 4 1124616 11 1124616 23
Query 5 0 18 0 23

Table 5.5: SPARQL to SQL Translation Accuracy LUBM Datasets

5.5.2 Compressed Datasets Query Result
Five SPARQL queries were used to evaluate our system on BSBM and LUBM benchmark
datasets ranging from simple SELECT to complex queries such as DISTINCT, COUNT, FIL-
TER, etc.

On the BSBM Small Size Datasets

To determine the correctness (that is SPARQL count equals the SQL query count) and com-
pleteness (that is the query finish running all the time) of our SPARQL query engine over the
compressed RDF Datasets described on table Table 5.1 in terms of scalability on the small
BSBM datasets. We performed five queries, and the SparkSQL query count, as well as the
Sparklify count, was recorded and their runtime.

44



SPARQL Query Our Approach Time(second) Sparklify Time(second) Our Approach Query Count Sparklify Query Count
Query 1 2 29 841931 841931
Query 2 2 10 87810 87810
Query 3 2 29 1 1
Query 4 9 33 841931 841931
Query 5 19 34 6 6

Table 5.6: Query Results on BSBM Small Dataset

The chart below shows the scalability of the system on small-sized datasets.

Figure 5.1: BSBM Query Runtime Table 5.1

On the LUBM Small Size Datasets

We performed the same five queries on the compressed LUBM RDF Dataset described on
table Table 5.1 in terms of scalability. We recorded the Spark SQL query count as well as the
Sparklify count and their runtime.

SPARQL Query Our Approach Time(second) Sparklify Time(second) Our Approach Query Count Sparklify Query Count
Query 1 1 21 1163215 1163215
Query 2 1 9 232863 232863
Query 3 1 22 1 1
Query 4 11 23 1124616 1124616
Query 5 18 23 0 0

Table 5.7: Query Results on LUBM Small Dataset

The chart below shows the scalability of the system on LUBM small-sized datasets.
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Figure 5.2: LUBM Query Runtime Table 5.1

On the BSBM Medium Size Datasets

We performed the same five queries on the compressed medium-sized BSBM RDF Dataset
described on table Table 5.2 in terms of scalability. We recorded the Spark SQL query count as
well as the Sparklify count and their runtime.

SPARQL Query Our Approach Time(second) Sparklify Time(second) Our Approach Query Count Sparklify Query Count
Query 1 5 267 12005557 12005557
Query 2 9 34 1226929 1226929
Query 3 7 272 1 1
Query 4 17 276 12005557 12005557
Query 5 52 281 6 6

Table 5.8: Query Results on BSBM Medium Dataset
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The chart below shows the scalability of the system on BSBM medium sized datasets.

Figure 5.3: LUBM Query Runtime Table 5.2

On the LUBM Medium Size Datasets

We performed the same five queries on the compressed medium-sized LUBM RDF Dataset
described on table Table 5.2 in terms of scalability. We recorded the Spark SQL query count as
well as the Sparklify count and their runtime.

SPARQL Query Our Approach Time(second) Sparklify Time(second) Our Approach Query Count Sparklify Query Count
Query 1 10 172 17705050 17705050
Query 2 12 32 3547452 3547452
Query 3 12 165 1 1
Query 4 25 185 17103866 17103866
Query 5 54 179 0 0

Table 5.9: Query Results on LUBM Medium Dataset
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The chart below shows the scalability of the system on LUBM medium sized datasets.

Figure 5.4: LUBM Query Runtime Table 5.2

On the BSBM Large Size Datasets

We performed the same five queries on the compressed large-sized BSBM RDF Dataset de-
scribed on table Table 5.3 in terms of scalability. We recorded the Spark SQL query count as
well as the Sparklify count and their runtime.

SPARQL Query Our Approach Time(second) Sparklify Time(second) Our Approach Query Count Sparklify Query Count
Query 1 35 14912 81980472 81980472
Query 2 39 162 8577793 8577793
Query 3 32 1490 1 1
Query 4 92 1536 81980472 81980472
Query 5 280 1479 6 6

Table 5.10: Query Results on BSBM Large Dataset
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The chart below shows the scalability of the system on BSBM large sized datasets.

Figure 5.5: BSBM Query Runtime Table 5.3

On the LUBM Large Size Datasets

We performed the same five queries on the compressed large-sized LUBM RDF Dataset de-
scribed on table Table 5.3 in terms of scalability. We recorded the Spark SQL query count as
well as the Sparklify count and their runtime.

SPARQL Query Our Approach Time(second) Sparklify Time(second) Our Approach Query Count Sparklify Query Count
Query 1 25 454 69080764 69080764
Query 2 32 111 13839628 13839628
Query 3 24 462 1 1
Query 4 61 489 66731208 66731208
Query 5 171 458 0 0

Table 5.11: Query Results on LUBM Large Dataset
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The chart below shows the scalability of the system on LUBM large sized datasets.

Figure 5.6: BSBM Query Runtime Table 5.3
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Chapter 6

Conclusions and Future Work

This thesis project that is leveraged on SANSA framework was designed and implemented
with Spark and Scala with the sole aim of developing a scalable SPARQL Query Engine on
top of compressed data directly which can translate SPARQL queries to SQL queries. Our
SPARQL Query Engine System scale well on the large Compressed data (index value) when
we look at the query runtime in reference to the SPARQL-to-SQL translation. We observed
this through the graphs that as we increase the compressed datasets from small (204.6MB)
to medium (3.1GB) and to large (21.5GB) the query translation time becomes faster. This
result is made possible because the HDT technique reduces the data size to 70%-80%, and we
store the result in indexed and in-memory. So the query was directly applied on the indexed
in-memory dataset which makes it fast.

For future work, we would like to suggest that:

(a) Compare the SANSA SPARQL Query Engine on compressed data with other
SPARQL query engine (e.g. Sparklify, SPARQLGX and so fort).

(b) Integrate other SPARQL Query frontend endpoint for the SANSA SPARQL Query
Engine on compressed RDF data to enable users to write SPARQL queries.
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