
RDF Data Compression Techniques in a Highly
Distributed Context

Abakar Bouba

Matriculation number: 2825222

March 20, 2019

Master Thesis

Computer Science

Supervisors:

Prof. Dr. Jens Lehmann
Dr. Damien Graux
Mr. Gezim Sejdiu

INSTITUT FÜR INFORMATIK III

RHEINISCHE FRIEDRICH-WILHELMS-UNIVERSITÄT BONN

Declaration of Authorship
I, Abakar Bouba, declare that this thesis, titled “RDF Data Compression Techniques in a Highly
Distributed Context,” and the work presented therein are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research degree at this
University.

• Where any part of this thesis has previously been submitted for a degree or any other
qualification at this University or any other institution, this has been clearly stated.

• Where I have consulted the published work of others, this is always clearly attributed.

• Where I have quoted from the work of others, the source is always given. Except for
such quotations, this thesis is entirely my own work. I have acknowledged all of the
main sources of help.

• Where the thesis is based on work done in collaboration with others, I have made clear
exactly what was done by others and what I have contributed myself.

Signed:

Date: 13.03.2019

Acknowledgements

First and foremost, I am very much indebted to Almighty Allah, the most Merciful without
whose patronage and blessing this master’s thesis would not have been successfully completed.

With this note, I extend my deepest gratitude and appreciation for my supervisors, Dr.
Damien Graux and Mr. Gezim Sejdiu, for their continuous support of my thesis as well as
for their patience, enthusiasm, encouragement and immense knowledge. They provided me
with great guidance, technical support, and constructive suggestions. One could not have asked
for more perfect supervisors for my master’s thesis. I must also express my gratitude on the
enormous time they have spent in assessing the various phases of my project work. Their com-
mentaries, criticisms, and observations through the various stages of my work have contributed
significantly in augmenting both the quality and content of my work.

Besides my supervisors, I want to take a moment to thank Prof. Dr. Jens Lehmann and
Dr. Hajira Jabeen for letting me pursue my master’s thesis at the Smart Data Analytics (SDA)
group at the University of Bonn (at the Department of Computer Science).

This note would not be complete without a mention of my family, alongside their unwaver-
ing support, without which this thesis would not have been possible.

Abbreviations

RDD Resilient Distributed Datasets

SANSA Semantic Analytics Stack

RDF Resource Description Framework

SDA Smart Data Analytics

SPARQL SPARQL Protocol and RDF Query Language

HDFS Hadoop Distributed File System

W3C World Wide Web Consortium

HTML Hypertext Markup Language

RDBMS Relational Database Management System

RAM Random Access Memory

CPU Central Processing Unit

RLE Run Length Encoding

LOD Linked Open Data

HTTP Hypertext Transfer Protocol

URI Uniform Resource Identifier

SQL Structured Query Language

IRI Internationalized Resource Identifier

BGP Basic Graph Pattern

XML Extensible Markup Language

LUBM Lehigh University Benchmark

JVM Java Virtual Machine

API Application Programming Interface

S,P,O Subject, Predicate and Object

API Application Programming Interface

IO Input/Output

PBs PetaBytes

LUBM Lehigh University Benchmark

BSBM Berlin SPARQL Benchmark

MR MapReduce

NFS Network File System

Hadoop Highly Archived Distributed Object Oriented Programming

Contents

1 Introduction 1
1.1 Questions . 2
1.2 Objectives . 2
1.3 Thesis Structure . 2

2 Background 3
2.1 The Semantic Web . 3

2.1.1 RDF Model . 4
2.1.2 SPARQL . 5

2.2 Big Data . 5
2.3 Data Compression . 10
2.4 Scala and Spark . 11

2.4.1 Scala . 11
2.4.2 Spark . 11

2.5 Local Versus Distributed Systems . 13
2.6 Hadoop Versus Spark . 14

3 Related Work 16
3.1 Existing Compression Techniques . 16

3.1.1 RDF3X . 16
3.1.2 k2-Triples . 16
3.1.3 Dcomp . 16
3.1.4 Huffman Coding . 17
3.1.5 Lempel-Ziv Compression . 17
3.1.6 RLE . 17

4 Approach 18
4.1 System Design . 18
4.2 RDF Dictionary Compression Architecture 18
4.3 SANSA Stack . 20

4.3.1 Introduction . 20
4.4 RDF Data Compression Algorithm . 21
4.5 Query System for the Testing Purpose . 24

4.5.1 Record Schema . 25

i

5 Evaluation 26
5.1 Cluster Configuration . 26
5.2 Methodology . 27
5.3 Systems . 27
5.4 Experimental Setup . 27

5.4.1 Benchmarks . 27
5.4.2 Benchmark Queries . 28

5.5 Experiments & Results . 31
5.5.1 Experiments Results on the Normal and Compressed Data 31

5.6 Query Results on the Normal and Compressed Dataset 34

6 Conclusions and Future Work 42

ii

List of Tables

2.1 Apache Spark Versus Hadoop [27] . 14

3.1 Huffman Coding [31] . 17

5.1 Small Dataset Description . 30
5.2 Medium Dataset Description . 30
5.3 Large Dataset Description . 31
5.4 Small-Sized Dataset Compression Results . 31
5.5 Medium-Sized Dataset Compression Results 32
5.6 Large-Sized Dataset Compression Results . 33
5.7 Worst-Case Compression Results on the Small Dataset 34
5.8 Worst-Case Compression Results on the Small Dataset 34
5.9 Worst-Case Compression Results on the Large Dataset 34
5.10 Query Results on the LUBM Dataset . 35
5.11 Query Results on the Small BSBM Dataset 35
5.12 Query Results on the Medium LUBM Dataset 36
5.13 Query Results on the Medium BSBM Dataset 37
5.14 Query Results on the Large LUBM Dataset 38
5.15 Query Results on the Large BSBM Dataset 39

iii

List of Figures

2.1 Semantic Web Architecture [12] . 3
2.2 A Simple Example of an RDF Triple . 4
2.3 Query RDF Data in SPARQL [16] . 5
2.4 Data Management Evolution . 6
2.5 Hadoop Architecture . 7
2.6 HDFS Architecture [21] . 8
2.7 Architecture HDFS . 9
2.8 Types of Data Compression . 10
2.9 Basic Compression Techniques . 11
2.10 Overview of Spark RDDs [26] . 13
2.11 View of the Local and Distributed Systems [26] 14
2.12 View of Hadoop Versus Spark [28] . 15

4.1 An Overview of the SANSA Framework, Combining Distributed Analytics (on
the left side) and Semantic Technologies (on the right side) into a Scalable
Semantic Analytics Stack (at the top of the diagram) [1] 20

4.2 An Overview of SANSA-RDF Engine . 21
4.3 An Overview of the RDF Data Compression 23
4.4 Visualization of Record Schema . 25

5.1 Compression Results . 31
5.2 Compression Results on the Medium Dataset 32
5.3 Compression Results on the Large Dataset . 33
5.4 LUBM Query Runtime . 35
5.5 BSBM Query Runtime . 36
5.6 LUBM Query Runtime . 37
5.7 BSBM Query Runtime . 38
5.8 LUBM Query Runtime . 39
5.9 BSBM Query Runtime . 40
5.10 Space Consumption in Different Datasets . 41
5.11 Comparison of Query Time in Different Datasets 41

iv

Listings

2.1 SPARQL Query Example for the Graph in figure 2.3 5
4.1 RDF Data Compression Code using Spark and Scala 23
5.1 Query on the Compressed Data . 28
5.2 Query on the Compressed Data . 28
5.3 Query on the Compressed Data . 29
5.4 Query on the Compressed Data . 29
5.5 Query on the Compressed Data . 29
5.6 Query on the Compressed Data . 30

v

Abstract

The ever-increasing volume of data generated through online shopping, cameras, Face-
book, YouTube, banks, and other online platform is posing substantial storage challenges. The
optimization of disk space for storing such a volume of data is, consequently, of optimum im-
portance. To use less disk space while saving such a volume of data, one must compress data
to a reduced size that will take up less space. This process might be achieved through data
compression. Data compression is a cheap process of saving disk space and can be applied to
all data formats, whether text, image, sound, or video.

The primary goal of this thesis is to implement a compression technique on a dataset for
SANSA Stack [1] by using the Resource Description Framework (RDF) dictionary approach
and then by comparing and testing our system with the standard dataset (normal dataset).
To tackle these areas, we have used Spark and Scala to build a scalable and parallel dis-
tributed system. We designed and implemented a compression system that has one main fea-
ture—optimizing the space on the disk. The idea of RDF data compression is to reduce data
size by maintaining a single copy for each record and by vertically partitioning a dataset. As a
result, our compression technique provides an excellent compression ratio, from 70% to 82%.

Keywords: RDF, Data Compression, Semantic Web, Lehigh University Benchmark, Berlin
SPARQL Benchmark, Evaluation.

Chapter 1

Introduction

This chapter looks into the resource description framework, or RDF as it is known [2] is a
simplified scheme that structures and links data [2, 3]. It represents a model of knowledge that
uses the properties of S, P and O, i.e. the subject, the predicate, and finally the object. To
elaborate, we understand the subject as the resource that is being described, while the property
is the predicate, and the value linked to it is known as the object. The popularity of this frame-
work has fueled development when it comes to RDF stores – this typically has a significant
role in the data web. RDF stores will typically support its storage, and can help find relevant
infrastructure to link to it with SPARQL Protocol And RDF Query Language (SPARQL) query
interfaces [4]. Even though the elevated number of RDF in presence can be conducive for se-
mantic processes, it’s also going to lead to RDF store bottlenecks [2, 5]. The normal volume
of an RDF dataset is extremely large-sometimes crossing in terabytes. Storing, processing, and
analyzing such a dataset require high-configuration machines or a distributed system. Spark li-
brary provides a distributed solution with the open source, general-purpose, distributed, cluster-
computing framework called Apache Spark. Spark provides noticeable performance benefits:
for example, some-times hundred times faster over traditional processing methods when data
is completely fit in memory and access frequently. As data volume increases, Spark spills off
the data which can’t be handle into a persistent storage that increases the disc Input and Output
(IO) and read/write time, which, in turn, causes a higher query-processing time. Hence, if the
dataset can be compressed and can thus reduce the data size, we could see a drastic reduction
in storage, memory requirements and processing times. There is also an opportunity to reduce
the size of the RDF dataset. The RDF dataset contains many redundant records (in subject,
predicate, and object). Sometimes, redundant records occupy around 80% of the space. Stor-
ing these redundant records impacts the performance of our system. Due to the inability of
the RDF semi-structured format to fit into the relational model solutions that have been pro-
posed for RDF stores, native solutions have been designed to provide solutions to the problem.
These native solutions have not been able to take care of scalability and space requirement is-
sues. This is the reason that scalability has presented itself as a significant problem, and has
restricted many prominent RDF-powered applications because when it comes to larger scale
deployments the traditional solutions are no longer viable [6]. If we could avoid or re-place
redundant records with small-sizes, values, then data size would be reduced drastically, and the
performance time would be sped up as a small dataset can easily fit into memory. Accordingly,
there is need to engineer an appropriate compression technique so as to reduce the storage space
taken up by RDF stores. Compressed vertical partitioning for efficient RDF management is the

1

use of a vertical partitioning model in RDF dictionaries of compressed spaces. [7, 8] proposed
an RDF dictionaries compression technique that makes it possible RDF triples to be replaced
in the long terms with short IDs that reference those long terms. This technique will allow one
to compress a huge dataset and to reduce its scalabilities problems.

1.1 Questions
The following questions have been set as guidelines to fulfill this aim.

1. What is the efficiency of RDF dictionary compression techniques compare to other com-
pression techniques?

2. How fast is the query processing over compressed data with compare to the normal data
(Normal graph database)?

1.2 Objectives
Scalability, fault-tolerance processing, and storage engines are required to process and analyze
a huge dataset in an efficient manner. The huge volumes of these datasets have been termed
big data. They are so large and complex that traditional data-processing software or systems
cannot handle them [9]. These normal solutions cannot take care of scalability and space-
requirement issues. For semantic analysis, huge web datasets are generated 1 and are converted
into a standard RDF format, containing a subject, predicate, and object (S, P, O). The main
objective in this research is to reduce the space taken by RDF stores in SANSA [1]. Hence, this
project addresses the scalability and space requirement issues by reducing the space required
for organizing and storing RDF data [7]. Another alternative way to address the scalability
problem is to distribute the data across clusters and to process it with an efficient in-memory
cluster-computing engine such as Apache Spark [10]. We, accordingly, propose a compression
system that partitions a large RDF dataset and saves the results to disk. The output reduces the
size to nearly 82% of the disk.

1.3 Thesis Structure
This study’s structure is explained henceforth. The Background Chapter includes some back-
ground knowledge about technologies used throughout the thesis. In the Related Work Chapter,
an overview of the related work that has been implemented in the past is provided. In the Ap-
proach Chapter, the approach used for the RDF compression technique is discussed. And also
the insights about our system are provided and code examples of our system are mentioned. In
the Evaluation Chapter, our implementation is evaluated in a distributed cluster. In the Conclu-
sions and Future Work Chapter, I conclude with a perspectives to future work.

1https://lod-cloud.net/

2

https://lod-cloud.net/

Chapter 2

Background

2.1 The Semantic Web
The semantic web refers to W3C’s vision of a web of linked data 1. It was built as a common
framework that allows data to be shared and reused across application boundaries and enables
people to create data stores on the web, to build vocabularies, to write rules for handling data,
to use RDF as a flexible data model, and to use an ontology to represent data semantics [11].
Linked data is empowered by technologies such as RDF and SPARQL. The semantic web
can also be interpreted as an enhancement of the current web, in which information has a well-
defined meaning,and it thus better enables machines and humans to interact [11]; furthermore, it
facilitates the communication of information in a format set by the W3C’s and makes machines
perceive hyperlinked information.

Figure 2.1: Semantic Web Architecture [12]

1https://www.w3.org/standards/semanticweb/

3

https://www.w3.org/standards/semanticweb/

From the the figure 2.1, we can see how data such as XML, OWL, RDF,and OWL are
involved.

2.1.1 RDF Model
The RDF is a typical model that allows data exchange online. It was created as metadata
for a data model originally. However, in time, it has become a method to model information
or conceptualize something that is to be executed on the web, via multiple data serialization
formats and syntax notations [13]. The following are some of the most popular serialization
formats:

1. N3 2, which is a text format with advanced features beyond RDF.

2. N-Quads 3, which is a superset of N-Triples for serializing multiple RDF graphs.

3. JSON-LD 4, a JSON-based serialization.

4. N-Triples 5, which is a text format focusing on simple parsing.

5. RDF/XML 6, which is an XML-based syntax that was the first standard format for serializ-
ing RDF.

6. RDF/JSON 7, which is an alternative syntax for expressing RDF triples through the use of
a simple JSON notation.

7. Turtle 8, which is a text format focusing on human readability.

The Figure 2.2 below show a simple example of an RDF triples:

Figure 2.2: A Simple Example of an RDF Triple

As Figure 2.2 illustrates, subjects and objects are represented as nodes, while predicates are
represented as arcs.
N-Triples

N-Triples9 is a line-based and plain text format for encoding an RDF graph. The gen-
eral form of each triple can be described as < Sub ject >< Predicate >< Ob ject >, which is
separated by whitespace and terminated by ’.’ after each triple [14].

2http://www.w3.org/DesignIssues/Notation3.html
3https://www.w3.org/TR/n-quads/
4https://www.w3.org/TR/json-ld/
5https://www.w3.org/TR/n-triples/
6https://www.w3.org/TR/rdf-syntax-grammar/
7http://www.w3.org/blog/SW/2011/09/13/the-state-of-rdf-and-json/
8https://www.w3.org/TR/turtle/
9https://www.w3.org/TR/n-triples/

4

http://www.w3.org/DesignIssues/Notation3.html
https://www.w3.org/TR/n-quads/
https://www.w3.org/TR/json-ld/
https://www.w3.org/TR/n-triples/
https://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/blog/SW/2011/09/13/the-state-of-rdf-and-json/
https://www.w3.org/TR/turtle/
https://www.w3.org/TR/n-triples/

1. The subject contains URIs and empty nodes.

2. The predicate contains URIs.

3. The object contains URIs, empty nodes, and literals

We can describe URIs, empty nodes, and literals as follows:

1. URIs provide an easy and extensible method for resource identification. This can be used
for anything – examples may include places, people or even animals.

2. Empty nodes or blank nodes are used to represent anonymous resources that are not
assigned. For example, no literal or no URI is given.

3. Strings, Booleans, data, and more are values that are identified through literals.

2.1.2 SPARQL
SPARQL [15] is a query language of the semantic web that is used to fetch unstructured, struc-
tured, and semi-structured data. For example, one might examine the following example of
query RDF data in a SPARQL base on chain pattern from a LUBM benchmark:

Listing 2.1: SPARQL Query Example for the Graph in figure 2.3

1 SELECT * WHERE {
2 ?x advisor ?y .
3 ?y teacherOf ?z .
4 ?z type Course }

Figure 2.3: Query RDF Data in SPARQL [16]

2.2 Big Data
In a digital world, tons of structured and unstructured data are generated every day and are
later analyzed for business purposes. This data can be generated by all kinds of devices such as
mobile devices, sensors, the Internet, social networks, computer simulations, and satellites [17].
The massive volumes of these datasets has been termed big data. This data is so large and
complicated that traditional data-processing systems cannot deal with them [9]. In recent years,
many researchers have proposed techniques for reducing the volume of data when storing it.
We can cite here, “Data Compression” by [7, 18], and many more.

5

Big data is beyond storage capacity and processing. Hence, Big data is define as 3Vs 10:
volume of data, variety of data, and velocity of data.

1. volume of data. Data is collected from organizations or companies through business
transactions, social media, information from sensors, airlines, and so on. [19].

2. Variety of data. “Data streams unparalleled speed of velocity and have improved in a
timely manner. Sensors and smart metering are driving the need to deal with the overflow
of data in real-time operations.”

3. velocity of data. Data is found in many different forms, and can be categorized
based on structures i.e. quantifiable such as numeric data, or unstructured such as text-
based documents, emails, videos, audio files, financial transactions, and so forth [19].

Figure 2.4: Data Management Evolution 11

The storage proved to be a big problem, however, new technologies like Hadoop MR and
Apache Spark has reduced the issues.

10https://intellipaat.com/tutorial/hadoop-tutorial/big-data-overview/
11http://practicalanalytics.co

6

https://intellipaat.com/tutorial/hadoop-tutorial/big-data-overview/
http://practicalanalytics.co

Hadoop
Hadoop is an open source software framework technology that helps to store, access and

gain significant resources from big data in large distributed files of data over many computers
at low cost, with an extraordinary level of fault tolerance and important scalability [20].
Hadoop Features Include:

1. Distributed. A cluster in Hadoop is made up of several machines connected together.

2. Scalable. New machines can be added in order to process data fast.

3. Fault tolerant. In case any machine fails, the machine can be replaced since many
machines are working together.

4. Open source. It is overseen by Apache Software Foundation. For storage, we used the
Hadoop Distributed File System (HDFS), and for processing, we used MapReduce, which
allows computations on that data.

The Figure 2.5 shows the Hadoop architecture with its components; its composed of the
HDFS and the Map-Reduce. The HDFS It is used for storing and processing of huge datasets,
while MapReduce is a way of splitting a computation task to a distributed set of files. A Hadoop
cluster consists of one master node and multiple slave nodes; the master node includes a data
node. The name node, job tracker and task tracker; the slave node works as a data node and
task tracker; and the job tracker handles the job scheduling [20].

Figure 2.5: Hadoop Architectures [20]

7

HDFS
HDFS is designed to be executed through commodity hardware. It is used for storing and

processing of huge datasets with a cluster (that is, a group of machines in a LAN) of commodity
hardware. It differs from others because it is extremely fault-tolerant, and can sustain itself on
cheaper hardware. Moreover, it is suitable for an application with substantial datasets. HDFS
uses, by default, blocks of data with a size of 128 MB. Each of these blocks is replicated three
times. Multiple copies of a block prevent the loss of data due to a failure of a particular node.

Figure 2.6: HDFS Architecture [21]

Figure 2.6, describes how replications are achieved when the size of the block of data
exceeds the maximum size (which is 128 MB). HDFS has a larger block size to bring down
the amount of time required to read the complete file. Smaller blocks provide more parallelism
during processing. By having multiple copies of a block, loss of data due to a failure of a node
is prevented. Features of HDFS [22]:

1. NFS access. By using this feature, HDFS can be mounted as part of the local file system,
and users can upload, browse, and download data on it.

2. High availability. This feature is done by creating a standby Name Node.

3. Data integrity. When blocks are stored on HDFS, computed checksums are stored
on the data nodes as well. Data is verified against the checksum.

4. Caching. Caching of blocks on data nodes is used for high performance. Data nodes
cache the blocks in an off-heap cache.

5. Data encryption. HDFS encrypts data at rest once enabled. Data encryption and de-
cryption happen automatically without any changes to the application code.

6. HDFS rebalancing. The HDFS rebalancing feature rebalances the data uniformly across
all data nodes in the cluster.

8

MapReduce
MapReduce is a way of splitting a computation task to a distributed set of files such as

HDFS. We can define it as a programming model for data processing. It consists of a job tracker
and multiple task trackers. MapReduce works on structured and unstructured data from HDFS.
It is mainly designed to run in a parallel environment to facilitate or accelerate the computation
on large data. This works simultaneously by creating a set of independent tasks for any given
job. This results in better reliability and improved speed. Hadoop can execute a MapReduce
program in various languages, such as Ruby, Java, Python, and many more. MapReduce is
divided into two phases:

1. The map phase. This where data is processed for the first time. This is the time when
all the complex logic and business rules are specified.

2. The reduce phase. Known as the second part of processing, here processing such as
summation is specified. Each phase has (key, value) 12 pair; the first and the second phase
are composed of an input and output(I/O). We can define our map function and reduce the
function.

Figure 2.7: Architecture HDFS 13

12https://en.wikipedia.org/wiki/Attribute-value_pair
13https://en.wikipedia.org/wiki/Attribute-value_pair

9

https://en.wikipedia.org/wiki/Attribute-value_pair
https://en.wikipedia.org/wiki/Attribute-value_pair

Figure 2.7 shows how the job tracker sends the code to run on the task trackers and then
how the task trackers allocate the CPU and memory for the tasks and thus monitor the tasks on
the worker nodes.

2.3 Data Compression
Data compression is the process of modifying, encoding, or converting the data structure of
large datasets in such a way that data consumes less space on disk or memory. It can be applied
to all data formats (text, images, sound, and video). In compression, there are two types of
techniques [23]: lossless and lossy compression.

Figure 2.8: Types of Data Compression

1. Lossless compression [23], uses compressed data to reconstruct the original data through
use of data compression algorithms. The compressed version is the exact replica of the
original, bit for bit. Lossless compression is most commonly used to compress text and
data files.

2. Lossy compression is also called compression that is irreversible [23].
This is where the original data is discarded and an inexact approximation is used during
data encoding. This is normally used when working on images, video or sound files.

10

Figure 2.9: Basic Compression Techniques14

Figure 2.9 shows how data is reduced from the original size to the size of compressed data
after getting rid of duplicate data. This is one way to optimize space.

2.4 Scala and Spark

2.4.1 Scala
Scala [24] is a general-purpose programming language. “It was designed by Martin Odersky
in the early 2000s at the Ecole Polytechnique Federale de Lausanne (EPFL), in Switzerland.15

Scala source code is intended to be compiled to Java bytecode so as to run on a Java vir-
tual machine (JVM)”; Java libraries may be used directly in Scala. Unlike Java, Scala has
many features of functional programming. 16 Scala demand has dramatically risen in recent
years because of Apache Spark. 17 Scala is the fourth most demanded programming language
in the world; It is widely used by some of the largest companies such as Twitter, LinkedIn,
FourSquare, and more.

2.4.2 Spark
Apache Spark [25] is one of the latest technologies for quickly and easily handling big data.
It is an open source project on Apache, which was first released in February 2013 and has
exploded in popularity due to its ease of use and speed. It was created at the AMPLab at UC
Berkeley [22]. Today, Spark is considered a flexible alternative to MapReduce.
Spark can use data stored in a variety of formats:

• HDFS
14https://clementandjohn.weebly.com/data-compression.html
15https://en.wikipedia.org/wiki/Martin_Odersky
16https://en.wikipedia.org/wiki/Java_bytecode
17https://www.infoworld.com/article/3216144/spark/the-rise-and-predominance-of-apache-spark.

html

11

https://clementandjohn.weebly.com/data-compression.html
https://en.wikipedia.org/wiki/Martin_Odersky
https://en.wikipedia.org/wiki/Java_bytecode
https://www.infoworld.com/article/3216144/spark/the-rise-and-predominance-of-apache-spark.html
https://www.infoworld.com/article/3216144/spark/the-rise-and-predominance-of-apache-spark.html

• Cassandra

• Other formats

Some Spark features are [22]:

1. Easy development. Multiple native APIs such as Java, Scala, R, and Python.

2. Optimized performance. Caching, optimized shuffle, and catalyst optimizer.

3. High-level APIs. Data frames, data sets, and data sources APIs.

Spark RDDs

Resilient distributed datasets (RDDs) are a distributed memory abstraction that allow program-
mers perform in-memory computations on a huge clusters in a fault-tolerant way. It enables
efficient data reuse in a broad range of applications and fault-tolerant, parallel data structures.
Spark RDDs are created by transforming data in stable storage through the use of data flow op-
erators such as map, group-by, filter; in addition, they can be cached in memory across parallel
operations.

• Resilient. Resilient means that if data in memory is lost, it can be recreated or recom-
puted.

• Distributed. It distributes data across clusters.

• Datasets. Initial data can come from a file.

There are two types of operations that an RDD supports (it is also used for any computation in
data):

1. Transformation. This means modifying a dataset from one dataset to another dataset.
Any data modification leads to a transformation: for example, by multiplying numbers,
adding a number, adding two different datasets, or joining two datasets. The transforma-
tion uses the following functions:

• map(), is used to transform the dataset into another based on our logic. For instance,
if we want to multiply a number by 2, we can use RDD.map(x > x2).

• flat map() is used for our dataset.
• filter() should filter only the desired element.
• distinct() should give only the distinct elements from the dataset..
• union() should join two datasets.

2. Action. This mean doing computation on our dataset.

• First
• Collect
• Count
• Take

A resilient distributed dataset (RDD) has four main features:

1. A distributed collection of data.

12

2. It is fault-tolerant.

3. It has the ability to handle parallel operation.

4. It has the ability to use many data sources.

Figure 2.10: Overview of Spark RDDs [26]

2.5 Local Versus Distributed Systems
Local Systems

A local process uses the computation resources of a single cluster. This means that if one has
to run a huge dataset, it will take more time to process data.

Distributed System

This has access to the computational resources across a number of machines connected through
a network. This can be compared to a local system, where the processing is extremely fast.
Hadoop will distribute a dataset across several clusters or computers. Distributed machines
also have the advantage of easily scaling (one can add more machines). They also include
fault tolerance, which means that if one machine fails, then the whole network can continue to
operate. However, in a local cluster, if one computer goes down, then the whole system will go
down.

13

Figure 2.11: View of the Local and Distributed Systems [26]

2.6 Hadoop Versus Spark
Both Hadoop and Spark are frameworks of big data. We have noticed that Spark is consider-
ably faster than Hadoop when processing a large dataset. Nevertheless, one can also compare
the implementation of a word-count example through the use of Hadoop and Spark with the
Scala programming language.

Table 2.1: Apache Spark Versus Hadoop [27]
Apache Spark Versus Hadoop

Apache Spark Hadoop
Easier to program and has no abstraction
requirement.

Hard to program and needs abstractions.

Written in scala. Written in Java.
Developers can perform streaming, batch
processing, and machine learning, all in the
same cluster.

Here, It is used for generating reports that
help find responses to historical queries.

In-built interactive mode. No in-built interactive mode, except tools
such as Pig and Hive.

Programmers can edit the data in real-time
through Spark Streaming.

Enable one to process a batch of save data.

Table 2.1 explains the basic difference between Apache Spark and Hadoop. Figure 2.12
provides a view of both frameworks. One should explain here the memory-based computation
in disk and memory.

14

Figure 2.12: View of Hadoop Versus Spark [28]

15

Chapter 3

Related Work

RDF data compression plays a huge role in big data applications. With the increase of data
providers who are publishing their data in RDF format, the size of RDF data is increasing
every second [29]. Accordingly, to efficiently manage the scalability of an RDF dataset is
becoming an issue. However, there are various existing compression techniques that can assist
in reducing the size of an RDF dataset. We have such system that allows us to compress RDF
datasets throught the use of different compression techniques. We are going to enumerate and
discuss some of those compression techniques in short. In this chapter, we focus on previous
work which is related to the problem stated in the Introduction.

3.1 Existing Compression Techniques

3.1.1 RDF3X
RDF3X [30]: introduces index compression so as to reduce the space usage of Hexastore.
RDF3X creates its indexes over a single table with three columns and then stores them in a
compressed clustered.

3.1.2 k2-Triples
k2-Triples [30]: This is a technique that is used for compressed, self-indexed structures,
which was initially designed for web graphs. [30] proposed a K2 model that represents (subject,
object) pairs in sparse binary matrices, that are efficiently indexed in compressed space via
k2-tree structures achieving the most compressed representations in terms of a cutting edge
baseline.

3.1.3 Dcomp
The Dcomp [7]: approach target a common attribute where the number of duplicates is huge.
It then concentrates on eliminating redundant triples. Dcomp creates a subject, predicate and
object dictionary in order to store a unique value. “All triples in the dataset can then be rewritten
by changing the terms with their matching ID. Hence, the original dataset is now modeled over
the dictionary created and the resultant ID-triples representation”. In Dcomp, dictionaries are

16

managed as per their role in a dataset [7]:

• A common S, and O organize all terms that play subject and object roles in the dataset.
They are mapped onto the range [1, |SO|].

• S organizes all subjects that do not play an object role. They are mapped onto the range
[|SO|+1, |SO|+|S|].

• O organizes all objects that do not play a subject role. They are mapped onto the range
[|SO|+1, |SO|+|O|].

• P maps all predicates to [1,|P|].

3.1.4 Huffman Coding
The Huffman coding 3.1: is one of the most popular techniques for removing redundant data,
targets the count frequency for each character in the input. The main job of this technique is to
replace or assign short codes to a symbol that occur more frequently (that is, a redundant string
or symbol) and longer codes where there is less frequent occurrence. An example that we can
consider is that of a dataset that only employs the characters A, B, C, D & E. Each character
must be given a weight based on how frequently it is used before it is assigned a pattern [31].
The example on figure 3.1 explains this approach.

Character A B C D E
Frequency 17 12 12 27 32

Table 3.1: Huffman Coding [31]

3.1.5 Lempel-Ziv Compression
The Lempel-Ziv [31]: technique relies on recurring patterns to save data space. That is based
on creating through a string of compressed symbols an indexed dictionary. The smallest sub-
string is extracted under the algorithm if it cannot be found in the dictionary from the residual
uncompressed version. A copy of this sub-string is then kept in the dictionary by the algorithm,
which turns it into a fresh entry and provides it with a value within the index.

3.1.6 RLE
RLE [31]: is a technique that provides good compression of data containing many runs of the
same value. It replaces sequences of identical symbols from a dataset. The main logic behind
this process is the replacement of repeating items by one occurrence of the symbol followed by
the number of occurrences.

17

Chapter 4

Approach

4.1 System Design
The RDF compression technique focuses on reducing the space requirement of an RDF dataset
by eliminating or replacing duplicate records with a small value and by facilitate queries on top
of compressed records. It must be ensured that meaning of a record remains intact, and it should
be possible to recreate the same records by reversing the process. RDF compression combines
the vertical partitioning and star schema approaches to represent and store the data. It generates
a dimension table for each attribute that, contains the unique values zipped with an index. In
other words, there is a single central fact table that, contains the reference index numbers of
subject, predicate, and object pointing to value in a dimension table. A dimension table stores
only unique values that make it small enough to persist and process datasets in-memory.
The main contributions of our system are as follows:

1. To compress RDF data by using a dictionary approach.

2. To process compressed RDF data by using a basic queries to output the query results.

3. To use Spark RDDs to store the results of a query in-memory (RAM).

4.2 RDF Dictionary Compression Architecture
To implement the RDF dictionary compression technique, we have used Spark and not
Hadoop. We make use of Spark RDDs and then keep our compressed data in-memory; Spark
will split the data into disk in case there is no memory available to fit all the data. This will
speed up the process of fetching and processing compressed RDF data efficiently.

RDF data Compression
The following approach was used for our system.

1. We Loaded the RDF file through SANSA API; then we transformed and distributed the
RDF in Spark RDD across the cluster node. SANSA [1] uses the RDF data model for
representing graphs that consist of triples, with the S, P and O. The RDF dataset could
include many graphs and note info on each one, making it possible for any of the lower
layers of SANSA (querying) to make queries that involve information from more than
one graph. Instead of directly dealing with RDF datasets, the target RDF datasets need

18

to be converted into an RDD of triples. The core dataset is created as per an RDD data
structure, that is a primary building block for Spark. RDDs act as in-memory databases
of records that could be conducted simultaneously with other larger clusters [32].

2. Later, the compressed RDD was persisted into an HDFS, which provides a scalable, fault-
tolerance. Partitioned RDD was compressed with the RDF dictionary compression algo-
rithm and persisted into the distributed Hadoop cluster. The HDFS ensured that the data
was divided evenly across the cluster node in oreder to ensure balanced Input and Output
processing.

3. On the application (re)start, instead of loading the RDF files sequentially from a local file
system, the application loaded the RDF in memory (RAM) from the HDFS cluster nodes,
where each spark executor is responsible for reading from one or more HDFS nodes.

Our compression technique works as follow:

1. Read the raw RDF dataset Data Frame. Vertically distribute the RDF dataset using Spark.

2. Extract the unique values of each field. Zipp that unique value with a unique index. In this
way, replicate records are eliminated, and space is reduced. Later, each value is referred
to by its index number instead of its value.

3. Generate a fact table from the input raw Data Frame by replacing the actual value with
the corresponding reference index number.

4. This creates a central fact table that stores the reference index numbers; these refer to
dictionary tables (subject, predicate, and object dictionaries).

5. The fact table ensures that relationships between the values are intact and can recreate a
raw dataset.

19

4.3 SANSA Stack

4.3.1 Introduction
The work in this section uses SANSA [1], the data flow processing engine, for performing dis-
tributed computations over large-scale knowledge graphs; SANSA provides data distribution,
communication, and fault tolerance for manipulating massive RDF graphs and for applying ma-
chine learning algorithms on the data at scale [1]. The main idea behind SANSA is to combine
distributed computing frameworks in Spark and Flink with the semantic technology stack 1.

Figure 4.1: An Overview of the SANSA Framework, Combining Distributed Analytics (on the left side)
and Semantic Technologies (on the right side) into a Scalable Semantic Analytics Stack (at the top of
the diagram) [1]

Our application, which we have called RDF Dictionary Compression is implemented over a
SANSA-Stack project. Currently, there are five layers in the SANSA Stack: the RDF, Query,
Inference, Machine Learning, and OWL layer. For this project, we used the RDF 2.
In our system, we have provided an RDF data compression technique based on the dictionary
approach that goes under SANSA-RDF.

1http://sansa-stack.net/
2https://github.com/SANSA-Stack/SANSA-RDF

20

 http://sansa-stack.net/
https://github.com/SANSA-Stack/SANSA-RDF

SANSA-RDF
SANSA-RDF 3, occupies the bottom layer in the SANSA Stack which is a read/write data
layer, by providing the facility for users to read and write RDF files of an n-triple, N-Quad,
RDF/XML, and Turtle format; It also support Jena 4 interfaces for processing RDF data.

Figure 4.2: An Overview of SANSA-RDF Engine 5

4.4 RDF Data Compression Algorithm
The compression algorithm leverages the features of both RDF vertical partitioning and star
schema. Our compression algorithm splits the dataset vertically; for an N-triple dataset, ac-
cordingly, we obtain N partitions—a partition for each triple. Our proposed system is imple-
mented over the SANSA project which, contains five components: an RDF data compression
implementation; data loader; Query engine; record schema. I explain below briefly what each
file is used for. After analyzing the dataset, we observed that the data had too many duplicates.
In the proposed compression technique, we targeted this problem by storing a single value in
a dictionary, which means that, we have eliminated all the duplicate value and store only a
single copy of record. Each unique value of subject, predicate, and object are stores once in
the dictionary (key, value) by assigning a unique number to a string value. Transformed RDD
triples contains only the corresponding unique number.

3http://sansa-stack.net/introduction/
4https://jena.apache.org/
5http://sansa-stack.net/libraries/#RDF_OWL_API

21

http://sansa-stack.net/introduction/
https://jena.apache.org/
http://sansa-stack.net/libraries/##RDF_OWL_API

Our compression technique performs the following steps to compress the data.

Algorithm 1 RDF Data Compression Algorithm
Result: It creates partitioned compressed dataset from N triple file, along with dictionaries for

each triple(for subject, predicate, and object), stores distinct values zipped with unique
index.

dictSub ject← Dictionary()
dictOb ject← Dictionary()
dictPredicate← Dictionary()
compressedDataSet← RDD[Row]
while next record (s, p,o) from N− triple file ! = null do

if s not exists in dictSubject then
dictSub ject← dictSub ject : +s

end
if p not exists in dictPredicate then

dictPredicate← dictPredicate : +p
end
if o not exists in dictObject then

dictOb ject← dictOb ject : +o
end
sIndex← lookup(dictSub ject,s)
oIndex← lookup(dictOb ject,o)
pIndex← lookup(dictPredicate, p)
compressedDataSet← compressedDataSet : +Row(sIndex,oIndex, pIndex)

end

22

Figure 4.3: An Overview of the RDF Data Compression

Here, one should understand the implementation of our system through the framework of Scala
and Spark software.

Listing 4.1: RDF Data Compression Code using Spark and Scala

1

2 val lang = Lang.NTRIPLES
3

4 // Read RDF dataset
5 val triples : RDD[graph.Triple]= spark . rdf (lang) (input)
6

7 // Create DataFrame
8 val triplesDF = spark .createDataFrame
9 (triples .map(t=> Row(t.getSubject . toString ,

10 t . getObject . toString () , t . getPredicate .
11 toString ())) ,schemaTriple)
12

13 // Create the Dataframe for each dictionary .
14 val subjectDF= spark .createDataFrame(triples .
15 map(_.getSubject . toString ()) . distinct () .
16 zipWithIndex() .map(t=> Row(t._1,t ._2)) ,
17 schema).cache() ;
18 val objectDF = spark .createDataFrame
19 (triples .map(_.getObject . toString ()) .

23

20 distinct () .zipWithIndex() .map(t=>
21 Row(t._1, t ._2)) ,schema).cache() ;
22 val predicateDF = spark .createDataFrame
23 (triples .map(_. getPredicate . toString ())
24 . distinct () .zipWithIndex() .map(t=>
25 Row(t._1, t ._2)) ,schema).cache() ;
26

27 // Create Fact table for Triples .
28 val result = sql . sql (" select subject . index as s_index ,
29 object . index as o_index, predicate . index as p_index from
30 triples join subject on triples . subject =subject .name"+
31 " join object on triples . object =object .name "+
32 " join predicate on triples . predicate = predicate .name");
33 }

SANSA provided us some functions such as getSubject, getPredicate, and getObject in our
codes. This helped us to save some time and energy in not having to write those algorithms.
Below is the explanation of the codes 6.

• Line 4. We read our input dataset that the user provided. After we read it, we stored it
in a triple object.

• Line 7. We created a Data Frame (DF), so that we could perform a query on the dataset.
We then created the row table which has three columns. The first column is Subject, the
second is Object, and the third is Predicate.

• Line 13. Here, we created a dictionary, we apply a filter into the triple to get the distinct
value of the subject, and then we zipped it with the index or numerical value. We did the
same for the predicate and object.

• Line 27. We created a fact table for: triples, subject.index as s index, predicate.index as
p index, and object.index as o index. For triples, we joined triples.object = object.name
(that is to say, we compared the object with the object name), and we joined the predicate
with predicate name. As a result, we obtained three columns of numerical values: the
index of the subject, the index of predicate, and the index of the object. These results
were stored in a dictionary result.

4.5 Query System for the Testing Purpose
We have applied the query system to compare the normal data used currently on SANSA and
on our proposed system (the compression technique).
The query operation can be applied in two steps:

1. The query system applies the filter at the lowest level, that is to say, on the dictionary,
which then returns a comparatively small result set. These multiple filter operations are
applied simultaneously on different dictionaries at the same time.

2. This small result set is joined with the fact table to obtain an actual result.
6https://github.com/abakarboubaa

24

 https://github.com/abakarboubaa

4.5.1 Record Schema
The record schema module provides the schema-related information to the intermediate dataset.
It returns two kinds of schema:
Dictionary schema

• INDEX (Numeric)

• NAME (String)

From Dictionary schema, we have subject, predicate, and object dictionary where each
dictionary will have the name and the index number as we can see figure 4.4.

Fact table schema
It’s a centralized table that contains only numerical values of subject, predicate, and subject. It
allows us to maintains the relationships between the three dictionaries (See Dictionary schema).

• SUBJECT_INDEX (Numeric)

• PREDICATE_INDEX (Numeric)

• OBJECT_INDEX (Numeric)

Figure 4.4: Visualization of Record Schema

25

Chapter 5

Evaluation

We have designed and implemented an RDF compression technique following the approach
described in chapter 4. To evaluate the overall performance of our system, we applied a small
query on top of the normal dataset and the compressed dataset.
We will cover the following research questions in our evaluation of the normal and the com-
pressed dataset:

1. What is the efficiency of the RDF dictionary compression techniques compare to other
compression techniques?

2. How fast is the query processing over compressed data compared to the normal data?

We assess the above research questions, explain them, and then observe some important facts.
In order to better understanding RDF Dictionary Compression and to achieve a better solution
for dealing with it, we considered the following points.

1. We recorded the compression time and the loading time.

2. We recorded the size of the compressed data.

3. We measured the execution time for each query on the normal and compressed data.

4. We recorded the size of the query results on the normal and compressed data.

5.1 Cluster Configuration
To assess the scalability of our RDF data compression system with Spark and Scala, we de-
ployed our system on the cluster of the Smart Data Analytic 1, which consists of the following
configuration:

• Number of server: three servers with a total of 256 cores

• Operating system: Ubuntu 16.04.5 LTS

• Scala version: 2.11.8

• Spark version: 2.3.1

• Executor-memory: 100 GB
1http://sda.tech/

26

http://sda.tech/

5.2 Methodology
We have evaluated compressed data in term of the optimization of space, query time, and
the result size in both compressed and normal data. The compression result and the queries
portion were evaluated consecutively. The compression results were verified by comparing the
input and the output data size, and queries were evaluated by comparing the query time on the
compressed data with the query time on the normal data with the same dataset and the same
query file. First, we compressed data, and then we recorded the output size and the compressed
time for each dataset. This step was repeated three times, and we recorded the mean values
of the three compression sizes and the compression times as well. Second, we proceeded with
the queries on the compressed data, wherein we executed each file three times, and then we
recorded the mean values of the three times. Finally, we executed queries on the normal data,
where we repeated the procedure for the compressed data. It should be noted that the results
obtained from the experiments are real-time results, without any extra noise.

5.3 Systems
We here compare our system based on data compression with the normal dataset in term of
optimization of space. RDF data compression is a new scalable and parallel distributed sys-
tem, which is built with Scala and Spark. Our RDF compression system aims to reduce data
size by maintaining a single copy for each record and by vertically partitioning the dataset. A
partitioned dataset with a small size makes in-memory processing possible for a large volume
dataset such as in historical data processing. Our system has two main features. First, it com-
presses data through the dictionary approach, and second it applies a small query on top of the
compressed data for the testing purpose.

5.4 Experimental Setup

5.4.1 Benchmarks
To compare our system, we used two types of dataset from the Lehigh University Benchmark
(LUBM) [33] and the Berlin SPARQL Benchmark (BSBM) [34]. To test the scalability of our
system, we sized this dataset into three categories: small, medium, and large-size dataset:

1. BSBM [34]. This is a well-known benchmark, which is built for e-commerce, wherein
a bunch of products are on offer through different businesses and consumers can review
them. This benchmark helps us to generate the following three datasets:

• 841931 triples [216.1MB]
• 12,005,557 triples [3.1 GB]
• 81,980,472 triples [21.5 GB]

27

2. LUBM [33]: These are among the most famous benchmarks for semantic Web data. The
ontology domain in LUBM benchmark defines universities, course-work, publishing as
well as different group in a department.
With the help of the above benchmark, We have generated the following datasets:

• 1,163,215 triples [204.6 MB]

• 17,705,050 triples [3.1 GB]

• 69,080,764 triples [12.3 GB]

In order to evaluate our system, We have performed three types of SPARQL queries in each of
the above benchmarks, and we have converted also these queries to evaluate our compressed
data.

5.4.2 Benchmark Queries
There are three type of queries that can be run on BSBM and LUBM datasets for the normal
and the compressed data.

BSBM Benchmark

1. First query on the compressed dataset:
Listing 5.1 (below) shows a basis query that will return all “ProductFeature40”.

1 select subject .name as x
2 from triple_fact join predicate on triple_fact .p=predicate . index and predicate

.name = ' http :// www4.wiwiss.fu−berlin.de/bizer /bsbm/v01/vocabulary/
productFeature '

3 join object on triple_fact .o=object . index and object .name = ' http :// www4.
wiwiss.fu−berlin.de/bizer /bsbm/v01/ instances / ProductFeature40 '

4 join subject on triple_fact . s=subject . index
5 }

Listing 5.1: Query on the Compressed Data

2. Second query on the compressed dataset:
Listing 5.2 (below) shows a simple query that will return all “ProductType2”.

1 select subject .name as x
2 from triple_fact join predicate on triple_fact .p=predicate . index and predicate .

name like ' %subClassOf%'
3 join object on triple_fact .o=object . index and object .name = ' http :// www4.wiwiss.

fu−berlin.de/bizer /bsbm/v01/ instances /ProductType2'
4 join subject on triple_fact . s=subject . index
5 }

Listing 5.2: Query on the Compressed Data

28

3. Third query on the compressed dataset:
Listing 5.3 (below) shows a simple query that will return all “ProductType3”. This query
is more complex compared to listing 5.2 and 5.3.

1 select subject .name as x
2 from triple_fact join predicate on triple_fact .p=predicate . index and predicate .

name = ' http :// www4.wiwiss.fu−berlin.de/bizer /bsbm/v01/vocabulary/
productFeature '

3 join object on triple_fact .o=object . index and object .name = ' http :// www4.wiwiss.
fu−berlin.de/bizer /bsbm/v01/ instances / ProductFeature40 '

4 join subject on triple_fact . s=subject . index
5 }

Listing 5.3: Query on the Compressed Data

LUBM Benchmark

1. First query on the compressed dataset:
Listing 5.4 (below) shows a simple query that returns publication Author.

1 select subject .name as s , predicate .name as p, object .name as o
2 from triple_fact join subject on triple_fact . s=subject . index
3 join object on triple_fact .o=object . index
4 join predicate on triple_fact .p=predicate . index AND predicate.name = ' http

:// www.lehigh.edu/~zhp2/2004/0401/univ−bench.owl#publicationAuthor'

Listing 5.4: Query on the Compressed Data

2. Second query on the compressed dataset:
Listing 5.5 (below) shows a query that will returns "GraduateStudent" who takes course
"GraduateCourse0".

1 select subject .name as s
2 from triple_fact join subject on triple_fact . s=subject . index
3 join predicate on triple_fact .p=predicate . index
4 join object on triple_fact .o=object . index where
5 (predicate .name like ' %#type%' and object .name like ' %#GraduateStudent%')

OR
6 (predicate .name like ' %#takesCourse' AND object.name = ' http :// www.

Department0.University0.edu/GraduateCourse0')
7 group by subject .name having count(*)=2

Listing 5.5: Query on the Compressed Data

29

3. Third query on the compressed dataset:
Listing 5.6 (below) shows a query that will return all "UndergraduateStudent".

1

2 select triple_fact . s as s
3 from triple_fact
4 join predicate on triple_fact .p=predicate . index
5 join object on triple_fact .o=object . index where
6 (predicate .name like ' %#type%' and object .name like ' %#UndergraduateStudent

%')

Listing 5.6: Query on the Compressed Data

To evaluate the scalability of our system, we have categorized the dataset into three classes.
They are generated from the LUBM and BSBM datasets. The range of data varies from 204.6
MB to 21.5 GB.

Small Sized Dataset Descriptions

Dataset sizes with the respective triples, subjects, predicates, and objects as shown in table 5.1

Dataset Size (MB) #Triples #Subjects #Predicates #Objects
LUBM 204.6 1,163,215 183,426 18 137,923
BSBM 216.1 841,931 78,478 40 178,604

Table 5.1: Small Dataset Description

Medium Sized Dataset Descriptions

Dataset sizes with his respective triples, subjects, predicates, and objects as shown in table 5.2

Dataset Size (GB) #Triples #Subjects #Predicates #Objects
LUBM 3.1 17,705,050 2,781,793 18 2,070,590
BSBM 3.1 12,005,557 1,091,609 40 2,221,346

Table 5.2: Medium Dataset Description

30

Large Sized Dataset Description

Dataset sizes with his respective triples, subjects, predicates, and objects as shown in table 5.3

Dataset Size (GB) #Triples #Subjects #Predicates #Objects
LUBM 12.3 69,080,764 1,084,7184 18 8,072,360
BSBM 21.5 81,980,472 7,410,953 40 12,467,580

Table 5.3: Large Dataset Description

5.5 Experiments & Results

5.5.1 Experiments Results on the Normal and Compressed Data
For the Best Case results on the Compressed Data:

Small Sized Dataset

Dataset Input Size (MB) #Triples Compressed Data (MB) Compression Ratio Compression Time (second) Loading Time (second)
LUBM 204.6 1,163,215 36.7 82 % 11 10
BSBM 216.1 841,931 62.9 70 % 13 12

Table 5.4: Small-Sized Dataset Compression Results

0

50

100

150

200

250

LUBM BSBM

Input Data Size (MB) Compressed Data Size (MB)

Figure 5.1: Compression Results

31

From the above chart and table, small-sized dataset consists of triples between 841,931
triples and 1,163,215 triples. The data compression ratio using the RDF Dictionary
approach has a ranges from 70% to 82%; The compression time has a ranges from 11 to 13
seconds; The loading time has a range from 10 to 12 seconds.

Medium-Sized Dataset

Dataset Input Size (MB) #Triples Compressed Data (MB) Compression Ratio Compression Time (second) Loading Time (second)
LUBM 3100 17,705,050 616.9 80% 40 39
BSBM 3100 12,005,557 898.9 71% 43 42

Table 5.5: Medium-Sized Dataset Compression Results

0

500

1000

1500

2000

2500

3000

3500

LUBM BSBM

Input Data Size (MB) Compressed Data Size (MB)

Figure 5.2: Compression Results on the Medium Dataset

From the above chart and table, the medium-sized dataset consists of triples between
12,005,557 triples and 17,705,050 triples. The data compression ratio using the RDF
Dictionary approach has a ranges from 71% to 80%; The compression time has a ranges from
40 to 43 seconds; The loading time has a range from 39 to 42 seconds.

32

Large-Sized Dataset

Dataset Input Size (GB) #Triples Compressed Data (GB) Compression Ratio Compression Time (second) Loading Time (second)
LUBM 12.3 69,080,764 2.4 80% 92 91
BSBM 21.5 81,980,472 5.9 72% 223 222

Table 5.6: Large-Sized Dataset Compression Results

0

5

10

15

20

25

LUBM BSBM

Input Data Size (GB) Compressed Data Size (GB)

Figure 5.3: Compression Results on the Large Dataset

From the above chart and table, large-sized dataset consists of triples between 69,080,764
triples and 81,980,472 triples, the data Compression ratio using RDF Dictionary ap-
proach have a ranges from 72% to 80%; The compression time has a ranges from 92 to 223
seconds; The loading time has a range from 91 to 222 seconds.

Worst Case Results on the BSBM Data

The RDF dictionary algorithm focuses on eliminating duplicates data and persisting relation-
ships in the centralized fact table. In the worst-case scenario, there are few or no duplicates
records in the dataset; hence, it expected that the compressed data size is larger than the input
data by N bytes, where N is the size of the fact table. To create the worst-case situation, we
have generated several datasets that contain unique values only with our data generator class.

33

Small-Sized Dataset

Dataset Input Size (MB) #Triples Compressed Data (MB) Compression Ratio Compression Time (second) Loading Time (second)
LUBM 33.1 100 35.1 -5% 1 0.5
BSBM 33.1 100 35.1 -5% 1 0.5

Table 5.7: Worst-Case Compression Results on the Small Dataset

The compressed data volume is greater than the input dataset by the fact table size (which is
around 2KB).

Medium-Sized Dataset

Dataset Input Size (GB) #Triples Compressed Data (GB) Compression Ratio Compression Time (second) Loading Time (second)
LUBM 1.4 5,000,000 1.6 -12 % 90 89
BSBM 1.7 5,000,000 1.9 -10 % 112 111

Table 5.8: Worst-Case Compression Results on the Small Dataset

The compressed data volume is greater than the input dataset by around 200MB). As data size
increased, we observed a noticeable difference between the compressed data volume and the
input volume.

Large-Sized Dataset

Dataset Input Size (GB) #Triples Compressed Data (GB) Compression Ratio Compression Time (second) Loading Time (second)
LUBM 14 50,000,000 16.3 -14 % 610 609
BSBM 16.8 50,000,000 19.2 -12% 720 719

Table 5.9: Worst-Case Compression Results on the Large Dataset

The compressed data volume is greater than the input dataset by around 2,300MB on the LUBM
and 2,400MB on the BSBM.
Hence, in the worst case scenario, we have observed a 5% to 14% increase in space consumption.

5.6 Query Results on the Normal and Compressed Dataset
We performed three queries on the LUBM and BSBM datasets for the purpose of evaluation.
The results are shown below.

On The Small Sized Dataset (LUBM)
In order to verify the correctness and the completeness of our system, we have performed three
queries on the LUBM data. Table 5.10 below shows the processing time on the normal and the
compressed dataset. We received the same number of result size in both the compressed and
normal dataset; this means that we did not lose any data while compressing.

34

Queries SparkSQL Time (second) SparkSQL Result Size Compression Query Time (second) Compression Query Result Size Loading Time(second)
Query-01 (Listing 5.4) 3 121,105 6 121,105 5
Query-02 (Listing 5.5) 3 4 6 4 5
Query-03 (Listing 5.6) 3 66,676 9 66,676 8

Table 5.10: Query Results on the LUBM Dataset

0

1

2

3

4

5

6

7

8

9

10

Query-01 Query-02 Query-03

Input Query Time (Sec) Compression Query Time (Sec)

Figure 5.4: LUBM Query Runtime

From this chart, it can be observed that all three queries are faster on the normal data than the
compressed dataset.

On The Small Sized Dataset (BSBM)
In order to verify the correctness and completeness of our system, we performed three queries
on the BSBM data as well. Table 5.11 below shows the processing time on the normal dataset
and the compressed dataset. We obtained the same number count (or result size) in both the
compressed and normal dataset; this means that we did not lose any data while compressing.

Queries SparkSQL Time (second) SparkSQL Result Size Compression Query Time (second) Compression Query Result Size Loading Time(second)
Query-01 (Listing 5.1) 3 115 7 115 6
Query-02 (Listing 5.2) 3 8 7 8 6
Query-03 (Listing 5.3) 3 47,902 10 47,902 9

Table 5.11: Query Results on the Small BSBM Dataset

From this chart, we can observe that, the query is faster on the compressed data than the normal
dataset.

35

0

2

4

6

8

10

12

Query-01 Query-02 Query-03

Input Query Time (Sec) Compression Query Time (Sec)

Figure 5.5: BSBM Query Runtime

This chart shows the query time on the BSBM dataset for both compressed and normal
datasets. We can see that all three queries are faster on the normal data than the compressed
data.

On The Medium Sized Dataset (LUBM)
For the testing purpose, we performed three queries on LUBM data. Table 5.12 below shows
the processing times for the normal and the compressed dataset. We have obtained the same
number result size for both the compressed and normal dataset, which means that we did not
lose any data while compressing.

Queries SparkSQL Time (second) SparkSQL Result Size Compression Query Time (second) Compression Query Result Size Loading Time(second)
Query-01 (Listing 5.4) 29 1,839,964 34 1,839,964 33
Query-02 (Listing 5.5) 42 4 39 4 38
Query-03 (Listing 5.6) 55 1,015,351 28 1,015,351 27

Table 5.12: Query Results on the Medium LUBM Dataset

36

0

10

20

30

40

50

60

Query-01 Query-02 Query-03

Input Query Time (Sec) Compression Query Time (Sec)

Figure 5.6: LUBM Query Runtime

This chart shows the query time on the LUBM dataset for both the compressed and normal
datasets. The compressed data performed better on query-02 and query-03.

On The Medium Sized Dataset (BSBM)
For the testing purpose, we performed three queries on the BSBM data. Table 5.13 below
shows the processing time for the normal and the compressed dataset. We obtained the same
number result size for both the compressed and normal dataset, which means that we did not
lose any data while compressing.

Queries SparkSQL Time (second) SparkSQL Result Size Compression Query Time (second) Compression Query Result Size Loading Time(second)
Query-01 (Listing 5.1) 28 12,33 27 1,233 26
Query-02 (Listing 5.2) 19 8 28 8 27
Query-03 (Listing 5.3) 40 725,753 43 725,753 42

Table 5.13: Query Results on the Medium BSBM Dataset

37

0

5

10

15

20

25

30

35

40

45

50

Query-01 Query-02 Query-03

Input Query Time (Sec) Compression Query Time (Sec)

Figure 5.7: BSBM Query Runtime

This chart shows the query time on the BSBM dataset for both the compressed and normal
datasets. The compressed data performed better on query-01.

On The Large Sized Dataset (LUBM)
In order to verify the correctness and the completeness of our system, we performed three
queries on the LUBM data. Table 5.14 shows the processing times for the normal and the
compressed dataset. We received the same number result size for both the compressed and
normal dataset; this means that we did not lose any data while compressing

Queries SparkSQL Time (second) SparkSQL Result Size Compression Query Time (second) Compression Query Result Size Loading Time(second)
Query-01 (Listing 5.4) 92 7,176,871 86 7,176,871 85
Query-02 (Listing 5.5) 62 4 95 4 94
Query-03 (Listing 5.6) 142 3,961,133 62 3,961,133 61

Table 5.14: Query Results on the Large LUBM Dataset

38

0

20

40

60

80

100

120

140

160

Query-01 Query-02 Query-03

Input Query Time(Sec) Compression Query Time(Sec)

Figure 5.8: LUBM Query Runtime

This chart shows the query time on the LUBM dataset for both the compressed and normal
datasets. The compressed data performed better on query-01 and query-03.

On The Large Sized Dataset (BSBM)
In order to verify the correctness and completeness of our system, we performed three queries
on the BSBM data as well. Table 5.15 shows the processing time for the normal dataset and
the compressed dataset. We obtained the same number count (or result size) for both the com-
pressed and normal dataset; this means that we did not lose any data while compressing.

Queries SparkSQL Time (second) SparkSQL Result Size Compression Query Time (second) Compression Query Result Size Loading Time(second)
Query-01 (Listing 5.1) 150 7,728 99 7,728 98
Query-02 (Listing 5.2) 143 8 89 8 88
Query-03 (Listing 5.3) 193 4,534,530 136 4,534,530 135

Table 5.15: Query Results on the Large BSBM Dataset

39

0

20

40

60

80

100

120

140

160

Query-01 Query-02 Query-03

Input Query Time(Sec) Compression Query Time(Sec)

Figure 5.9: BSBM Query Runtime

This chart shows the query time for the BSBM dataset for both the compressed and normal
datasets. The compressed data performed better on all three queries.

Figure 5.10, and 5.11 diagrams show the consolidated information of space and execution time
for various benchmark dataset.
After compression, the data volume was reduced to 70% to 82%, and it reduced further as the
volume of data increased (see table 5.1, 5.2 and 5.3). This reduction in space directly impacts
the resource requirement of storage and processing. As the volume of data is reduced, the
compressed data can be smoothly processed with a small cluster with limited configuration
since the compressed data occupied less disk space, reduces storage cost and also reading and
writing the compressed dataset takes less time than the normal dataset. Our RDF Dictionary
Compression system gave a noticeable query results on a large volume of compressed data as
we can see in a table 5.15. From the evaluation results, we can say that as compressed data
volume is especially low, it is feasible to processed record in memory that improves the query
performance.

40

0

5000

10000

15000

20000

25000

LUBM LUBM LUBM BSBM BSBM BSBM

Input Data Size (MB) Compressed Data Size (MB)

Figure 5.10: Space Consumption in Different Datasets

0

50

100

150

200

250

Input Query Time (Sec) Compression Query Time (Sec)

Figure 5.11: Comparison of Query Time in Different Datasets

41

Chapter 6

Conclusions and Future Work

This thesis was designed and implemented with Spark and Scala with the goal of developing a
distributed scalable compression system that compresses a dataset in order to optimize the disk
space and that allows for a query on top of the compressed data directly.
From the results of this research, it is clear that compression technique provides an excellent
compression ratio from, 70% to 82%, and maintains the relationship between records; this makes
it possible to recreate input records from the compressed data. In contrast, for a dataset with no
duplicate record, the compressed data volume is higher than the input data (from 4% to 14%).
Apart from data compression, the query system was designed for the testing purpose to query
on compressed data directly and also to execute a query with a most optimized plan. In the
LUBM and BSBM benchmark, the RDF data compression performed faster on the medium-
and large-sized datasets than on the normal dataset; however, the small-sized dataset is two
to three times faster on the normal dataset. Regarding overall performance based on the query
results, we can conclude that the query system performs better on compressed data. Empirically
has been showed a distributed system, especially Apache Spark, performs best when complete
data is in the memory [35].
For future work, the following suggestion needs to be considered:

• To compare this system with other compression systems.

• To apply a compression algorithm such as gzip, snappy, or lzo on the stored result in order
to further optimize the space requirement.

• To conduct evaluations with large datasets, on exceptionally large clusters.

• To implement a query system on the compressed data.

42

Bibliography

[1] J Lehmann, G Sejdiu, L Bühmann, P Westphal, C Stadler, ... Ermilov, I., and H. Jabeen.
Distributed semantic analytics using the sansa stack. In International Semantic Web Con-
ference (pp. 147-155). Springer, Cham, 2017, October.

[2] F Manola and E Miller. Rdf primer:w3c recommendation,http://www.w3.org/tr/rdf-
primer/, 2004. Last accessed 3 October 2018.

[3] C Bizer, T Heath, and T Berners-Lee. Linked data-the story so far:int j semant web inf
syst 5:1–22,2009.

[4] E Prud’hommeaux and A Seaborne. Sparql query language for rdf: W3c
recommendation,http://www.w3.org/tr/rdf-sparql-query/, 2008. Last accessed 16 Octo-
ber 2018.

[5] J Huang, D Abadi, and K Ren. Scalable sparql querying of large rdf graphs.proc vldb
endow 4(11):1123–1134,2011.

[6] Y Jing, D Jeong, and D Baik. Sparql graph pattern rewriting for owl-dl inference
queries.knowl infsyst 20:243–262,2009.

[7] A Martínez-Prieto, M, D Fernández, J, and s Cánovas, R. Compression of rdf dictionarie.
In Proceedings of the 27th Annual ACM Symposium on Applied Computing (pp. 340-347).
ACM, 2012, March.

[8] Fernández J. D. & Cánovas R. Martínez-Prieto, M. A. Querying rdf dictionaries in com-
pressed space. acm sigapp applied computing review, 12(2), 64-77,2012.

[9] Bigdata projects: https://elysiumpro.in/big-data-analytics-projects/. Last accessed 5 Oc-
tober 2018.

[10] M Zaharia, M Chowdhury, T Das, A Dave, J Ma, M McCauley, and I. Stoica. Resilient
distributed datasets : A fault-tolerant abstraction for in-memory cluster computing. In
Proceedings of the 9th USENIX conference on Networked Systems Design and Implemen-
tation (pp. 2-2). USENIX Association, 2012, April.

[11] Tim Berners-Lee, James Hendler, Ora Lassila, et al. The semantic web vol.284, no.5,
pp.28-37,2001.

[12] Semantic web technologie: https://www.w3.org/2007/03/layercake.svg. Last accessed 6
October 2018.

43

[13] D. C.. Hazen. Rethinking research library collections: A policy framework for straitened
times, and beyond,2010.

[14] Handbook of semantic web technologies: https://link.springer.com/content/pdf. Last ac-
cessed 05 November 2018.

[15] Sparql query language for rdf.https://www.w3.org/tr/rdf-sparql-query/. Last accessed 5
October 2018.

[16] Amann B. & Curé O. Naacke, H. Sparql graph pattern processing with apache spark.
In Proceedings of the Fifth International Workshop on Graph Data-management Experi-
ences & Systems (p. 1). ACM., 2017, May.

[17] Parallel techniques for big data :https://bda2013.univ-nantes.fr/files/bda-2103-
bigdata.pdf. Last accessed 18 November 2018.

[18] Gutierrez C. & Martínez-Prieto M. A. Fernández, J. D. Rdf compression: basic ap-
proaches. In Proceedings of the 19th international conference on World wide web (pp.
1091-1092). ACM,, 2010, April.

[19] Big data overview :https://intellipaat.com/tutorial/hadoop-tutorial/big-data-overview/.
Last accessed 30 November 2018.

[20] Pazhaniraja N. Paul P. V.-Basha M. S. & Dhavachelvan P.. Saraladevi, B. Big data and
hadoop-a study in security perspective. procedia computer science, 50, 596-601,2015.

[21] D. Borthakur. The hadoop distributed file system: Architecture and design. hadoop project
website, 11(2007), 21.

[22] Venkat Ankam. Big data analytics.packt publishing ltd,2016.

[23] D Marpe, G Blattermann, and J. Ricke. A two-layered wavelet-based algorithm for effi-
cient lossless and lossy image compression.ieee transactions on circuits and systems for
video technology, 10(7), 1094-1102,2000.

[24] Scala:a general purpose programming language. https://www.scala-lang.org/. Last ac-
cessed 3 October 2018.

[25] Apache spark:a apache spark an open source framework and a engine for large scale data
processing. https://spark.apache.org/. Last accessed 20 September 2018.

[26] Scala and spark overview spark.https://pieriandata.com. Last accessed 17 October 2018.

[27] Apache spark vs hadoop :https://www.dezyre.com/article/hadoop-mapreduce-vs-apache-
spark-who-wins-the-battle/83. Last accessed 25 October 2018.

[28] JASSEM yahyaoui. Spark vs mapreduce dans hadoop:
https://yahyaouijassem.wordpress.com/2016/04/23/spark-vs-mapreduce-dans-hadoop.
Last accessed 17 October 2018.

44

[29] Kyprianos K. & Stefanidakis M. Papadakis, I. Linked data uris and libraries: the story so
far. d-lib magazine, 21(5/6),2015.

[30] Sandra Álvarez García and et al. Compressed vertical partitioning for efficient rdf man-
agement. knowledge and information systems 44.2: 439-474,2015.

[31] P Ravi and A. Ashokkumar. A study of various data compression techniques.ijcs journal
6.2,2015.

[32] Han X. Interlandi M.-Mardani S. Tetali S. D. Millstein T. D. & Kim M. Gulzar, M. A.
Interactive debugging for big data analytics, 2016,june.

[33] Lehigh university benchmark to facilitate the evaluation of semantic web repositories in a
standard and systematic way: http://swat.cse.lehigh.edu/projects/lubm/. Last accessed 15
November 2018.

[34] Berlin sparql benchmark: http://wifo5-03.informatik.uni-
mannheim.de/bizer/berlinsparqlbenchmark. Last accessed 15 November 2018.

[35] A. G. Shoro and T. R. Soomro. Big data analysis: Apache spark perspective. global
journal of computer science and technology,2015.

45

	Introduction
	Questions
	Objectives
	Thesis Structure

	Background
	The Semantic Web
	RDF Model
	SPARQL

	Big Data
	Data Compression
	Scala and Spark
	Scala
	Spark

	Local Versus Distributed Systems
	Hadoop Versus Spark

	Related Work
	Existing Compression Techniques
	RDF3X
	k2-Triples
	Dcomp
	Huffman Coding
	Lempel-Ziv Compression
	RLE

	Approach
	System Design
	RDF Dictionary Compression Architecture
	SANSA Stack
	Introduction

	RDF Data Compression Algorithm
	Query System for the Testing Purpose
	Record Schema

	Evaluation
	Cluster Configuration
	Methodology
	Systems
	Experimental Setup
	Benchmarks
	Benchmark Queries

	Experiments & Results
	Experiments Results on the Normal and Compressed Data

	Query Results on the Normal and Compressed Dataset

	Conclusions and Future Work

