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Abstract

Many programmers use Version Control Systems (VCS) such as git to organise

their collaboration with other developers. GitHub is the largest git repository hoster

on the web, providing a wealth of information about open source software projects

and social interactions of their developers. In this thesis we describe, analyse and

utilise the SemanGit dataset. This semantic resource encapsulates data generated by

billions of executions of the git protocol via GitHub, alongside user and project data

of over 30 million GitHub accounts and 100 million projects, summing up to over 24

billion relations. We elaborate the difficulties with loading and querying a dataset of

this size. Afterwards, we discuss how SemanGit can be utilised in theory and practice

and manage to run first analyses by the provision of a SPARQL endpoint. We

perform several sample analyses, such as finding trends in programming languages,

finding that there are strong differences in the usage of programming languages

when comparing geographically distant regions or projects of different popularity.

We also uncover new information about international cooperation and investigate

if the social structure of organisations has an impact on their success. Lastly, we

describe how more complex analyses can be performed by interlinking our dataset

with others, such as DBpedia.
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1 (†) Introduction

The growing interest in free and open-source software which occurred over the last decades

has accelerated the usage of so-called Version Control Systems (VCS), which allow devel-

opers to collaborate with each other more easily. These tools track and save any changes

made to the code, so that one can revert to prior versions at will. Besides providing

a history of the development process of the code, they also enable multiple authors to

manage and merge their contributions into one single version. If conflicting changes are

made, such as two agents editing the same line of code, the VCS reports an error during

the merging process and developers can review and choose whose version of the conflicting

part to accept. This is particularly useful, if authors work at different times or across

geographical distances. One of the most popular VCS tool suits is git [1], which is free,

open-source and supports a wide range of operating systems. It is even provided out of

the box in several popular integrated development environments (IDE).

Source code changes are summarised into a commit and can be pushed to git repos-

itories, which are the core of the system. Such repositories can be self-hosted for full

control over the data flow, or one can choose one of the many online gitrepository hosts.

These providers take care of server management, the git setup and in many cases pro-

vide simple interfaces for the git protocol, bridging the necessity of executing protocol

commands in the command line. Besides the benefits of a decentralised server structure,

these online providers usually also offer additional features that are not part of the git

protocol. For example, GitHub, the currently largest git repository hoster on the web [2],

offers an issue tracking system, where users can make suggestions or report bugs. With

its increasing number of users, it also servers as social platform for developers, adopting

features of popular social networks like following other users or watching projects.

With GitHub reaching 36 million users and 100 million projects as of April 2019 [3],

there is abundant information about code evolution and social interactions between de-

velopers available. This makes GitHub an excellent data source for social and economic

analysis and has already attracted a lot of attention from researchers [4]. This data

can be queried via the GitHub API, but mining capabilities are restricted through an

hourly query limit. GHTorrent [5] bypasses this limit by mining the API with hundreds

of community donated authentication tokens over the last years, providing data dumps.

However, to the best of our knowledge, nobody has attempted to collect and analyse this

data in a graph data model. This alternative representation is well suited for typical
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graph traversal problems, such as finding followers of followers.

In this master thesis, we present a large scale graph database filled with information

extracted from the execution of the git protocol, collected from the users of GitHub and

their social interactions on the platform. We decided to name this project “SemanGit”,

which is a neologism from “semantic” and “git”, emphasising the used technology of en-

riching the extracted data with semantics. These semantics of the data are summarised

in an ontology, which was created with the WebVOWL [6] tool. It defines the struc-

ture of classes and relations that occur in the SemanGit data with expressions from the

Web Ontology Language (OWL) [7] and the Resource Description Framework Schema

(RDFS) [8]. Utilising this ontology, we create a Resource Description Framework (RDF)

graph [9]. In RDF, facts are stored as (Subject, Predicate, Object) triples, indicating that

the nodes Subject and Object share the relation Predicate, displayed by an edge of type

Predicate between the two nodes. The motivation behind RDF is described by the World

Wide Web Consortium (W3C) as follows [10]:

[. . . ] a common framework that allows data to be shared and reused across

application, enterprise, and community boundaries, to be processed automati-

cally by tools as well as manually, including revealing possible new relationships

among pieces of data.

In fact, the usage of RDF for SemanGit might enable a future interlinking with ad-

ditional data sources like LinkedIn, StackOverflow or other git providers. Note that the

most recent version of the dataset is already interlinked with DBpedia [11], one of the

most referenced RDF datasets. It serves as a role model for the SemanGit project, as

they successfully extract and transform large scale Wikipedia data to a semantic dataset.

By going through the steps of creating a semantic version of the git data we draw

from GHTorrent, we want to utilise the strengths of both RDF and graphs in general.

More precisely, graph databases are good for structure exploring queries, as discovered

by Vicknair et al. [12]. A classic example is the “friend of friends” example from social

networks, often used for making friend suggestions. In a relational model, this requires ex-

pensive table join operations, whereas this can be performed efficiently in a graph model.

In our scenario of open source software repositories, the corresponding task would be to

suggest similar projects to a user, as we will discuss in Section 3.3. When trying to add

further data sources to our dataset, the strengths of RDF will be very useful, as it allows
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us to easily deal with heterogeneous data. Furthermore, interlinkage with other datasets

promises further analytical options. From the GHTorrent dataset, we know the state and

city of many users. With a DBpedia interlinkage, we could, for example, analyse if users

from densely populated areas behave differently to others, or if users coming from a city

with a university produce better code on average.

Queries on RDF graphs are usually written in SPARQL [13]. However, to query an

RDF graph, one first needs to load the data into a triplestore. In our case, this already

proves to be an issue due to the size of our dataset. With over 18 billion triples as of

November 2018 and over 22 billion triples as of June 2019, SemanGit encounters classical

big data issues. For comparison, DBpedia – the central dataset of the Linked Open Data

(LOD) cloud 1 – has about 9.5 billion triples as of June 2019 [14]. Due to the time limit

for this thesis and a delay in the provision of the infrastructure for our work, we had

concerns if a full deployment can be achieved with these resources. It turned out that

we only have a single commodity machine at our disposal 2, providing enough storage,

but insufficient computational power for many analytical tasks on a large dataset, due to

limited RAM, limited multi-core processing and slow storage.

The title of this thesis was formulated with much precaution, as we were not aware

if querying the dataset would be feasible. Ideally, we would generate the data, load it

into a triplestore and conduct several analyses, emphasising that the dataset is valuable

for science and business. In the worst case, this thesis would have developed into a

theoretical elaboration about use cases with an industrial deployment of the dataset,

where more resources are available. In the end, we agreed upon three goals capturing as

many outcomes as possible.

1. Capture information about git activity in a semantic dataset

2. Create a SPARQL endpoint on the dataset

3. Find use cases and evaluate query capabilities

These goals are independent of each other. In case that the deployment of the SPARQL

endpoint would fail, we developed different strategies to obtain sufficiently relevant results

for our third goal. The optimistic target of performing these analyses on the real dataset

with SPARQL can be weakened to the usage of SPARQL queries on a smaller dataset,
1https://lod-cloud.net/
2Intel(R) Core(TM) i7-5820K CPU @ 6 x 3.30GHz , 64 GiB DDR3, 2x4TB HDD @ 7,200 RPM

3

https://lod-cloud.net/


either a representative sample or by restriction to a subset of relation types.

The approaches to achieve our goals are described within this thesis. Before we elabo-

rate these in detail, we will give a motivating example to showcase the value of the dataset.

In Section 3, we will discuss related works associated with these three goals, before we

start with the technical details about the creation of the SemanGit data in Section 4.

Afterwards, Section 5 discusses how this dataset can be used to obtain representative

samples, without the need of deploying all data in a triplestore. This deployment is then

described in Section 6, where we evaluate different triplestores and describe how we load

our data into one of them.
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2 (*) A Motivating Example: Trends in Programming

Languages

In this section, we will present an example to motivate further analyses on our dataset.

Due to a long wait time to load our dataset into a triplestore, see Section 6, we created

this analysis as we waited for a queryable graph dataset. Therefore, queries in this section

are SQL queries on relational tables. In Section 7.3.1, we will revisit this analysis with a

graph database at hand.

Like natural languages, programming languages evolve over time. Maybe even more

so, as constantly new programming languages are invented with some purpose in mind,

such as being useful for statistical analysis or supporting new architectures. Seeing that

SemanGit contains meta information about millions of projects 3 on GitHub [3], we have

chosen to take a closer look at the languages used over time. In this section, we will analyse

trends in languages used on GitHub, starting from October 2015 where the records about

language usage begin in our input data from GHTorrent [5]. An analysis for the years 2012

to 2014 was performed by GitHut [15]. GitHub has also performed a language analysis,

presenting the usage of the most popular programming languages over the years and

which ones are gaining the most contributors [16]. We will strive to present interesting

and more detailed insights on the occurrences of programming languages, complementing

the analysis conducted by GitHub. This includes a discussion about suitable feature

weighting on repositories to determine the popularity of languages.

2.1 (*) Preprocessing the Data

The raw data about language usage from GHTorrent cannot be used directly for this

analysis. There are a number of issues that need to be addressed beforehand, such as time

gaps between observations. The table describing the usage of programming languages by

a project, project_languages, has the following columns:

project_id (INT), language (VARCHAR), bytes (INT), created_at (TIMESTAMP)

Each row of the table shows the number of bytes of a programming language, used by a

certain project at a specific point in time. The issue with the data is the inconsistency in

regards to update intervals. GHTorrent describes this table on their website as follows [17]:
3The January 2019 dump of GHTorrent contains 110,719,662 projects in the projects.csv file, some of

which have been deleted on GitHub, but remain in our dataset.
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Languages that are used in the repository along with byte counts for all files

in those languages.

Multiple entries can exist per project. The created_at field is filled in with the

latest timestamp the query for a specific project_id was done.

The table is filled in when the project has been first inserted on when an update

round for all projects is made.

Unfortunately, the last paragraph means that we sometimes have updates in quick

succession about one project’s language usage, followed by long gaps without any infor-

mation, sometimes multiple years long. Additionally, all byte values are complete values

rather than incremental, displaying the size of the language in a project at that time,

instead of showing how the size has changed due to an update.

We decided to even out the inconsistencies of the data in two steps:

1. Flatten the data: If multiple entries exist for one triple of (project, language, year),

merge those entries, choosing average values for the byte size.

2. Fill gaps in data: If for a year, there is no entry for a project and language, choose

the last known value instead.

This yields exactly one entry per project and language per year, if the language was used

by the project during that time, otherwise no entry. We have performed preprocessing

for the two time granularities year and month.

The steps described above with time granularity year can be performed with the fol-

lowing SQL commands:

--Step 1: Reduce to one entry per project and language per year

CREATE TABLE project_languages_average (project_id INT NOT NULL,

langdate TINYINT NOT NULL, language VARCHAR(100) NOT NULL,

langsize BIGINT NOT NULL) AS

SELECT project_id, DATE_FORMAT(created_at, ’%y’) AS langdate, language,

AVG(bytes) AS langsize

FROM project_languages

GROUP BY project_id, langdate, language;

--Index is vital for efficiency in step 2

ALTER TABLE project_languages_average

ADD UNIQUE INDEX(project_id, language, langdate);
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This results in an intermediate table that we will use for the next query, where we fill

gaps in data with the last known value in case none is present for the year in question.

--Step 2: Fill gaps in data

CREATE TABLE proj_lang_annual_value (project_id int(11) NOT NULL,

langyear TINYINT NOT NULL, language VARCHAR(50) NOT NULL,

langsize BIGINT UNSIGNED NOT NULL);

INSERT INTO proj_lang_annual_value(project_id, langyear, language, langsize)

--Project ID, language and timestamp are already at hand

SELECT p.project_id, allyears.langdate AS langyear, p.language AS language,

--Subquery to get the latest "size" value for the language

(SELECT t.langsize

FROM project_languages_average AS t

WHERE t.project_id = p.project_id AND t.language = p.language

--Choose the latest value before / of current year as value

AND t.langdate <= allyears.langdate ORDER BY t.langdate DESC LIMIT 1)

AS langsize

FROM

--Join to get all projects with all their languages for every year

(SELECT DISTINCT project_id, language, langdate

FROM project_languages_average) AS p

INNER JOIN

(SELECT DISTINCT langdate

FROM project_languages_average) AS allyears

ON pdate <= allyears.langdate AND NOT EXISTS

--Avoid duplicates by checking that no later value exists

(SELECT 1 FROM project_languages_average

WHERE project_id = p.project_id AND language = p.language

AND langdate <= allyears.langdate AND langdate > pdate)

ORDER BY p.project_id, allyears.langdate;

The table creation of the first step took 6h43m plus another 35m for the index generation.

Step 2 took a total of 1h09m. Equivalent preprocessing with monthly grained values took

an overall of 21h05m. The reduction step 1 with annual values only pruned 4.01% of the

original data. This shows how very few full update rounds were performed by GHTorrent.
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2.2 (*) Popularity of Programming Languages

At first, we will perform a very general analysis about how popular each language was

in which year, starting in 2015, where the records of language usage from GHTorrent

begin, to 2018. The computational effort of such an analysis is small, having performed

the preprocessing described above. The main problem here is to choose a suitable score

function for the popularity of a language. In GitHub’s language analysis, the number of

users collaborating on a project was used as weights for projects [16], which we will also

address in Section 7.3.1. An analysis of this kind would not be well suited at this time

where we work with the relational scheme only, as this would require expensive joining of

multiple large tables.

We do have information about the byte size of languages for each public project stored

on GitHub. This data seems to be a poor popularity indicator by itself though, as Ta-

ble 1 shows. A much more realistic indicator is the number of occurrences of a language,

meaning the number of repositories in which the language is used. The resulting top

ten languages are shown in Table 2. A third strategy we have adopted is to sum up

the relative sizes of the languages per project. A project consisting equally of JavaScript

and HTML for example, would count 0.5 to both languages. The results are shown in

Table 3. Finally, Table 4 shows the number of projects for which a given language is the

largest in size. Note that we did not exclude any languages from the results which might

not be considered to be a programming language. To get accurate values for Tables 3

and 4 which exclude non-programming languages, we would have to decide for nearly 400

languages whether or not it is a programming language.

If we discard Table 1 as irrelevant, the remaining tables share one drawback. None of

them takes the structures of the related repositories into account. One could, for exam-

ple, add weights to repositories according to the number of commits. However, this would

favour repositories with contributors who do frequent and small commits over those with

contributors who summarise their work in fewer commits.

Another possible strategy is the one conducted in the analysis of GitHub [16], adding

weights to repositories based on the number of unique collaborators. In Section 9.2 we

will discuss potential drawbacks of this strategy by introducing the concept of ghost con-

tributors – collaborators of a project, who do not submit code to it.
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Table 1: Languages by size

Language Total Byte Size
etag 482,188,416,547,331
c 20,364,579,839,133
javascript 6,648,424,319,875
c++ 5,194,731,644,235
java 4,061,350,050,534
html 3,476,905,493,554
php 2,773,664,743,557
python 2,121,105,092,157
c# 1,431,575,065,852
jupyter notebook 1,240,532,358,071

Languages and the sum of sizes in bytes across
public repositories on GitHub in 2018.

Table 2: Languages by occurrence

Language Occurrences
javascript 11,951,722
html 10,324,429
css 9,495,367
shell 5,904,000
java 5,745,568
python 5,320,801
etag 3,779,556
ruby 3,612,398
php 2,803,936
c 2,797,153

Languages and the number of their
occurrences in public repositories on GitHub

in 2018.

Table 3: Languages by relative size

Language Sum of relative sizes
javascript 5,903,203
java 4,470,494
python 3,061,516
html 2,907,523
ruby 1,799,021
css 1,793,554
php 1,690,558
etag 1,684,910
c++ 1,298,673
c# 1,158,371

Languages and the sum of their relative size
across public repositories on GitHub in 2018.

Table 4: Languages by primary occurrence

Language Occurr. as primary
javascript 6,254,461
java 4,566,125
python 3,123,833
html 2,495,372
etag 2,467,028
ruby 1,936,145
php 1,812,335
css 1,447,463
c++ 1,386,988
c# 1,188,564

Languages and the number of projects on GitHub
in 2018 in which the language is the primary

language, i.e. the largest.

Note that Tables 3 and 4 are very similar. They actually feature the same languages,

just in a slightly different order. Their top three are also identical to the top three of

GitHub’s analysis [16]. The rest of the tables are more difficult to compare, as their lan-

guage analysis is restricted to programming languages only, while we also have HTML,

CSS and ETag in our results. From Table 2, one can guess that JavaScript, HTML and

CSS have many projects in common, as they obtain similar scores on Table 2, but not on

the other ones. It appears that many projects include a small amount of shell code, such

as installation programs, causing shell to only appear on this table.

We will now use the results above to narrow down further analysis to relevant lan-

guages. Firstly, we present an alluvial diagram which shows how the popularity of the

languages has evolved over the years, using the weighting function shown in Table 4,
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Figure 1: Changes in primary language per year

counting the repositories having a certain language as primary language. This analysis

aims to not only give a yearly value indicating a languages’ popularity, but also to ex-

plore how developers migrate from one favoured language to another. Secondly, we will

attempt to give finer grained insights with monthly values, using the weighting function

as described for Table 3, summing up the relative occurrences of a language.

To highlight the effect of the alluvial diagram, showing how projects migrate from

one primary language to another, we have chosen to only include projects in the diagram

which have changed their primary language at least once since 2015. This also demon-

strates the poor update quality of the input data - many updates were performed during

2015 and 2016. In contrast, data from later years mostly contains information about new

projects, instead of updates for old projects. Therefore, the diagram shown in Figure 1 is

almost stagnant for later years.
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Figure 2: Relative occurences of languages per month

From the figure one can easily see the strong link between JavaScript, HTML, CSS

and PHP, whereas other connections are more subtle. For example, Python seems to

have lost many GitHub projects to JavaScript from 2015 to 2016 and gained only a few

in return. The data is almost constant from year 2016 onward, which is due to lacking

updates on the dataset. For this reason, it seems prudent to perform analyses which do

not rely on full updates, but on new occurrences or an event based structure instead.

Next, we will look at occurrences of languages from a different perspective and drop

our project based focus, taking more data into account. To do so, we created a stacked

area chart, showing the general evolution of the top ten programming languages in Fig-

ure 2. The language ETag does not occur until October 2018. This is most probably due

to GitHub not recognising ETag as a language prior to this date. From this diagram,

it is difficult to see for any particular language whether it has grown or shrunk. The

first general growth peak from October 2015 to November 2015 is due to the initial bulk

imports not finishing before the end of the month. Other changes in growth rate, such as

in October 2017, are more difficult to explain. The general reduction in growth could be

seasonal, or potentially due to lost events, caused by software bugs in the data collection.

In further investigations, we computed a graph showing the growth rate for each lan-
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Figure 3: Growth factor of languages

guage explicitly, see Figure 3. To make the result legible, some initial values and all ETag

entries were removed from the dataset, as the corresponding growth factors otherwise

overshadow all other values. Note that no growth factor is below 1. This is most prob-

ably due to the fact that existing projects are hardly ever updated in our dataset, see

above, and we therefore only obtain growth from new projects. The strong increase in

HTML as language could be due to the page hosting service of GitHub [18]. For some

months, lots of data is present, whereas for others there is almost no data at all, being

another example for the poor update quality.

The results show that a timeline analysis is not very suitable, given the low update

quality of GHTorrent regarding project languages. We will therefore get back to analysing

programming languages from a different point of view in Section 7.3.1, focusing more on

geographical trends regarding language usage. This kind of analysis is expensive in a

relational model though, as we need to perform many join operations, but it is quickly

computable on a graphical model.
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3 (†) Related Work

In the introduction, we described the research goals of this thesis. They can be summarised

as follows:

1. Capture information about git activity in a semantic dataset

2. Create a SPARQL endpoint on the dataset

3. Find use cases and evaluate query capabilities

While the three goals are related to each other, they all reveal their own challenges

and problems. Therefore, we have chosen to split this section into three parts, one for

each research goal. Subsection 3.1 compares our approach with other attempts to mine

information about git or the creation of large scale semantic datasets. Subsection 3.2

targets the big data issues that arise when loading the data into a triplestore and discusses

research done on deploying a SPARQL endpoint as well as alternative tools that have been

developed. Lastly, Subsection 3.3 shows the vast amount of analytical work that has

already been performed on git, GitHub and other software repository providers, showing

which analyses were already conducted on similar data.

3.1 (†) Creation of a Semantic Dataset

To create a large scale semantic dataset about git, we need to select a data source. As

GitHub is hosting over 100 million projects as of April 2019 [3], making it the largest

git provider on the web [2], and offers a REST API to query data about users and public

repositories, we chose to focus on extracting data from this provider. The downside of

using their API is the rate limit of 5,000 queries per hour for any authenticated user [19].

This implies that querying the projects directly via the API is infeasible for us with the

time restriction of six months for our thesis, allowing for only 21.6 million queries in that

period. We found that similar restrictions apply to other providers’ APIs as well, such as

the GitLab API [20] which allows up to 10 requests per second per client IP address.

GHTorrent [5] is a project that has been tackling this issue by mining the GitHub

API with hundreds of community-donated authentication tokens, raising the number of

queries they can perform per hour. Data dumps can be downloaded from their website 4.

This offers an alternative data source for our research, allowing us to deploy data on a

local SQL server. One of the major drawbacks of using the GHTorrent dataset is that
4http://ghtorrent.org/downloads.html
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their data is by no means complete. Even with multiple authentication tokens at hand,

bulk updates of projects seem to be too expensive, as we noticed in Section 2, where the

update frequency of the language usage of a project seemed to be too sparse.

There are several other issues that can arise about the data. As depicted in a study

by Kalliamvakou et al. [21], there are some practical pitfalls that need to be avoided when

working with data from GitHub. We will list the ones that have the greatest potential

impact on our research:

• 87% of projects showed no activity within the last month of their study.

• “repositories” and “projects” are not the same. If a project is forked, a new repository

is created. But this usually is not a new project.

• 71.6% of the projects have no collaborators besides the owner.

• Only a small amount of projects use pull requests.

• Pull requests only show as merged if merging is done via the GitHub website.

• About half the users do not work on public projects.

• Not all contributions are made by registered users.

GHTorrent already takes care of the last point, creating “fake users” if an author is

not registered [17]. The other points need to be taken into consideration when performing

analyses on the dataset. GitHub is not the only perilous git data source though: Howison

et al. [22] also show that SourceForge data comes with similar issues.

Besides GHTorrent, another notable database is Boa [23]. It is an infrastructure and

language for mining software repositories at large scale, which can be accessed via a web-

based interface. One key advantage is the easy re-usability of research done with Boa,

as experiments can be repeated by simply re-running a query. Despite this, Boa is not

widely used by researchers investigating GitHub: In 2017, Cosentino et al. [4] summarised

the methods, datasets and limitations on research papers concerning GitHub. 41.25% of

the papers used GHTorrent as data source, another 31.25% are querying the GitHub API

directly. Boa is part of the category “others”, which were used by only 3%.

Despite our initial focus on GitHub, our infrastructure is designed to handle data from

several sources, see Section 4.1. Without sufficient computational resources though, we

are not able to integrate further data sources into our GitHub dataset. However, fu-

ture work might include the integration of SourceForge data into SemanGit. In such a

case, it is useful to find out which developer accounts across these platforms belong to
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the same person. How this can be achieved has been investigated by Robles et al. [24].

Unfortunately, their techniques cannot be applied to our case, as they use heuristics on

real life names and email addresses, as well as usernames. With the European General

Data Protection Regulation (GDPR) in place, GHTorrent was forced to stop distributing

such sensitive information. While some names and addresses can still be found in old

GHTorrent data dumps, using this data would raise severe privacy concerns.

While we did not manage to load further external datasets into our triplestore, we

managed to interlink parts of our data with DBpedia [11]. GitHub users have the ability

to add a location to their profile. This location is geocoded by GHTorrent, yielding the city

and state that correspond to the location, if applicable. One needs to keep in mind that

users can enter wrong information, or even imaginary places. If a state and/or city can

be determined, we refer to the DBpedia resource, e.g. the city San Francisco will yield

<http://dbpedia.org/resource/San_Francisco>. This provides a multitude of new

analytical options that cannot be easily achieved without an interlinked graph database,

as additional information for user locations, such as the capital, latitude and longitude,

population, nearest city, time zone, populated area, population density or the mayor of

the city can be taken into consideration. The strength of RDF dataset interlinkage is

demonstrated by the growing size of the Linked Open Data cloud [25], which contains

1,239 datasets with 16,147 links as of March 2019 5. Looking back five years to August

2014, the diagram only contained 570 datasets.

5https://lod-cloud.net/
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3.2 (†) Adding a SPARQL Endpoint

In general, the deployment of a SPARQL endpoint is not a difficult task. It boils down to

the installation of a triplestore and filling it with data. Most modern triplestores offer an

automatic deployment of the server infrastructure together with APIs. The W3C collected

multiple triplestores, together with the reported number of supported triples [26]. All of

the 18 listed solutions provide a SPARQL endpoint. Concerning the size of our dataset,

7 out of them seem to be appropriate for sizes above 20 billion triples. Unfortunately,

in many cases these reported numbers were obtained on clusters of at least 3 machines

or on servers with superior specifications. The highest reported value so far is Oracle

Spatial and Graph with Oracle Database 12c with 1.08 trillion loaded triples on a

setup consisting of 8 nodes with 24 cores each and overall 2TB of RAM [27]. For com-

parison, the smallest listed study for Oracle Spatial and Graph listed, claims to load

around 1.1 billion triples in just 28 minutes with specifications expected to be highly

superior to ours, consisting of a rack with 16 quad core processors, 512GB of RAM and

160 flash drives [26]. Studies for Anzograph using 200 nodes, having 16 cores and 208GB

of memory each [28], AllegroGraph with a rack of 240 cores, 1.28TB memory and 88TB

hard disk [29], as well as OpenLink Virtuso with 8 nodes summing up to 256 cores and

2,048 TB of RAM, all suggest that it is possible to load more than 20 billion triples in

acceptable time, but with unrealistically expensive infrastructure.

As we expect to have only one server with off-the-rack specifications, we need to

focus on solutions appropriate for a single server deployment. Corcoglioniti et al. claim

that there is no adequate tool for processing large scale RDF datasets on a commodity

machine [30]:

Tools scaling to large datasets typically employ parallel, distributed compu-

tation models such as MapReduce(e.g., [14, 24, 25, 1]) and cannot be used

efficiently —if not at all— on a single commodity machine. Tools targeting

local computation, on the other hand, are often based on some form of data

indexing (e.g., [19, 12, 24]), such as a triple store or a similar index [16]; these

approaches typically scale as long as the index can be kept in main memory

and incur a severe performance hit when data has to be accessed on disk.

The authors develop their own tool, capable of processing large scale RDF datasets

on a single machine. Unlike conventional triplestores, their tool suite is not targeted to

implement a persistent storage, but to collect statistics and perform processing tasks on
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the RDF dataset by using streaming techniques. The supported operations include the ex-

traction of the TBox, filtering, normalising and mapping between vocabularies, inference

materialisation and the creation of owl:sameAs relations.

We therefore conclude that the deployment of a SPARQL endpoint for this size of

data is challenging and that we might have to use additional technologies to reduce our

data size. One such approach is described by Manolescu et al. [31]: Instead of deploying

a SPARQL endpoint on the original dataset, they suggest the generation of a summarised

graph of considerably smaller size, compressing several facts automatically. While the

authors provide a tool suite for executing the compression, the run-time analysis states

a time factor of O(|G|2) for generating the summarised graph and their architecture em-

ploys a triplestore in the backend.

Another possibility is the sampling of RDF data. Rietveld et al. [32] conclude that

most realistic queries only require 2% of the stored data for the example of 5 large scale

RDF datasets. They discuss the idea to learn weights on subsets of the dataset to im-

plement importance sampling. The authors also provide a Hadoop and Python backed

tool for generating these samples. While their reported run-times seem to be reasonable,

the usage of their methodology requires the evaluation of tuples of training queries and

results on the full dataset.

The idea of sampling representative subgraphs is not well discussed in the case of RDF,

but there are contributions concerning general graph sampling. Hübler et al. [33] discuss

this problem from a mathematical perspective. They show that deciding if a sample is

representative is NP-complete and propose a probabilistic sampling method, based on

the Metropolis Algorithm [34]. While some operations, like randomly selecting a node,

can be directly processed in the SemanGit RDF text files, the iteration over adjacent

nodes would again require the possibility to run graph traversals efficiently, i.e. having

a triplestore. Alternative approaches lead to the same problems. Lu and Bressan [35]

evaluate three different methods for subgraph sampling, utilising techniques like Markov

Chain Monte Carlo, Random Walks and Neighbourhood Sampling. They all require the

ability to query neighbours of a selected node.

As the previously mentioned alternative approaches all require to load the full RDF

graph, we turn our research to stream-based solutions like the already mentioned tool
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of Corcoglioniti et al. [30]. Indeed, the idea of streamed analysing RDF data is discussed

several times within the area of RDF Stream Processing (RSP) and a wide range of tools

and extensions to the SPARQL query language have been developed. Again, a listing of

these tools can be found at W3C [36]. While the implementation of a SPARQL endpoint and

repeatedly streaming the SemanGit RDF would be too imprecise for most analyses, this

technology can be used for generating graph samples. This idea is already discussed and

implemented by Dia et al. [37], who implement an extension to the C-SPARQL language,

enabling three different ways to sample subgraphs out of a stream of RDF data. Unfor-

tunately, the authors do not provide any reference to the source code and we could not

find any reference in the C-SPARQL research group’s GitHub [38] repository.

In conclusion, most tools discussed above cannot be used without severe performance

issues on our setup. We have to expect slow or limited deployment of our dataset in a

triplestore. In Section 5, we discuss sampling methods based on approaches not using

a triplestore or trying to reduce to only the necessary functions. Afterwards, we try to

evaluate the possibilities of deploying a SPARQL endpoint by ourselves in Section 6.
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3.3 (*) Use Cases

The approach to use and query data from GitHub is not a novelty [4] and especially social

scientists showed their interest in such data. Even before the invention of the git pro-

tocol, prominent economists like Tirole et al. tried to elaborate the motivations behind

open source software development [39]. Their work consists at the point of its publication

of statements and hypotheses, derived from prominent examples, which are not verified by

any field study. With the SemanGit dataset, we have the means to analyse the personal

behaviour of users and organisations at large scale, all voluntarily publishing their open

source codes online.

We will discuss use cases of data extracted from GitHub with references to related

work done in this field, moving from purely social interaction based analyses to other ap-

plications, such as personal behaviour, usage and distribution of programming languages

or geographic data.

As already described above, there are certain limitations to the dataset used. Analyses

on GitHub data need to be evaluated carefully, as they are prone to miss-interpretation [21].

examples are that not all repositories are projects, most projects are inactive, many users

do not contribute to public repositories, and pull requests only show as merged, if they

were merged via the GitHub website, see Section 3.1. Not all GitHub repositories can

be grasped by analyses, as users have the option to create private repositories, making

them inaccessible for unauthorised users. This also limits data about repository related

interaction, such as creating a commit or watching the private repository.

A user’s profile is always public and filled with automatically generated information

related to two distinct social features: A user can follow another user or watch a project.

These mechanisms are derived from social media platforms, which are target of social

analyses since they gained popularity in the 2000’s [40–43]. Obviously such research can

also be conducted on GitHub. An early contribution in this direction is done by Thung et

al. [44], published in 2013. They extracted 100,000 projects and 30,000 developers from

GitHub and perform a social analysis on the resulting graph. To determine who or what

is influential, they apply a PageRank algorithm, based on the set of common developers

of projects and users following each other. The ability to watch entire projects was not

taken into consideration, possibly because this feature was revamped shortly before in

August 2012 [45]. Focusing also on the ability of watching projects, Blincoe et al. target
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the related question, how popular users influence others. The small study with 800 users

analyses followers who star, contribute to, or fork a project after a popular user commit-

ted to it. Starring a project is similar to watching it, except that no update notifications

will be sent. In contrast to other studies, they combine the online gathered data with

data from questionnaires, to capture the motivations behind those actions [46].

Moving to a larger scale of data, Yu et al. [47] query the follow relations of 1.5 million

users, create a graph of all users having at least 5 followers and cluster for popular sub-

graph patterns, like isolated groups. While such an analysis can be conducted at a single

point in time by querying the current state, Jiang et al. extend the approach on tech-

nological base [44]. They analyse the behaviour of unfollowing other users, by collecting

such events from the GHTorrent [5] daily dumps over a period of 5 months, and enrich-

ing the data with GitHub API calls to contain 700,000 users as statistical population. A

similar attempt of conducting questionnaires like above [46], seems to be not as signifi-

cant due to lacking participation of users, with less than 30 answers to some questions.

Not only the structures that followed the implementation of social features, but also the

benefit of these social features itself is a topic of discussion. Bogdan Vasilescu elaborates

the effects of the social media components on programmers behaviour [48] for GitHub

and other Platforms. The author collects publications concerning different aspects of so-

cial mechanisms and their effects on users’ interactions. Although he also discusses how

these effects might affect analysis of the data, the entire work is a theoretical elaboration,

missing any real-life examples. A concrete approach based on data from GitHub was

formalised by Low et al. analysing how the usage of social media features might improve

the maintainability and long-term support for projects [49]. They conclude by analysing

the extracted patterns, that the survival of a software project is mostly dependant on

the spreading of awareness along the social network. Not only from the perspective of

project maintainers, but also from a user perspective this social technology can be used

to achieve a better development. Zhang et al. for example propose different patterns of

user behaviour to recommend software projects to others [50]. These features are then

extracted from a dataset containing the 86 most popular projects of GitHub and analysed

in a Latent Feature model.

Despite the social structure, SemanGit also contains additional information: Issues,

project structures and commit behaviour, that might be employed for an in depth analysis

of the actual performance of collaborators. A use case that might be relevant for several
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business areas, is the acquisition of new employees. Sachdeva [51] evaluates multiple algo-

rithms for automated recruiting of programmers, that extract keywords from job postings

and matches users from the GitHub API. While we are not aware of a working system

that was published, the author provides a set of queries for the GitHub API to obtain

recommended programmers.

If a developer has a lot of followers on GitHub, this can be interpreted as an indica-

tor that he or she makes good code, contributes on a regular basis, is active in popular

projects or uses common programming languages. Filho et al. investigate how influen-

tial Brazilian developers on GitHub, i.e. developers with many followers, are distributed

across the country [52]. They found 4,000 GitHub users who state on their profile that

they live in a place somewhere in Brazil. The geographical distribution is cross-referenced

with socio-economic data about the region, such as the number of educational institutions

in a state or its gross domestic product. An analysis of this type could also be performed

with the SemanGit dataset, especially since it is interlinked with DBpedia and includes

geocoded information about many developers. We also demonstrate how a follower-based

analysis can be performed with our dataset in Section 7.2.

Another key feature of git is branching, as it helps developers organising their dis-

tributed collaboration process. Instead of chaining all commits into linear order, projects

can be split up into several branches, where one branch is marked as the “master branch”.

For example, if a user is working on a new feature for a program, she could create a

new branch and commit all feature related contributions to it. Once finished, the newly

formed branch, now containing a couple of commits, can be merged back into the orig-

inal branch. This step is often done via a pull request, which provides features for code

reviewing and discussion. A contributor of the project needs to accept the changes be-

fore they are merged. If users wish to contribute to an external project where they have

no permission to push commits, they can fork the project. This creates a copy of the

project to which they can push commits, and also send their contributions back to the

original project via a pull request. An illustration of this process is shown in Figure 4. In

SemanGit, projects which have been forked have a “forked_from” relation to the original

project. Note that pull requests and forking are provider-specific features and do not

belong to the git protocol.

As branching helps to organise distributed collaboration within a project, analysing
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The illustration shows the mechanisms of branching and pull requests. Each node represents a single
commit. The upper lane represents the master branch, the lower lane a side branch. Every interaction
between those branches is marked by an arrow in between the lanes. After the second commit to the
master branch, a user decides to create a new commit in a separate branch. The development in both
branches continues independently of each other for several further commits. One user decides to start a

pull request from the side branch to the master branch, which is rejected with feedback for
improvements. After the integration of the suggestions, a second pull request is started and accepted,

which leads to a merge of commits from both branches. Both branches continue to exist.

Figure 4: Intra-project branching and pull requests

the branching structure of repositories can present good insights. Lee et al. [53] report

that analysing on branch-level is better suited when analysing collaborative work of devel-

opers than working on commit-level, as this better highlights the decentralised structure

of the project. While SemanGit contains pull request data, it does not contain branching

information yet. GHTorrent excludes some relations, such as branching, from the monthly

dumps, and only provides them in the incremental daily dumps. As the deployment of

the SemanGit dataset extracted from the monthly dumps is already challenging with our

resources, we have chosen to keep using the monthly dumps until further resources are

available. For comparison, the June 2019 monthly dump, which is a full database dump

– except for the missing relations – has 103GB, while a single daily dump from 2019,

containing one days’ updates, usually has a size of around 5GB to 8GB.

When analysing the competence of a GitHub user, it is important to keep in mind that

other factors than code quality can affect the results. There are indicators that not all

users judge the code contributions of an external pull request purely on quality. Indeed,

Rastogi et al. [54] find that the acceptance ratio of external pull requests is correlated to

the origin of the author and reviewer: They conclude that for pairs of countries which

are politically involved, such as Germany and China, the acceptance of pull requests from

one country to the other is significantly lower than for uninvolved pairs, such as Japan

and Switzerland. This can cause side effects that need to be considered when performing

pull request analyses. We also perform a geographical analysis on global cooperation in

Section 7.1, investigating which countries frequently work together in projects.
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Besides politically motivated decision making on pull request acceptance, Terrell et

al. [55] have also discovered a gender-based bias: While women tend to have higher accep-

tance rates on pull requests overall as compared to men, they still suffer lower acceptance

rates, if their gender is clearly identifiable and if they are committing to external projects.

The authors conclude that while female developers on GitHub may be more competent,

they still suffer from a gender bias.

Takhteyev et al. [56] also performed a GitHub analysis with a geographical focus. They

investigate different regions, comparing the number of GitHub users with that location,

the share of projects and various other characteristics of these projects, such as the num-

ber of received contributions or watch events. From this, they find that North America

receives an unproportional amount of attention, as the share of watch events on North

American projects is larger than the share of North American users. This article was

published in 2010 where GitHub only had 1 million projects - around 1% of the data we

have at hand now.

Rusk et al. [57] perform a different type of geographical analysis, taking the usage of

programming languages into account. Similar to our analysis in Section 7.3.1, regional

differences in language usage are compared. In their work, they aggregate the usage of

programming languages for a location and then generate a list of developers within the

location that use this programming language. Our analysis does not break down to indi-

vidual levels, but rather compares the differences in language utilisation across nations.

Investigating the usage and evolution of programming languages is a classical analysis,

as also performed on GitHut 6 and GitHub [16]. A recent work of Celińska [58] focuses

on how users can gain coworkers for their projects. Her results state that reciprocity is

a factor in the open source software community – helping others increases the chances

of them helping in return. She also find that influential people tend to find more col-

laborators, and that the coworker recruitment success is correlated to the programming

languages used.

While several of the works mentioned above study influential users or projects, the

influence was usually measured by a user’s number of followers or a project’s number of

watchers. Another metric is introduced and discussed by Badashian et al. [59], which
6http://www.githut.info
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measures how often a project is forked. Using these three measures of influence, they pro-

vide a list of the top ten programming languages on GitHub, as compared to our analysis

in Section 2. Furthermore, they show that different types of entities (engineers, CEOs,

authors, professors, speakers, organisations) attract different types of social interactions

(following, watching or forking projects). We discuss how the role of a person within an

organisation might be discovered, based on such interactions in Section 7.2.

Apart from trying to find behavioural traits by analysing developers’ social activities

on GitHub, data that is not socially related can also be utilised. Coelho et al. [60]

analyse the issues that developers posted on GitHub. By collecting and extracting almost

160,000 reported issues related to Android projects, the authors manage to detect new,

undocumented error and bug sources in the Android and proprietary libraries.
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4 (*) Creation of the SemanGit Dataset

In this section, we describe the steps taken to obtain the SemanGit knowledge graph.

Prior to this thesis, we designed an ontology that we briefly summarise in Subsection 4.1.

Similarly, we also created a conversion tool previous to this work, filling our ontology

with data from GHTorrent [5], as shown in Subsection 4.2. Finally, we will elaborate

how we improved the conversion tool and dataset since and how we made them publicly

available. A more detailed description about the ontology creation can be found in our

project report [61].

4.1 (*) Ontology

Prior to the creation of a knowledge graph about git, an ontology is needed to structure

the data and to enable logical inference. Seeing that git in itself is merely a protocol, we

to collected data from git repository providers. There are a number of such providers

on the web, the largest one being GitHub [2], reaching a global Alexa Rank of 44 in

May 2019 [62], whereas the second highest ranked source code host is SourceForge with

a global Alexa Rank of 359 for the same time period [63]. For this reason, we chose to

gather data about GitHub, but keeping our ontology extensible to other hosts. This was

achieved by using a hierarchical approach for the classes in the ontology. We have classes

which are general to git and provider specific subclasses that inherit from the git-related

classes, allowing us to capture host specific custom data and information about additional

features. As an example, a git user is just a pair of name and email address, whereas

a GitHub user also has a location, language, creation date, company related information

and more. The location that GitHub users enter on their profile is available to us as

geocoded data, allowing for an easy interlinkage with DBpedia [11]. The GitHub user

class and its fields are prefixed with the host’s name to clearly distinguish between the

git protocol and provider specific features. An illustration that was made with the We-

bVOWL Editor [6] is shown in Figure 5. The full ontology, without extensions to other

providers than GitHub, consists of 22 classes and 80 properties and can be found on our

GitHub repository 7. We show how the ontology can be extended to include GitLab in

Section 8.1. To give some examples, there are classes for users, projects, languages, com-

mits and the GitHub specific issue tracking feature, as well as classes capturing events,

such as one user following another, which is also a GitHub specific feature.

7https://github.com/SemanGit/SemanGit/tree/master/Documentation/ontology
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Visualisation of an excerpt of the ontology with WebVOWL [6]. This excerpt shows parts of the
ontology modelling the characteristics of a user on GitHub. Classes are represented as blue nodes,
relations as green or blue labelled arrows and literals as yellow boxes. user belongs to the classes
obtained from the git-protocol. followable belongs to the classes introduced for the modelling of

social interaction. All other classes represent data that is specific to GitHub and are prefixed
accordingly.

Figure 5: Excerpt of the SemanGit ontology

We are aware of some limitations regarding the ontology, which we cannot address

now without invalidating all queries from subsequent sections. In a few places, existing

ontologies should be re-used, for example foaf:mbox for a user’s email address. Some

inverse properties should be added where applicable and naming conventions should be

adopted [64]. These will be discussed in detail in Section 10 and we will strive to address

these issues in an upcoming version.

4.2 (*) Converter

With the ontology in place, we can start the creation process of the knowledge graph.

Unfortunately, it is infeasible for us to query data from GitHub directly, due to the fact

that their API has a limitation of 5, 000 requests per user and per hour [19]. As of

November 2018, GitHub is hosting over 100 million repositories [3]. With the strong un-

derestimation of requiring just one query per repository to gather all relevant information,
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this would already take over 830 days 8, if done with one authentication token. Realis-

tically, more queries are required, for example to obtain the language usage information

for a repository that we used in Section 2. We were therefore forced to use a different

input source. The GHTorrent project [5] has been gathering GitHub metadata for over

five years, using more than 400 community donated tokens to be able to perform more

queries per hour. Our Java conversion tool therefore translates their relational data into

RDF. We will summarise some key facts about the tool we have created and compression

methods applied that helped us to drastically reduce the disk size of the resulting dataset.

The GHTorrent monthly dumps consist of a set of .csv formatted tables and either

contain a subject along with its literals or relations between entities. Our converter parses

these tables row by row and translates the data with the usage of multi-threaded proce-

dures. The fact that all tables in the GHTorrent data dump are presorted by an identifying

column helps us greatly with space efficiency: When using the Turtle format [65], we are

able to abbreviate as many successive triples as possible, as for any relation, all occur-

rences of an entity within the sorted column are listed successively. Especially tables like

the project_commits, storing which commits belong to which project, let us abbreviate

all but the first triple for any project.

Furthermore, we have created one prefix of at most two characters for every class and

relation in our ontology, allowing us to drastically shorten the URI lengths. One charac-

ter prefixes were given to the most commonly used classes and relations, while using the

empty prefix for the most commonly used relation: github_repository.

Another technique we employ to reduce the output size is to change how all integers

within entity identifiers are represented. Instead of using the characters 0-9, we are using

0-9a-zA-Z and the underscore (_) as alphabet for integer representation. Adding more

characters to the alphabet would require the usage of non-ASCII characters, which would

worsen the storage size when using UTF-8 encoding. A leading minus character on URIs

led to errors in RDF syntax checkers, so we left it out, reaching an alphabet length of 63.

The code of the integer conversion function is shown below.

8 100,000,000queries
5,000queries/h = 20, 000 h = 833.33 days
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private static String integerConversion(String input){

String alphabet =

"0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ_";

String rightOfColon = input.substring(input.indexOf(":") + 1); //numeric

String leftOfColon = input.substring(0, input.indexOf(":") + 1); //prefix

int in = Integer.parseInt(rightOfColon);

//base conversion

int j = (int) Math.ceil(Math.log(in) / Math.log(alphabet.length()));

for (int i = 0; i < j; i++) {

sb.append(alphabet.charAt(in % alphabet.length()));

in /= alphabet.length();

}

return leftOfColon + sb.reverse().toString();

}

Combining these techniques, our resulting graph is only slightly larger than the input CSV

formatted files. The November 2018 dump, which we initially used for the development,

has a size of 304GiB. Our converted dataset requires 310GiB. An illustration of the output

sizes when different methods are applied is shown in Figure 6, where we apply Turtle

abbreviations, then add prefixes and finally also base conversions, i.e. changing integer

representations of IDs. If we convert the output to N-Triples format [66], and don’t use

base conversion, meaning none of the compression methods are applied, the output size for

the sample is 16,560MiB. Further statistics on the dataset will be discussed in Section 6.

4.3 (*) Improvements and Publication of the Dataset

Many of the points from this section up to here were done to some extent during a lab

assignment in Summer 2018. A detailed project report is available online [61]. We have

constantly improved the converter since, fixing errors in the RDF output, removing in-

consistencies with the ontology or adding additional options for the output format, see

Section 5. Some of the key changes will be discussed now.

We have experienced that the data we draw from GHTorrent has changed in structure

multiple times. Columns were added to some tables to present new information, whereas
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Figure 6: Output sizes for various compression methods

other tables ended up with fewer columns, as certain information had to be removed from

their dataset due to changes to data protection law. The repo_milestones table, which

should document the progress of projects towards self set goals, is completely empty now.

This information is only distributed via incremental daily dumps, which are significantly

more expensive to use, as the additional tables lead to a larger dataset. In the first version

of our tool, developed in the lab, this would have caused our conversion process to fail

by either crashing or creating wrong triples without warning. We have implemented new

features, such as additional consistency checks using the schema.sql file, which contains

the table structure information, and making sure that the structure is compatible with

our current conversion process. Otherwise, as much as possible will be translated, while

incompatible relations are skipped and warnings are produced. Once the conversion is

completed, statistics about the percentage of incompatible lines are printed for every CSV

file. High rejection rates indicate changes to the table structure. Furthermore, large por-

tions of the converter were rewritten to modularise the code for better maintainability

and to make computation of statistics on the dataset easier. Further desirable changes
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will be discussed in Section 10.

Previously, we did not have the resources to load our dataset into a triplestore. This

made it difficult to verify the integrity of the dataset beyond basic RDF syntax checking.

During the process of creating a queryable knowledge graph, we have encountered many

challenges due to the size of the data, which forced us to make adaptations to the out-

put for performance reasons, see Section 6. In Section 8.2, we show how we interlinked

our dataset with DBpedia. More specifically, the location information on user profiles

is geocoded, allowing us to access additional information about the user’s city and state

from DBpedia.

Additionally, we have made the dataset publicly available on the web, including a

documentation about the ontology and how the dataset can be reproduced using our

tools 9. We strive to update the uploaded dumps every 2 months, starting February 2019.

With the most recent version of June 2019, the interlinkage to DBpedia is available.

9http://semangit.de
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5 (†) The Challenge of Representative Sampling

During the early stages of this master thesis, we did not know what computational re-

sources we would be able to work with. As described in the elaboration of our third goal

in Section 1, we need an alternative approach for our analyses if the deployment of our

SPARQL endpoint on the full dataset should fail. Although we found and listed litera-

ture talking about sampling of graphs in Section 3.2, we already summarised that most

of these methods are not feasible for us. This is by no means a trivial task: The problem

of deciding if a sample is representative, was shown to be NP-complete [33].

While there are promising sampling methods for graphs, their implementation poses

technical difficulties, as neighbouring nodes need to be accessed frequently during graph

traversals. Therefore, we either need to find a possibility to query for the neighbours of a

vertex quickly, or we need to find an appropriate sampling method that does not rely on

graph traversals.

In the following, we will discuss four different approaches, starting with the most triv-

ial one of randomly rejecting triples outputted from the converter in Subsection 5.1. We

use the results from the discussion, to develop an improved method, combining a greedy

strategy with random rejection in Subsection 5.2. Thirdly, we will analyse the attempt

to efficiently query neighbourhoods without a triplestore in Subsection 5.3, with the goal

to draw connected subgraphs at random. Lastly, we will discuss the idea to generate

representative datasets in Subsection 5.4, by utilising the sorted structure of our input

tables, see Section 4.2.

Before we elaborate these four different approaches of sampling, we want to give a

short reminder about the structure of input and output of our converter. The GHTorrent

project provides us with data split up into several tables, provided in the form of CSV

files. The converter transforms these tables into the RDF Turtle format, by translating

row after row according to our ontology, abbreviating where possible. This process is

parallelised to translate all tables at the same time, creating a separate RDF file each.

These files are later merged to a single file by default.
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5.1 (†) Totally Random Sampling

Our first idea is the naive approach of randomly choosing a set of triples from our knowl-

edge graph. Formulated in a different way, we want to reject preject percent of the triples

outputted from the converter. Of course, this method should not be applied to triples

with relations associated to the vocabularies of rdf: and rdfs:. We exclude such con-

structs from the rejection process and only apply it to triples containing relations of the

SemanGit: vocabulary. In the following, we will discuss some advantages and disadvan-

tages of such a sampling.

When analysing the performance of such a sampling, two arguments are to be consid-

ered. On the one hand, fewer write operations occur, but each triple requires the effort to

draw a pseudo random number. In the end, such a sampling procedure should require as

much time as the converter itself, making it the first sampling method to run in feasible

time.

Unfortunately, the short runtime is the only advantage of this random sampling. The

drawbacks of such an implementation lie in the structure of the sample. As all rejections

were drawn randomly, the loss of information would be evenly distributed across all nodes

in the graph. For example, some users might only have literals for their location, some

others only information for their email. The result would be a sparse graph, with a lot of

contained entities, but a small portion of relations that appear per entity.

In the end, such a sample would only provide little value for most analyses. We

therefore need a method of sampling which produces large sparse graphs within a similarly

short runtime.

5.2 (†) Random Sampling with Greedy Collection

The main problem with the method previously mentioned is that the resulting graph is

too sparse, due to the independent rejections. One approach to target this issue is to

accept all triples containing the same subject together. The computational effort that is

involved in collecting all these triples depends on the original format of the data source.

Actually, we already used a weaker form of this approach. In Section 4.2 we elaborated

that the structure of the GHTorrent dataset is good for abbreviations: All tables are

sorted by their first column and all literal values of an entity are stored in the same row
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within the CSV files. By applying sampling to each abbreviated block as a whole, we

could greedily pick as many connections as possible.

We implemented this sampling method, as it only required minor changes to our cur-

rent code. After generating as many consecutive triples as can be abbreviated, we can

reject this set of triples with probability preject. The computational effort should be even

smaller to the method described in 5.1, as we need to generate fewer pseudo random

numbers and the abbreviation ratio of the sample is similar to that of the full dataset. A

test of the runtime nevertheless showed a small time overhead compared to the conversion

of the full dataset.

This method should definitely solve our problem of sparsity, but still has multiple dis-

advantages. One major drawback of rejecting and accepting entire sets of triples is that

the output size can vary greatly, as not all resources have the same number of triples as-

sociated with them. For example, some projects have hundreds of thousands of commits,

all abbreviated into a single statement. Although we can claim that the expected number

of relations included by this method is the same as for the random triple sampling, the

structure of the sample differs heavily. For each user that is sampled, we now also include

the full set of literals associated to the user, but in expectation there are also more users

with no literal at all. This also has an effect on relations between resources, as in many

cases, these resources will be linked to nothing else.

Still, such a sampling would enable analyses related to literals and together with its

good runtime performance, we could utilise it in the case that low computational power

is at hand.

5.3 (*) Random Subgraph Sampling

As mentioned in the previous subsection, choosing random abbreviated blocks as sampling

yields a graph with underrepresented interlinkage of resources. To counteract this effect,

we propose an extension utilising larger structures than a resource and its neighbours.

We choose a set of starting resources at random. For every starting resource, we perform

a Breadth First Search (BFS) for incoming and outgoing edges up to a certain depth

and include the closure of these edges. When investigating interlinkage, it would be more

suitable to attempt to find maximal subgraphs, i.e. not limiting the depth of the BFS.

This would capture all maximal paths. However, we cannot estimate a priori how large
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such a sample could get and in the worst case – we might obtain almost the full graph, if

the complete dataset contains few isolated subgraphs.

The benefit of using this sampling method is that with high probability, we will be

able to retrieve results when searching for local patterns, if such a pattern exists in the

full dataset. As an example, we could check if two users who commit to the same project

tend to also follow each other. With a connected graph of sufficient depth or maximal

subgraphs, such relation chains would be present, if there are enough such relations in

the full dataset.

To be able to perform a BFS search, we need to query the outgoing and incoming

edges of every desired node quickly. This would be trivial, if the whole dataset were

loaded into a triplestore. However, at that point in time, we were uncertain if we could

achieve this, due to lack of computation power. As triplestores implement multiple fea-

tures that are not necessary for this task, we developed our own approach, focusing on

the basic graph traversal functionality. Our approach is using Apache Cassandra [67], an

open-source, wide column store, NoSQL database management system. The design and

features of this tool all serve the functionality of fast retrieval of indexed data. For any

triple (Subject, Predicate, Object), we would store that Subject has an outgoing edge to

Object, and, if the Object has a URI, also that Object has an incoming edge from Subject.

The type of relation is irrelevant for BFS and would increase the stored data significantly.

Therefore, we end up with a three column table: URI, refers_to, referred_by. We

integrated this into the converter to run alongside the triple generation process. In order

for this to work, the dataset must be free of blank nodes so that we can refer to every

resource. For this reason, we added the -noblank parameter to our converter, forcing it

not to create any blank nodes.

Overall, saving the outgoing edges of resources costs only a little extra time. As the

data from GHTorrent is presorted and we are often able to abbreviate many successive

triples, this usually allows to add many relations to the outgoing column of a resource

in one update step. Saving the incoming edges however proved to be more difficult. As

an example, if one project has a large number of commits, it still requires just one query

to save all commits as being adjacent to the project. However, we need to insert the

project to be adjacent for every commit separately. The Linux GitHub repository has

over 800,000 commits as of May 2019 [68], and we even found a repository with a million
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commits. 10 Even with the usage of bulk queries, this step caused the run-time of the con-

version process to increase so drastically that we were forced to abandon this approach,

with an estimated overall run-time of at least several weeks.

Assuming that only the forward direction is available, some sort of BFS would still

be possible. A lot of data would be missing though, even if maximal subgraphs are

created. While we re-modelled the turtle output to not contain blank nodes, these orig-

inally blank nodes still have no incoming edges, but only outgoing. Therefore, they

could not be reached, neither any nodes which are “dangling” from these nodes, mean-

ing having only an incoming edge from the originally blank nodes. For example, this is

the case for the programming_language class in our ontology, which is “dangling” from

the github_project_language class, that has only outgoing edges. This issue could be

addressed by the addition of inverse relations, which we will discuss in Section 10.

5.4 (†) Chronological Sampling

Although Random Subgraph Sampling possesses very favourable properties, the intractable

computation time led us to a different approach of creating representative datasets. We

realised that the input tables of the converter were ordered after one of the key columns.

This means that a newly created user, project, comment or commit would be listed at

the end of the input table.

If we assume that all input tables grew with the same ratio until now, we can take a

fixed percentage phist of lines from the beginning of each input table and obtain the RDF

containing a complete historic data set up to an unknown point in time. For some input

tables containing resources and their connected datatype properties, which are always in

one to one correspondence, we know exactly that the historically first phist% of data is

included. More problematic are tables linking different resources in a one to multiple or

multiple to multiple correspondence. As the input tables are sorted according to just one

key, the resulting dataset will contain all information about less than phist% of resources

belonging to first key, but no information for the other keys. Formulated in an example:

The sample will contain a link to the newest commit of an old project, because the ac-

cording input table is sorted by the project IDs. However, no data will be present about

this latest commit. Overall, this is just a minor drawback that we need to keep in mind

for our analyses, as a sample derived from such a method should still be highly connected.
10https://github.com/cirosantilli/test-many-commits-1m
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If we impose additional but very weak assumptions, we might even derive some ten-

dencies about the grade of connectivity of such a sample. These assumptions are that

users, projects, organisations etc. that exist for a longer period tend to have more ad-

jacent relations than new ones. This leads us to the conclusion that a sample from the

beginning of the input files is more interconnected and contains less small partitions, than

a sample of the same size from the end of the input files. As these two types of samples are

the extremes in sense of the distribution of partition sizes, such chronologically sampled

head and tail samples can be used as boundaries for different estimation and evaluations.

Another upside of this sampling method is the ease of implementation. As only the

input tables need to be reduced to a certain size or percentage, the converter does not

need any additional features. For the selection of a fixed set of rows or percentage of a

file, from the beginning, end or middle, multiple shell commands exist in every common

operating system. For Linux, we used combinations of the head, tail and wc commands

to implement such a sampling.

Like random triple sampling, these new sampling methods also require almost no

computational effort in generation, but have some of the desirable properties of Random

Subgraph Sampling. In the later sections, we use such samples for the evaluation of

loading times and for the design and estimation of query results and performance.
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6 (†) Deployment of Server and SPARQL-Endpoint

Content of this section will be the long process of transforming our database from a plain

text file to an efficiently queryable endpoint. In Section 3.2, we discussed the approaches

of different software providers, which all utilise a superior infrastructure. Corcoglioniti et

al. already pointed out how difficult the deployment of big data on a single node triple-

store is [30]. Nevertheless, we wanted to try a deployment by ourselves.

In Subsection 6.1, we will start with a short discussion about different triplestores.

While their capabilities and requirements were already mentioned in Section 3.2, here we

will focus on the practical aspects, i.e licenses and comparing benchmarks. Subsection 6.2

will introduce the first attempt of loading the data, its failure and the evaluation meth-

ods guiding our following decisions. The remaining parts will chronologically recall our

attempted approaches, before we finally obtain a strategy for performing analyses on the

dataset that fits our resources for both time and computational power.

6.1 (†) Used Software

Our first research leads to a broad set of software, claimed to have suitable functionality

for operating on big data RDF files. Graph databases either contain a native support for

RDF or extensions which enable comfortable handling of those datasets. We have set our

focus on tools of the first class, dedicated to handling RDF, hoping that such specialised

tools might perform more efficiently on large scale datasets. Following this restriction, we

elected the following candidates for further research, recommended by the official page of

the W3-Consortium: Oracle Spatial and Graph [69], Stardog [70], AllegroGraph [71],Open-

Link Virtuoso [72], GraphDB [73], and Blazegraph [74].

Although providing promising results, the first four members of this list only offer a

free trial version for a fixed time period, are limited to a fixed number of triples or usage

of resources. The licensing of the remaining options of GraphDB and Blazegraph seemed

suitable. While GraphDB offers a free version, limiting the number of parallel queries

to two, Blazegraph is open-source licensed under GPLv2. For the final decision, we con-

sidered two major factors: A suitable query performance for the analyses done in this

master thesis and the possibilities of maintaining an open-access version of the dataset.

For both solutions, there are analyses on which they are fast, while performing slow for

others, according to different Benchmarks, comparing one of both tools against other
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solutions. [75–77]. A major drawback for this kind of research is the limited literature

available comparing both tools in the same setting. While there are some recent contri-

butions by Georgala et al. [78] and Hernández [79], directly comparing Blazegraph and

GraphDB, the benchmarking goals and used infrastructure differ from ours completely

and therefore only have limited significance.

Concerning the opportunity to provide a SPARQL endpoint, both Blazegraph and

GraphDB support the deployment of an easily customisable web interface with options

for setting query time limits and a client based hourly query limit. Naturally, GraphDB ’s

free license, limiting the amount of queries that can run in parallel, led us to favour Blaze-

graph in the long-term usage.

Besides the previously discussed software, a new solution appeared during our writing

process: AnzoGraph. According to the audit log of the W3C website [80], AnzoGraph

was added to the listing on W3C on the 1st of March 2019, which is long after we started

the load in process with Blazegraph. Although claiming good results for query and load

times, AnzoGraph needs four times the storage size of the dataset as a recommended

requirement for the memory, which is not maintainable for us at the moment.

6.2 (†) Load-In

For the reasons mentioned in Subsection 6.1, we deployed Blazegraph on our server, com-

prising an instance responsible for the loading of the data and a curl-based client, man-

aging load requests. Our intended workflow was to deploy the raw data and perform our

analyses afterwards. We aborted our initial trial to load the whole November 2018 dataset,

which is 310GiB in size, into the standard server configuration of Blazegraph after 131

hours. Upon reading the size of the journal, the internal storage system of Blazegraph,

containing 281GiB stored on the hard-disk, we could estimate that only a subset of 3.3

billion triples, less than 15% of our data, was loaded at this point of time according to

Blazegraph’s official statistics [81]. Our results from the end of this section even suggest a

far lower value. The main motivation behind the abortion was that we couldn’t observe

any growth of the size of the journal on the hard-drive for more than a day, meaning that

the process froze or that the load rate dropped significantly.

This encouraged us to start a series of experiments to determine a suitable server con-

figuration and estimates for the runtime. Blazegraph supplies different standard configu-
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rations, enabling or disabling various features like reasoning, free-text index or statement

identifiers. As our main usage criteria is to analyse the already defined semantic dataset,

especially the fastload configuration seemed appropriate, described as [82]:

This mode still does inference, but it is database-at-once instead of incremental.

It also turns off the recording of justification chains, meaning it is an extremely

inefficient mode if you need to retract statements (all inferences would have

to be wiped and re-computed). This is a highly specialized mode for highly

specialized problem sets.

6.2.1 (†) Initial Evaluation Plan

Before listing the set of tested configurations, We want to explain the evaluation method-

ology. As mentioned in Section 5.4, both head and tail samples seem to be structure

preserving and feasible to compute, making them appropriate for the evaluation of load

in performance. As we expect that head samples contain more internal linkage than the

actual dataset, they provide a better upper bound on the load in times. We derive this

from the assumption that a connected graph of a fixed size should not be easier to store

for efficient querying than a set of two isolated partitions. An initial test of loading times

on the standard server configuration for head samples led to the conclusion that file sizes

above 10GiB seemed inappropriate for extensive benchmarking. In fact, we tried to load

a sample of 15GiB and aborted the attempt after two days. From our experience, we

expected that the load in rate develops highly non-linear and therefore used an exponen-

tial scaling, always doubling the size of the previous test sets. These thoughts resulted

in a test set of six head samples of approximately 320MiB to 10, 240MiB for trying to

calculate an upper bound on the load times of the whole dataset. An initial test of load-

ing all benchmark sets took 20h:26m in total with 14h:33m for the 10, 240MiB sample.

Although the loading time seems to be prohibitive for frequently repeated tests, it will be-

come clear in the next parts, that the inclusion of such big datasets as test sets is necessary.

Concerning the test cases, the broad set of options prohibits the evaluation of all

combinations of predefined server configurations with its variety of values for sub-options

on branching factor, cached triple size and memory. We propose a three staged evaluation.

1. We try the full-feature configuration for a maximal memory usage of 8GB, 16GB,

32GB and 56GB. Although having a capacity of 64GB memory, we had to leave

enough memory for the system to continue operating and to allow the operating
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system to cache data, reducing the number of read operations required on the disk.

We decided against enabling any swap memory for multiple reasons, but mostly to

avoid that our HDDs would slow the process down.

2. We alter the best configuration from the first evaluation to disable more and more

features, until we get a copy of the fastload configuration. We decided on the exact

order in which we disabled the features, according to their relevance for us.

3. We test marginal effects of changing different numerical parameters. As we don’t

know suitable ranges for all parameters, we alter each parameter slightly, to surveil

the impacts on the loading rate.

Table 5: Loading times for different sizes of memory

Memory Size
Data Size 8GB 16GB 32GB 56GB
320 MiB 310s 305s 308s 304s
640 MiB 777s 794s 776s 772s
1280 MiB 2035s 1985s 1870s 1967s
2560 MiB 5224s 5172s 4852s 5043s
5120 MiB 13919s 13804s 13705s 13262s
10240 MiB 52938s 57920s 63601s 58479s

The table shows the required loading times for 6 data samples of increasing size. These samples were
evaluated on 4 different server configurations with different sizes of memory. Memory Size listed in GB,

instead of GiB in accordance with common practice for hardware. After each successful loading
attempt, each server was reset.

We conducted stage one as intended and obtained the loading times listed in Table 5,

providing mixed results supporting our impressions of non-linear growth. By doubling the

size of the dataset, the load in time of each server configuration grew with a factor from

2.401 to 4.64. It is remarkable that all server configurations have unexpectedly almost the

same growth factor upon doubling the file size up to the point of reaching 5, 120MiB of

data with an average multiplication factor of 2.58 for the time and standard deviation of

only 0.092, heavily defying our impressions of non-linear growth. The step from 5, 120GiB

to 10, 240MiB however shows a growth factor ranging from 3.8 to 4.64 for the different

configurations significantly different from the linear growth measured before. The illus-

tration of these circumstances can be found in Figure 7.

To further analyse the growth factor, we decided to move on from the exponentially

growing test sets to a finer and linear granularity and evaluate just for a single configu-

ration file, the one with 8GB of memory. As this analysis was intended for exploration

and not benchmarking against the fastload configuration (data-base at once, for some
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The grouped bar plots show the growth factor of loading time for multiple iterations of doubling the
sample size. Each server configuration is represented by a single colour and was evaluated for 5

iterations. The data is calculated from the observations in Table 5.

Figure 7: Expansion factor upon doubling the data size

features [83]), we decided to implement an incremental approach, skipping the reset our

server and using 10GiB of head-sampled data split up to chunks of 1GiB. We hoped that

we could save time by avoiding any unnecessary reloading of any data. To ensure that

the former 5GiB and 10GiB test files resemble a combination of the first 5 and 10 chunks

respectively, we split the input files of the converter rather than the already generated

test data sets. The resulting load in times can be found in Figure 8.

Not only do the times depicted show a slower increase for incremental loading, but

also the total load time summed up to only 85.12% of the values depicted in Table 5.

As such a high difference could not be the result of external effects, we conclude that

Blazegraph’s loading routine is not suited for bigger files. This insight also led us to a

new strategy for loading the data, as the effort of creating a split version of the dataset

just requires small modifications to the converter.

6.2.2 (†) Altered Evaluation plan

To evaluate the possibilities of incremental loading of split datasets, we came up with

two different approaches. We split our dataset combined.ttl into files part1.ttl, . . . ,

partN.ttl consisting of a (1) fixed size or of a (2) fixed amount of triples. For both

variants, a distribution preserving split in the way we implemented it at the end of Sub-
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Loading times of different trials. “Exponential” represents the first run with doubling sample sizes per
iteration and a server reset after each load. “Linear” describes the second trial with linear increasing

sample sizes and an incremental loading.

Figure 8: Loading times with finer samples

section 6.2.1 seemed too costly. This would require a lot of preprocessing for splitting the

raw input files and sorting them according to the distribution of relations. Instead, we

modified the converter to generate upon receiving an input table like "parents" a distinct

set of files parents_part1.ttl, parents_part2.ttl, ..., parent_partN.ttl, which

then could be combined to form a test sample.

Out of the two variants, we chose to implement the first. The second variant of a fixed

amount of triples had major drawbacks. As long as we link different entities or literals

with a fixed type, like xsd:dateTime, the required storage of a triple remains almost fixed,

because it contains only prefixes of up to two characters, IDs and literal values of similar

length. Considering strings for representing comments, this statement is unfortunately

not valid anymore, as a comment’s length is not predictable and can range up to several

ten thousands of characters, which could skew the distribution of information content for

each sample. The only design question that remained to cope with is the parameter for

the file size. To determine a suitable one, we altered the evaluation plan of step 2:

2. (a) Split the 10GiB sample set into files of fixed size to determine the best param-

eter for the file size

(b) Evaluate the full feature configuration for split files against the fastload con-

figuration for non-split.
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For the first part, we choose file sizes starting at 100MiB in steps of 100MiB, until no

improvements could be observed. This was the case for the step from 300MiB to 400MiB.

A graphical representation of the results is provided in Figure 9. The bars show the overall

loading times, and also the loading times of the commit data, the most common data type

in our dataset. The first thing to point out is that the load in times for 100MiB splits, is

slightly faster than loading everything at once. The following steps to bigger split sizes

show improvements from 100MiB until 300MiB by a reduction of 23.21% of the loading

time, totalling to 28.51% less time consumption compared to the initial “everything at

once” loading approach. Going forward, a slight increase for 400MiB is observable which

fits to the previously observed improvement of 14.88% for splits of 1GiB in size. Seem-

ingly we have a trade off, that smaller file sizes lead to a faster loading, but also cause

computational overhead when getting too small.

We choose for all future load-ins sizes of 300MiB, as they provided, at least for the

10GiB sample, the best trade-off and therefore hopefully also for the whole data set.

Loading times for a dataset of 10GiB, split up into several files. The experiment was conducted for split
sizes from 100MiB to 400MiB. The loading times for data originating from the commits table is

separately coloured in blue, as they form the largest share of the data.

Figure 9: Loading times for different split sizes

In part (b) of step two, we finally compare against the fastload configuration, proposed

by the Blazegraph documentation. From the previous results, we know that significant

differences are observable after 5GiB of data size. For this evaluation, we again choose a
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linear scaling, to obtain a better intuition of the growth behaviour beyond 10GiB. The

chosen test sizes were 6GiB, 8GiB and 10GiB and we evaluated two different routines. The

fist one is the previously discussed loading with split data combined with the standard

server configuration. The second option is Blazegraph’s fastload configuration, which

disables features like automatic reasoning and inference. As the fastload configuration

implements a “database at once” approach, the full dataset was used for this method.

Surprisingly, the standard configuration with split data beat the fastload configuration in

every case, being up to 39% faster. Seemingly the fastload configuration would outper-

form all other methods for small data sizes, but also shows a steeper growth when using

bigger datasets. These final results can be found in Figure 10.

The loading times for the two resulting approaches. Sample sizes of 6GiB, 8GiB and 10GiB. Axes are
not truncated to visualise the magnitude.

Figure 10: Loading times Comparison

This was the final evaluation step, as we abandoned stage 3, the finetuning of parame-

ters in Blazegraph. A single test of altering the parameters as described by the Blazegraph

team [84], led to longer loading times of 7% for the 10GiB sample. As we had no better

starting point for finding a good parameter configuration, we decided that successive tests

to find the optimal combination of these 8 values are too costly.
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6.3 (†) Our Resulting Approach

It is not determinable from the previous evaluation, which configuration is the best one

for our case. As already mentioned, the fastload configuration is faster but has a steeper

growth. Fortunately, we realised that the improvements that we achieved with the load-

ing of split data is sufficient enough for deploying a new strategy. We realised that even

with all our optimisation efforts, the loading of the whole dataset is unrealistic, but also

not necessary. For most of our planned analysis, it should be enough to focus on certain

subsets of the dataset.

8GiB of memory should be sufficient for any loading process, according to our own

evaluation. As a result we deployed a Blazegraph instance with 8GiB of memory alongside

an instance for querying with 48GiB of memory on the same server. Each instance would

operate on a separate hard-disk of 4TB. The first server would be responsible for loading

the data incrementally. Whenever sufficient data for performing desired queries is loaded

by the first instance, we copy the whole journal into the second instances file path and run

the analysis in parallel to the data loading process. With a measured size expansion factor

of around 10, both instances could theoretically contain the whole dataset as a Blazegraph

journal. We ordered all analyses we would like to perform by the effort required to load

the needed data and obtained an order for loading different subsets of the RDF.

1. Users, Followers, Organisation Members

2. Project Members, Project Join Events, Programming Languages, Watchers

3. Projects, Pull Requests

...

We still consider the effort of loading commits, commit_parents and project_commits

as too high. The three tables need 143GiB, 21GiB and 44GiB of storage respectively, sum-

ming up to 67% of data that we have. As of the start of June 2019, where we aborted

any further loading, the final Blazegraph journal contained 11:

Triples: 2,717,664,071

Entities: 245,069,646

Properties: 42

Considering that the journal size of this dataset already reached 456GiB, we can cor-

rect the estimates from our first loading approach down to only 1.6 billion triples within a
11The description file was uploaded to: www.semangit.de/summary.rdf
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week. With the fact in mind, that the growth rate of loading time is highly non-linear, we

are really proud that we manage to store as many relations, especially with specifications

significantly lower than the suggestions [81]. Moreover, our dataset is actually queryable

in feasible time and the analyses conducted in Section 7 are not based on samples, but

on real data.

We can summarise that we performed better than expected. While we now know

how to fasten the load in process, we still need a better and more efficient architecture if

we want to deploy the full dataset or perform analyses that require larger data, such as

commits.
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7 (†) First Analyses on top of the Graph Database

We described our third goal as the task of finding use cases and evaluating the query

capabilities. In this Section we will discuss three example use cases in detail, provide

SPARQL queries for them and show first results. It is important to note that these anal-

yses do not operate on samples. As described in Section 6, we were not able to deploy the

full dataset, but at least the complete information about 42 properties and the associated

classes. This dataset, containing 2.7 billion triples, was used for the following results. We

already listed different ideas and analyses that were implemented on data sources similar

to ours in Section 3. In this Section, we will conduct our own analyses, mainly focusing

on tasks utilising more complex graph traversals.

In Subsection 7.1, we show how users cooperate on an international basis. We inves-

tigate the number of nationalities that one user of a distinct country collaborates with

and also show how our data can be utilised to detect a good collaboration between two

nations. Thereafter, in Subsection 7.2, we will extract the number of followers within

organisations and measure the success of their projects by counting their watchers. With

this information, we investigate if more successful organisations share a more interlinked

structure within their teams. In Subsection 7.3, we revisit our language analysis from

the motivational section from a different point of view, with a graph database at hand.

Further analyses that require more computational power or sampling will be discussed in

Section 9.

7.1 (†) Global Cooperation within Repositories

Many users on GitHub state the country they live in or where they originate from. With

this data, we can derive interesting analyses for countries on a global scale, enabling

comparison on regional differences for programming languages, coding style, social media

behaviour or even business policies. We already mentioned publications analysing such

geographic information, for example Rastogi et al. that analysed pull request acceptance

behaviours for different nationalities [54]. Besides comparing differences regarding those

aspects, one can also analyse how well countries cooperate. Especially such an analysis

could be interesting for governments, trying to support their IT sector in the internation-

alisation process.
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A repository can have multiple collaborators. The SemanGit dataset represents this

information through the class project_join_event, linked to a user and a project. An

intuitive approach to obtain data about international cooperation is to query each project

that contains at least one user from a certain country, and count the nationalities of the

cooperators:

Using the server described in Section 6 and the most recently loaded version of the

-- Count the set of users from countryA, that work
-- in at least one project with a user of countryB.
PREFIX sgo: <http://semangit.de/ontology/>
SELECT ?countryA ?countryB (COUNT(distinct ?userB) AS ?relations) {
?userA sgo:github_user_country_code\/ ?countryA .
?projectJoinEvent1 sgo:github_project_joining_user\/ ?userA ;

sgo:github_project_joined\/ ?project .
?projectJoinEvent2 sgo:github_project_joined\/ ?project ;

sgo:github_project_joining_user\/ ?userB .
?userB sgo:github_user_country_code\/ ?countryB .
FILTER ( ?countryA != ?countryB )
} GROUP BY ?countryA ?countryB

Query 1: Querying the number of users of a country, that work with at least one user of
the other country on the same project

dataset, which is November 2018 at the point of writing, this query took 31h37m to com-

pute and resulted in a list of 11,442 combinations of countries and their respective count

statistics, which was agglomerated of 30,101,550 observations of (countryA, countryB,

userB). To improve readability, we use alternative names for the representation of these

variables. Let cA, cB denote countryA, countryB respectively, and r(cA, cB) the number

of cooperations between these two countries as counted in the query.

In Table 6, the top 10 entries are listed, sorted by r(cA, cB). Observable is a strong bias

for a good international cooperation of users from the United States of America (USA)

to other nations. To obtain more meaningful results, we decided to normalise r(cA, cB)

by the number of GitHub users p(cB) from cB. The query responsible for counting the

number of users for each nation, took 23m to compute. We combined both datasets in

the post-processing and obtained the results described in Table 7. The results are heavily

skewed, which is due to a low number of users from certain countries. There is only one

user from Norfolk Island and only five users from the Democratic Republic of Congo. If

just one user of these countries has worked on a project as big as the Linux Kernel, it is

sufficient to move that country into the top 10. We therefore censored our data by delet-
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ing all countries with less than 1,000 reported developers and recalculated our statistics,

shown in Table 8.

Table 6: Absolute number of collab-
orations between nationalities

cA cB r(cA, cB)
gb us 18,760
ca us 17,346
de us 13,881
au us 10,395
in us 9,320
nl us 8,635
fr us 8,180
us gb 7,246
jp us 6,246
es us 5,980

The absolute number r(cA, cB) of users
from country cB that work with at least
one user from cA in a shared project.
The top 10 observations are listed.

Table 7: Average number of collabora-
tions between nationalities

cA cB r(cA, cB) p(cB) avg(r(cA, cB))
au nor 1 1 1.00
cd nor 1 1 1.00
gb nor 1 1 1.00
gb cd 2 5 0.40
au cd 1 5 0.20
nor cd 1 5 0.20
dk cd 1 5 0.20
us cd 1 5 0.20
mg cd 1 5 0.20
za cd 1 5 0.20
The average number avg(r(cA, cB)) of users
from country cB that work with at least one
user from cA in a shared project. The top 10

observations are listed.

Table 8: Absolute and average number of collaborations between nationalities

cA cB r(cA, cB) p(cB) avg(r(cA, cB))
us ca 5,766 78,273 0.074
us il 511 7,908 0.065
us gb 7,246 122,341 0.059
us uy 130 2,252 0.058
us no 655 12,884 0.051
us lk 168 3,311 0.051
us ch 932 18,473 0.050
fr lu 55 1,102 0.050
us au 2,305 46,635 0.049
us ar 727 15,030 0.048

The average number avg(r(cA, cB)) of users from country cB that work with at least one user from cA
in a shared project. The top 10 observations are listed, after censoring nations with less than 1,000

developers.

By this measure, we find that many nations collaborate with a huge amount of USA

citizens. The only nation that collaborates more with another nation than the USA is

Luxembourg, sharing a large cooperation with France. As the citizens of the USA form

the largest group within the GitHub users with a share of 29.38%, it is more likely that

users work on the same project with a USA citizen, than with any other country. As
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this type of analysis seems to be very one-sided, we will move to a different approach.

Namely, we will sum up avg(r(cA, cB)) over the variable cA to obtain the average number

of nations a user of cB is working with. These results are depicted in Figure 11.

The shades of blue encode how many other nationalities an average user from the coloured country is
working with. Nations with less than 1,000 users are excluded and coloured in grey.

Figure 11: Average number of nationalities a user is working with

In the top 5 of most internationally working countries are Luxembourg (0.435), Nor-

way (0.434), Argentina (0.419), Switzerland (0.418), and Great Britain(0.400). On the

other side of the scale, we find countries like Saudi Arabia (0.064), Indonesia (0,081),

China (0.084), Pakistan (0,085) and Turkmenistan (0.086).

Although a huge proportion of users from many countries works mostly with developers

from the USA, the USA themselves do not have the highest average number of nations

they are working with. We therefore ask ourselves if there are pairs of nations, that share

both a high value of avg(r(cA, cB)) and avg(r(cB, cA)). Unfortunately, the construction

of a scoring function that assigns higher values to observations where both values are

high, but penalises huge differences, is a trade off problem. We will use a simple scoring

function p(cA, cB) and the index hA,B which is the normalisation of that scoring function.

p(cA, cB) =
avg(r(cA, cB)) + avg(r(cB, cA))

2
− |avg(r(cA, cB))− avg(r(cB, cA))|

hA,B =
p(cA, cB)

maxA,B(p(cA, cB))

50



We compute this index for all countries that we have enough observations about, i.e. at

least 1,000 GitHub users who state it as their location. The results for the top 5 index

values are depicted in Table 9. We can now restrict our data to a certain country cA and

obtain information about which other countries have good symmetric collaborations. An

example of such an analysis is provided in Figure 12 for the case of Indonesia, showing

good connections to Australia, Canada and Great Britain, but also to the Netherlands,

which used to have a colony in Indonesia. We conclude that, although this methodology

still requires further development, the current combination of query and statistics provides

a possible starting point for further investigation.

Table 9: Index hA,B for international cooperation

cA cB avg(r(cA, cB)) avg(r(cB, cA)) hA,B

de gb 0.0238 0.0241 1.0000
ca gb 0.0212 0.0178 0.6800
ca fr 0.0151 0.0143 0.5904
au gb 0.0247 0.0171 0.566
de fr 0.0142 0.0159 0.5656

Top 5 observations for the index hA,B , measuring a bi-directional high cooperation of cA and cB .

The shades of blue encode which nation has a high index of cooperation hIndonesia,B . Nations with less
than 1000 users are omitted in grey.

Figure 12: Index values for Indonesia
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7.2 (†) Social Relations in Organisations

We already found multiple publications, regarding how social mechanisms can help to

promote a project and ensure its long term sustainability and survival [44, 48, 49]. We

want to follow a similar approach and try to investigate if successful projects have a

different internal social structure. Namely, we want to analyse the follow relationships

within organisations. To get an initial idea about the scale, we queried all organisations

on GitHub and extracted the number of members together with the number of follows

within them.

--Querying organisations and count their users
PREFIX sgo: <http://semangit.de/ontology/>
SELECT ?organization (COUNT(DISTINCT ?user1) AS ?users)

(COUNT(distinct ?follow_event) AS ?follows)
{
?organization sgo:github_user_is_org true .
?join_event_1 sgo:github_organization_is_joined\/ ?organization ;

sgo:github_organization_joined_by\/ ?user1 .
- Collect the internal follow relations
OPTIONAL {

?join_event_2 sgo:github_organization_is_joined\/ ?organization ;
sgo:github_organization_joined_by\/ ?user2 .

?follow_event sgo::github_follows\/ ?user1 ;
sgo::github_follower\/ ?user2 .

}
} GROUP BY ?organization

Query 2: Counting users and follow events for organisations

To get an impression of the relation between the number of users and the organisa-

tion’s internal follow relationships, we decided to divide the results into subgroups. We

excluded all organisations with less than 15 members, leaving only 4,736 out of 245,123

observations in the dataset. Thereupon, we grouped the remaining observations into 5

groups of nearly equal size, ranging from 931 to 982 observations. The distribution of

follow relationships per group is shown in Figure 13, together with the resulting group-

ings. This visualisation contains some interesting insights. Seemingly, all groups have the

same class of distribution, heaving a lot of projects with small internal follow relations

and increasingly less density. In addition, all distributions seem to be bi-modal, whereby

the second bulge seems to move to higher values on the x-axis. Of course these statements

need a proper statistical analysis to be verified. Nevertheless, we are interested in the dif-

ference between successful and unsuccessful organisations, where a bi-modal distribution
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The figure shows the density plots for 5 categories of organisations, measuring the number of follow
events within the organisation. The dataset is censored to contain 500 follow relationships at maximum

to remove outliers

Figure 13: Density plot for organisation internal relationships

might be a good indicator.

For obtaining the classification between good and bad, we constructed a second query

for our dataset. For each organisation, we query the number of watchers for their projects

and sum these values. This will lead to a naive measure of a project’s popularity. The

resulting data can now be matched. For each of the above mentioned groups, we construct

two subgroups less successfull and more successfull by splitting the projects above and

below the median. As both subgroups are equal in size size, we can again use a density

plot for comparison.

We illustrate the results in Figure 14 and find, that for small organisation sizes, the

PREFIX sgo: <http://semangit.de/ontology/>
SELECT ?org (COUNT(?watchEvent) AS ?watchers){
?org a sgo:github_user\/ ;

sgo:github_user_is_org\/ true .
?project sgo:github_has_owner\/ ?org ;

a sgo:github_project\/ .
?watchEvent sgo:github_follows\/ ?project .
} GROUP BY ?org

Query 3: Counting the number of watchers per organisation

distribution of internal follow relationships and success seem to be uncorrelated. This

effect changes if we analyse organisations having more members. Not only that the density
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is lower at the peak, but the peak is also located at a higher x-value and we observe a higher

number of follow relations. One reason for this effect might be, that our categorisation

includes a higher range of users per organisation for the Categories 25 to 35 members and

36 and more members. If the bigger organisations tend to be more successful in general,

we could observe the same effect of more internal following. This is not the case for our

data, where the averages are close to each other. In fact, for the Category of 25 to 35

members, we found an average difference of 0.27 users between more and less successful

organisations. This leads us to the conclusion, that success is correlated with the amount

of organisation members, that follow each other, at least for larger organisation. One

hypothesis to explain this is, that in such big organisations the ability to follow other

developers might implement an additional information exchange between departments

that are normally not working together.
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The figure shows the density plots for 4 categories of organisations, measuring the number of
internal follow events within the organisations. The 4 categories are divided in the subcategories

depending of their success, which is measured by the number of watchers for their projects. The dataset
is censored to contain 500 follow relationships at maximum to remove outliers

Figure 14: Density plot for organisation internal relationships
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7.3 (*) Revisiting Evolution of Programming Languages

Having already analysed the evolution of programming languages, we will now make

use of the graph database structure to show further analyses that would have been less

efficient to compute with the relational model. As described in Section 2, a language

timeline is not a suitable type of analysis for the data we have, as the update quality

is insufficient. We therefore propose two different analyses, focusing on locations and

popularity instead of time. We start with the presentation of another analysis on the

usage of programming languages, this time comparing how frequently the languages are

used in various countries. Afterwards, we will look at the impact of projects using certain

languages, which is measured by the number of users interacting with them.

7.3.1 (*) Regional Differences in Language Usage

While we previously investigated global trends in the usage of languages over time, we

will now analyse regional differences in programming language utilisation. As before, we

determine the primary language of a project as the language that makes up the largest

portion of the source code. If we assume that it is unlikely for a project to change its pri-

mary language, the poor update quality only has a minor impact on our results. Figure 1

showed that the number of projects changing the primary language in years 2015 to 2016,

where we observed the highest number of changes in our dataset, is below 100,000, while

there were between 20,000,000 to 30,000,000 projects on GitHub at that time [85].

In Figure 15, we compare the primary languages of GitHub repositories from France,

Germany and New Zealand. We assign a repository to a certain nation, if the owner of the

repository has entered a location within that country in his profile. Note that GHTorrent

geocoded the Location-field of user profiles, see Section 8.2. As the query of this evaluation

is similar to Query 4, we omit its listing here. To be able to compare different countries,

we selected the top 12 programming languages of each country, counted the occurrences

of those languages as primary languages on repositories of that country, and normalised

the resulting values to add up to 1 per country . We refer to this as the relative frequency

vector relcountry. Let ||(xn)n||p = (
∑n

i=1 |xi|p)
1
p denote the lp norm. Then we get:

||relFrance − relGermany||1 = 0.124

||relFrance − relNew Zealand||1 = 0.234

||relGermany − relNew Zealand||1 = 0.237
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A comparison of programming languages for France, Germany and New Zealand, measured by the
relative frequency of usage per country. For the 12 most used programming languages, each occurence

as primary programming language in a repository was counted.

Figure 15: Programming languages for France, Germany and New Zealand

For p = 2, we get:

||relFrance − relGermany||2 = 0.001739

||relFrance − relNew Zealand||2 = 0.005845

||relGermany − relNew Zealand||2 = 0.002741

We used the l1 and l2 norms to generate statistics about the differences in distributions.

While Germany and France seem to have a rather similar distribution, with a sum of ab-

solute difference of 0.124, the distribution of New Zealand is relatively different to both of

these countries. Most notably, New Zealand appears to have a stronger focus on web de-

velopment and comes first on JavaScript, CSS and HTML, but last on Java, C++ and C.

Nonetheless, New Zealand has a higher percentage on C# than the two European nations.
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A comparison of programming languages for China and the United States of America, measured by the
relative frequency of usage per country. For the 12 most used programming languages of each country,
each occurrence as primary programming language in a repository was counted. As Go and Shell both
only appear in the top 12 of China and USA respectively, they are directly compared against each

other.

Figure 16: Programming languages for China and the USA

To showcase an even higher value of inequality, we have created a second analysis of

the same kind. A comparison of China and the United States of America is shown in

Figure 16. As before, we compute:

||relChina − relUSA||1 = 0.467

||relChina − relUSA||2 = 0.039

Not only do their most frequent 12 languages differ, some languages even have a difference

in relative frequency of a factor of 2 or more. Note that we compared the languages Go and

Shell against each other, as Go is not in the USA’s 12 most frequent languages, whereas

Shell is not in China’s. This slightly lowers the distance in frequency vectors computed

above. The origin of these popular programming languages seems to have little effect on

where it is used. For example, Ruby was invented by Yukihiro Matsumoto in Japan [86]

and is much more popular in the USA compared to China. Java on the other hand was

designed by James Gosling from Canada and is developed by Oracle Corporation from

the United States [87], but it is more popular in China.

58



Querying the number of occurrences of languages as primary language in a country

from our Blazegraph server yielded some surprises with regards to query evaluation time.

At the beginning, the time taken for querying about a country like Germany took about

five hours. However, querying about China after querying about the USA took less than

30 minutes, even though the result set is much larger. This could potentially be due to

Blazegraph storing intermediate results for optimisation.

--Querying projects from the United States,
--their primary language and their collaborators
PREFIX sgo: <http://semangit.de/ontology/>
SELECT ?project ?name (COUNT(?joinEvent) AS ?collaborators) {
{
SELECT ?project (MAX(?langSize) AS ?maxSize)
{
--This is evaluated first, as SPARQL works bottom-up
?owner a sgo:github_user\/ ;

sgo:github_user_country_code\/ "us" .
?project sgo:github_has_owner\/ ?owner .
?language sgo:github_project_language_repo\/ ?project ;

sgo:github_project_language_bytes\/ ?langSize .
} GROUP BY ?project

}
--project ?project is already bound from inner query
?currentLanguage sgo:github_project_language_repo\/ ?project ;

sgo:github_project_language_bytes\/ ?curSize .
--Accept only primary language
FILTER(?curSize = ?maxSize) .
--Grab reference to "language node", containing the name of language
?currentLanguage sgo:github_project_language_is\/ ?lang .
?lang sgo:programming_language_name\/ ?name .
--Grab collaborators. Note that the owner never "joins" the project
OPTIONAL {
?joinEvent sgo:github_project_joined\/ ?project .

} GROUP BY ?project ?name

Query 4: SPARQL query to obtain projects from USA, including primary language and
weights

In Section 2, we were unable to use the same weight function as GitHub does in

their analysis [16]: In their analysis, the weight of a project is the number of unique

collaborators. With the graphical model, we are able to compute this weight with little

additional effort, as shown in the SPARQL query in Query 4.
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Figure 17: Weighted and unweighted primary project languages

Figure 17 shows the relative frequency of programming languages occurring as primary

language for projects in the USA, both with and without this weighting . For most

languages, we only found marginal effects. The highest difference is for Java, which is

increased by a large margin by the weight function, suggesting there are many projects

with larger numbers of collaborators using Java as programming language in the USA.

The strong link between the web languages JavaScript, PHP and HTML is visible in

Figure 17 as well, as all of them decrease by a similar factor.

7.3.2 (*) Reach of Programming Languages

We will now drop our geographical focus, where we compared usage of programming lan-

guages based on differences in location, and move on to a different type of analysis. More

precisely, we are interested in the number of people “reached” by a project featuring a cer-

tain language. For example, one could investigate the number of users watching a project,

how often a project is forked, starred or contributed to with external pull requests. The

canonical measurement of comparing download numbers is not possible for us, as it is not

contained in the data from GHTorrent. We chose to use “number of watchers” as popu-

larity indicator, as the data we need to load into our triplestore for this analysis closely
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matches the data required for our social analyses, avoiding expensive additional load-ins.

The other methods can be performed analogously with only minor modifications to the

SPARQL query.

By adding weights to projects based on their reach instead of their size, we strive to

analyse a different aspect of popularity. Using size-based weights, such as the number of

collaborators of a project, yields an indicator of how popular programming languages are

for developers to make software. When using reach-based weights, we gain an insight on

how popular the developed products are when made in a certain language.

The query to obtain the watchers for every project, alongside the name of the primary

language, is shown in Query 5. As we are interested in the reach of languages, we discard

projects with less than five watchers, also to reduce the run-time of the query. Executing

this query took 76 hours, which is multiple times more than other queries featured in

this section. That is mostly due to the fact that we consider a larger pool of projects.

However, this execution time is to be treated with caution for several reasons. Firstly,

execution times can be affected by previous queries, as Blazegraph stores intermediate

results. Seeing that the queries from Subsection 7.3.1 were executed prior to this query,

the run-time is most probably even longer on a fresh setup. Secondly, to evaluate this

query, the triplestore required more than the 64GB of RAM that our machine possesses,

forcing the usage of Swap space, where hard drive space acts as virtual RAM. This slows

down the process, as read- and write operations on the hard drive require more time.

Query 5 does not return a fully aggregated result. Instead, it yields a result in the form

of (primary_language,#watchers) for every project with at least five watchers. This

enables us to dynamically increase the minimum number of watchers required, comparing

trends in language of projects with different popularity. Figure 18 illustrates a comparison

of primary languages of projects, weighted by the number of watchers. This is done for

four sets of projects: those with at least 5, 50, 500 and 5,000 watchers. For the sake of

legibility, only the twelve most popular languages (with respect to number of watchers)

are considered. As before, JavaScript is undoubtedly the most popular language, with a

share of 30.6% for the set of projects with at least five watchers. The second most popular

language for the same set is Java, with a share of 12.3%. However, if we only consider

very popular projects with at least 5,000 watchers, this result is even more pronounced:

JavaScript reaches 39.4%, Java remains second place but drops down to 11.2%. Statistics
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PREFIX sgo: <http://semangit.de/ontology/>
--Get language of project, including number of watchers
SELECT ?langName ?watchers {

SELECT ?project ?watchers (MAX(?langSize) AS ?maxSize)
{
{
--Get all projects with at least five watchers
SELECT ?project (COUNT(?watchEvent) AS ?watchers) {
?project a sgo:github_project\/ .
?watchEvent sgo:github_follows ?project .

} GROUP BY ?project HAVING(COUNT(?watchEvent) > 4)
}
?language sgo:github_project_language_repo\/ ?project ;

sgo:github_project_language_bytes\/ ?langSize .
} GROUP BY ?project ?watchers

?currentLang sgo:github_project_language_repo\/ ?project ;
sgo:github_project_language_bytes\/ ?myLngSize .

--Only accept primary language of project
FILTER(?myLngSize = ?maxSize) .
--Grab object containing information about the language
?currentLang sgo:github_project_language_is\/ ?myLngObject .
?myLngObject sgo:programming_language_name\/ ?langName .

}

Query 5: SPARQL query to obtain number of watchers for every programming language

on the four sets are shown in Table 10.

Table 10: Statistics on the sets of projects

Min. #Watchers #Projects Avg. #Watchers Total #Watchers
5 1,112,989 80 85,776,331
50 199,261 366 73,119,359
500 25,212 1,897 48,878,405
5,000 1,617 11,346 18,297,552

Statistic values for the distribution of the number of projects, average number of watchers and total
number of watchers, grouped by 4 different threshold values of watchers

7.3.3 (*) Summary

As already done in the motivational Section 2, we have analysed the popularity of pro-

gramming languages. The key difference is that we make use of a graph database instead

of a relational one. While we have not performed the same analyses to compare run-times

between these models, SPARQL enabled us to write pattern-finding queries easily, allow-
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ing us to explore more facets of the dataset. We have found that some countries focus

more on web languages than others, and that geographical location seems to have an

impact on programming language usage. As we considered a different aspect of popular-

ity, moving from how developers use languages to how clients use resulting programs, we

found huge differences between the popularity of languages. Unfortunately we were not

able to implement one of the strongest advantages of RDF graphs: the ability to interlink

databases. While we do have outgoing links to DBpedia, we were unable to load their

dataset into our triplestore due to insufficient computational resources. Further trends

could be explored, for example by using the nearestCity relation 12, or by comparing if

users from large cities act different to users from the countryside, querying the population

of a location. 13

12http://dbpedia.org/ontology/nearestCity
13http://dbpedia.org/ontology/population
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8 (*) Expanding and Linking the Data

In this section, we will describe how the dataset can be extended to include further git

hosts or interlinked with external data. In Subsection 8.1, we give an example extension

for GitLab [88], making use of the design choices from Section 4.1. In Section 8.2, we show

how the dataset can be aligned with external data, where our focus will lie on interlinking

our data with DBpedia [11].

8.1 (*) New Data Sources

As SemanGit explores semantics on the git protocol in general, it is important that we

do not consider data about GitHub as only potential source of data. Unfortunately, the

resources we have at hand are insufficient to expand our dataset further, as we are al-

ready facing many difficulties due to the size of our dataset. However, we will present an

extension to our ontology to demonstrate the effectiveness of the chosen approach from

Section 4.1 that allows a convenient modelling of further git hosts with their custom

features.

As GitLab also implements the git protocol, the underlying structure of the data one

can gather using their API has many common facets to the one from GitHub. As such,

many of the new classes in our extension are able to inherit from existing classes, resulting

in a common structure. On the other hand, GitLab has also added custom features.

Our extension does not cover all information that could potentially be extracted from

GitLab. At this time, it is supposed to serve just as an example extension to demonstrate

how common features can be inherited and custom features can be added separately. Due

to a rate limit on the API [20], it is most likely infeasible to extract all information the

API could potentially deliver. Currently, the extension holds 51 classes with 303 proper-

ties as of April 16, 2019 and can be found on our GitHub repository,14 including a link

to a visualisation with WebVOWL [6]. We will now proceed to mention some key points

about the extension, which also led us to making a few changes to the prior ontology.

Fake users – The author of a gitlab_commit is not a gitlab_user, but is described

by literals for name and email instead. The same holds true for the committer of a

gitlab_commit. Note that committer and author of a commit can differ. This is in
14https://github.com/SemanGit/SemanGit/blob/master/Documentation/ontology/

gitlabextension.ttl
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accordance with the returned result of the GitLab API, not returning a user, but just a

name and an email address. We attribute this behaviour to the fact that the author of

a gitlab_commit does not need to be a registered GitLab user, as another person could

potentially push this commit to the GitLab repository. A comparable behaviour can be

observed when looking at the data extracted from GitHub by GHTorrent, where some

users are marked as “fake users” which are described as follows [5]:

If the commit user has not been resolved, for example because a commit user

is not a Github user or the git user’s name is misconfigured, GHTorent will

create a fakeuser entry with as much information as available.

Commit statistics – The original ontology was not considering any statistics for the

general commit class for the git protocol. This includes the number of additions and

deletions contained in a commit. GitLab explicitly provides these values for commits.

While the GHTorrent data does not contain any information regarding these statistics, it

is in the nature of a commit to consist of additions and deletions. For example, an altered

line results in the deletion of the old line and the addition of a new line.

Branches – The git protocol specifies branches and how they can be merged. Previ-

ously, we did not have a class to encompass information regarding branches, as GHTorrent

does not provide branching information in the monthly dumps we use. While this infor-

mation is contained in the daily dumps of GHTorrent, these dumps are incremental and

the additional information contained in them makes them much larger. As we are al-

ready struggling with adding a SPARQL endpoint on the dataset, we chose to keep using

the monthly dumps until further resources are available. There are other relations only

contained in daily dumps, such as metadata about a project’s milestones.

8.2 (*) Interlinking with other Datasets

One of the strengths of RDF graphs is that they can be linked with other datasets. For

the SemanGit, we would like to perform two types of interlinkage:

• Linking different accounts of the same user on various git hosting platforms with

an owl:sameAs relation

• Linking to external datasets, such as DBpedia, to be able to access additional in-

formation about well known objects
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The first part seems to be almost impossible to automate, as we do not have any

identifying information about the users. The old dumps of GHTorrent contained email

addresses and what users entered for the “Real Name” field. Changes in data protection

law, most notably the General Data Protection Regulation (GDPR), forced GHTorrent

to stop distributing this sensitive information [89]. It is still possible to match accounts

listing the same username, but this method is prone to errors. Checking additional infor-

mation like the reported geolocation might help to improve this approach. Nevertheless, as

the user decides what information is published, such data might be faulty or not present.

To automate such a matching, we would therefore need to implement machine learning

algorithms or restrict the matchmaking process to a conservative policy, only accepting a

match if all information is provided and identical for both data sources.

On the other hand, the second part is quite straightforward in a few scenarios and

we already implemented a straightforward approach for interlinking geoinformation with

DBpedia. The “Location” field of a GitHub user is still available to us and GHTorrent

even provides geocoded information about this location field, including a user’s state and

city. Obviously, not all users fill out the location field, or might enter false or even comical

locations. In the case of real location entries, meaning non fictional location names, we

are able to refer to the user’s city and state on DBpedia by converting the location names

to appropriate URIs. This could add additional information, if the DBpedia dataset could

also be loaded into our triplestore. For example, we could query the population density of

the city the user is living in, to compare behavioural traits of users from major cities with

those from the countryside. Such interlinking could also prove to be particularly useful

when using the SemanGit dataset for the scenario of headhunting, as one could not only

search for users from a certain city, but also for users from surrounding villages or nearby

cities, by making use of the “dbo:nearestCity” relation.

Lastly, besides linking to external datasets, we also re-use external ontologies. As

an example, we are using the Vocabulary of Interlinked Datasets (VoID) to describe our

dataset. This metadata includes information about the authors, how it is published, when

it was last updated, and more. Re-using further datasets could improve the quality of our

ontology.
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9 (*) Towards an Industrial Deployment

Up to this section, all analyses we described were performed on the entire data without

sampling. The trick we used was to only load the relations that our analyses require,

skipping all others. Due to our limited computational resources, we could not investigate

some facets with promising industrial use cases. The main hold up is caused by the single

node load in process into our triplestore, which reads the RDF files and creates a journal

file, see Section 6.2. To showcase the value of an industrial deployment of SemanGit,

where additional resources are at hand, we have created some examples for analyses and

queries, using a small head sample of our dataset to evaluate queries, see Section 5.2. In

Subsection 9.1, we take a closer look at analysing information gathered from the issue

tracking system of GitHub. In Subsection 9.2, we briefly discuss the concept of Ghost

Contributors, elaborating how a company might be able to use this for enticing project

managers away from other companies.

9.1 (*) Analysing Reported Issues

GitHub comes with its own issue tracking features. Users are able to submit issue reports

to repositories, unless issue tracking is disabled for the project, to file bugs or enhance-

ments. Collaborators can be assigned to deal with these issues and labels, such as Bug,

Enhancement, Question, Duplicate, Invalid, Wontfix, Help wanted. Also custom tags, can

be assigned to issues by collaborators of the repository. By default, there is also a label

“good first issue” to encourage new reporters to keep up their good work. Besides infor-

mation about the assigned labels, we also have meta data about the issue reporter, the

assignee (if any) and timestamped actions (opened, closed, re-opened, corresponding pull

request merged, assigned, user (un-)subscribed updates). Note that GHTorrent creates a

generic issue for every pull request. This can be interpreted as an issue report including a

suggestion for a fix. Furthermore, issues can be commented. The dataset includes details

about the comment author, creation date and the corresponding issue. In the case of a

pull request, further information, including the body text itself, is available. If all this

information were loaded into a triplestore, a multitude of analyses could be performed,

such as:

1. Which kind of projects encourage people to not only report issues, but also con-

tribute to fixing them?

2. Which developers are fast to respond to reported or assigned issues, compared to

others within an organisation?
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3. Is there a positive correlation between listening to the community and creating a

successful project?

These are just some sample analyses, showing the analytical potential contained within

issues. Coelho et al. [60] managed to detect new, undocumented errors and bug sources in

Android and proprietary libraries, by analysing 160,000 reported issues related to Android

projects.

Many open source software projects are too large to be handled by a small number of

collaborators. It could be beneficial to not only have users reporting issues related to the

project, but also users contributing code actively via pull requests, to also help with fix-

ing these issues. For any pull request, GHTorrent stores the head repository and base

repository. One could therefore compare the number of external pull requests with the

number of reported issues for a project. This would yield an indicator for how involved

the community is. Those projects with an involved community might share certain fea-

tures, such as programming language paradigms, quality of documentation or more subtle

features.

Analysis (2) is less abstract and can be discussed more explicitly. For quality assurance

purposes, it might be interesting for a company to know which developer is quick to react

to reported issues and who tends to be slow. Except for speed, one could also look

at the quality of the fixes, by analysing the number of times issues are re-opened. A

basic SPARQL query, listing the fastest fixing developers within a given organisation, is

illustrated in Query 6.

Query 6 is a rudimentary example to show how a SPARQL query that operates on

issues could look like. Several more things need to be considered within a real-scenario

query:

• The query compares the timestamp of when the issue was assigned to a developer,

with the timestamp of the issue being closed. If the issue is re-opened and closed

again, there will be two “issue closing events”.

• Additional events should be taken into account, such as the developer making a

comment for clarification.

• Issues can be re-assigned. This means that the original assignee should be excluded.
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PREFIX sgo: <http://semangit.de/ontology/>
SELECT ?user (AVG(?time_taken) AS ?average_response_time)
{
BIND(sgo:github_project\/7k4 AS ?project)
?issue sgo:github_issue_project\/ ?project .
?issue_event sgo:github_issue_event_for\/ ?issue ;

sgo:github_issue_event_action\/ "assigned" ;
sgo:github_issue_event_created_at\/ ?t1 .

?issue_event2 sgo:github_issue_event_for\/ ?issue ;
sgo:github_issue_event_action\/ "closed" ;
sgo:github_issue_event_created_at\/ ?t2 .

?issue sgo:github_issue_assignee\/ ?user .
BIND((?t2 - ?t1) AS ?time_taken)
} GROUP BY ?user

Query 6: SPARQL query to list the developers of an organisation who are on average
fastest to respond to issues.

Analysis (3) aims at respecting the suggestions made by the community. To do so,

issue labels could be of particular interest. Do users who reported an issue and were

awarded with the “good first issue” label tend to submit more suggestions, or is the qual-

ity of future suggestions of such a user affected positively by such an event? Is there an

opposite effect for users whose issues are labelled with “wontfix”? Also, the response time,

as discussed in Analysis (2) could be integrated into this analysis.

The results of performing these analyses could reveal new insights on how successful

project management should be done on open source software platforms. While we did

not conduct any of the analyses presented in this section, we believe that issue related

analyses have great potential in an industrial deployment. Not only could a company

perform these analyses for improving the internal workflow, but also to apply similar

techniques for finding suitable developers on GitHub they could hire.

9.2 (†) Ghost Contributors

Often, the larger organisations get, the more hierarchy they develop for managing their

work. With respect to companies on GitHub, this could for example mean that there are

developers under the supervision of a project manager. The main responsibilities of the

manager is to make sure that the project evolves smoothly, but she does not necessarily

write code by herself. Finding such patterns could be valuable for many use cases, such

as headhunting, where a company tries to find people with certain skills to hire. Uncov-

ering the role of a user within an organisation could provide the opportunity for other
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companies to recruit project managers with sufficient expertise.

In an attempt to find such managers, we will introduce the concept of Ghost Con-

tributors. These are GitHub users, who are collaborators of a project, but do not

contribute code to it. Obviously, there are other scenarios in which ghost contributors

could occur other than project managers. For example, a student developing a program

for an assignment, who “shares” the project with his tutor, i.e. invites him to collaborate.

This tutor would also classify as ghost contributor. By showing the existence of such

users, we also want to warn that using number of contributors of a project as weight for a

project in an analysis, as done by GitHub in their language analysis [16], has some perils.

PREFIX sgo: <http://semangit.de/ontology/>
SELECT ?user ?org (COUNT(?commit) AS ?totalCommits) {
{
--Subquery to find only projects of relevant size
SELECT ?project (COUNT(?commit) AS ?commitCtr)

(COUNT(DISTINCT ?user) AS ?userCtr) {
--project must be owned by an organisation
?org sgo:github_user_is_org\/ true .
?project sgo:github_has_owner\/ ?org .
?join_event sgo:github_organization_is_joined\/ ?org ;

sgo:github_organization_joined_by\/ ?user .
?commit sgo:commit_belongs_to_repository\/ ?project.

} GROUP BY ?project HAVING((?commitCtr > 50) && (?userCtr > 2))
}
?project sgo:github_has_owner\/ ?org .
?joinEvent sgo:github_organization_is_joined\/ ?org ;

sgo:github_organization_joined_by\/ ?user ;
sgo:github_organization_joined_at\/ ?t1 .

--Only consider users who were a member for longer than 30 days
FILTER((now() - ?t1) > 30)
--Count commits. Optional is added to also capture those with 0 commits
OPTIONAL {
?commit sgo:commit_belongs_to_repository\/ ?project ;

sgo:commit_author\/ ?user .
}

} GROUP BY ?org ?user
HAVING(?totalCommits < 5) ORDER BY ASC(?totalCommits)

Query 7: SPARQL query to find ghost contributors across organisations with at least 3
members and 50 commits.

In this section, we will focus on the task of finding users who are potentially in a

management position. For this reason, we will add additional constraints to the ghost
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contributors we find, such as a minimum organisation size of three members, which has

a project with at least 50 commits. Realistically, these values should be chosen higher,

but we are performing our queries on a sample in this section. Furthermore, to exclude

newcomers within an organisation, we require a membership within the organisation of

at least one month. The resulting SPARQL query is shown in Query 7.

This query is meant to prove the existence of ghost contributors within organisations.

In an industrial deployment, further aspects should be considered within the query, such

as how long a user has been part of an organisation. As an example, a user who pushed

20 commits within one month of membership, should not be considered a ghost contribu-

tor. In contrast, a user who pushed 20 commits over three years of membership probably

should be. Additional behavioural patterns should also be taken into account to improve

the precision of classification, such as whether or not the ghost contributor creates issues,

comments on commits and accepts or rejects pull requests.
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Figure 19: Number of users by commits within organisations

Query 7 took 1h1m to compute and returned a total of 21,197 results, when executed

on our sample of 687,586,749 triples. The majority of users returned by the query have no
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commits at all within the organisations they reside in, see Figure 19. We can clearly see

the existence of ghost contributors. However, further filtering will be required to classify

them into subgroups, such as managers.
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10 (*) Conclusion

In this thesis, we have introduced the SemanGit dataset, discussed how it can be loaded

for query purposes, performed first analyses and provided suggestions for further analy-

ses. In the motivational Section, a language analysis was performed, yielding first results

on the data contained in SemanGit, while also learning about the suitability of different

kinds of analyses. We moved on to describing how the SemanGit dataset is created, by

giving details about the ontology and conversion process, so that other researchers could

repeat our experiments. Due to issues that naturally arise with large graphs, we elaborate

how samples can be created which are suitable for analyses on the SemanGit dataset. We

found that loading the entire dataset is prohibitive with the resources available to us.

Multiple experiments were carried out to reveal appropriate methods for loading relevant

data into a triplestore. While we failed to load the entire dataset, we still managed to

design analyses and queries and performed them on the full dataset, by only loading the

sections of the dataset that the queries operate on. To demonstrate the flexibility of our

ontology and the strengths of graph databases, we created a sample dataset extension

to another git hoster and described how the dataset can be interlinked with DBpedia.

Lastly, we elaborated how such a large scale dataset could be used in an industrial de-

ployment, where additional resources are at hand.

SemanGit faces certain limitations. Despite the potential value of the dataset, the

effort to establish a queryable endpoint is not to be underestimated. In our setup, where

only a single commodity machine was available, the loading of the entire data is pro-

hibitively expensive, not to mention interlinkage with further datasets or including data

from more git repository providers. Therefore, if computational resources are similar

to ours, analytical possibilities are limited. One can either decide to only load the data

relevant for queries which were designed beforehand, see Section 7, or operate on a suf-

ficiently small sample as demonstrated in Section 9. However, generating such a sample

with analytical value is far from trivial, as we had to conclude in Section 5.

Future work with SemanGit includes a re-modelling of the ontology, to increase the

re-usability of our work. We were unable to update the ontology towards the later stages

of the thesis, as this would have invalidated all queries performed thus far, and re-loading

the dataset with an updated ontology is prohibitive. Additional features can be added to

the ontology, such as some inverse relations, and the “camel case” naming option could

be implemented. One could strive to re-use existing vocabularies more. Furthermore, our
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Java conversion tool, as described in Section 4.2, could be made more dynamic, possibly

enough to re-use it to include additional data sources. Also, as one can see from our

SPARQL queries, the converter places a slash “/” not only to separate the ID of an entity

from the ontology part (e.g. <http://semangit.de/ontology/github_project/123>),

but also at the end of relation and class names, resulting in unconventional query for-

mats, such as ?p a sgo:github_project\/. We will strive to process the latest GHTor-

rent data at least every two months and provide an updated dataset dump on our website.

Despite these limitations, we find that the dataset has enormous analytical potential.

This is supported by the fact that a conference paper about SemanGit has been accepted

by and will be presented at the International Semantic Web Conference (ISWC) 2019 [90],

where we hope to meet many like minded researchers with interest in a semantic dataset

about git. Besides the insights we have gained from our example analyses, most extensive

of which has been the investigation of various aspects about programming languages, we

can already provide this dataset to the public, so that it can be used in upcoming open

source software research, of which there has been a vast amount already [4]. Instead of

focusing on any analysis in particular, we attempted to showcase the wide range of use

cases for the data. We conclude that the dataset is valuable both for industrial usage, as

well as for other researchers, such as those from the open source software area.

Further Reading

Website: http://semangit.de/

Lab Project Report: http://semangit.de/project_report.pdf

GitHub Repository: https://github.com/SemanGit/SemanGit/

SemanGit: A Linked Dataset from git: To be published in ISWC 2019 [90]

Ontology: In our GitHub repository. Visualisation on our website.
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