
TRAINS: A Throughput-Efficient Uniform Total
Order Broadcast Algorithm

Michel Simatic*, Arthur Foltz, Damien Graux, Nicolas Hascoët, Stéphanie Ouillon, Nathan Reboud
and Tiezhen Wang

Télécom SudParis
Institut Mines-Télécom, Évry, France

Email: [First name].[Last name]@telecom-sudparis.eu

Abstract—Within data centers, many applications rely on
a uniform total order broadcast algorithm to achieve load-
balancing or fault-tolerance. In this context, achieving high
throughput for uniform total order broadcast algorithms is an
important issue: It contributes to optimize data center resources
usage and to reduce its energy consumption. This paper presents
TRAINS, a throughput-efficient uniform total order broadcast
algorithm. The paper estimates TRAINS performance. It evaluates
the prediction-oriented throughput efficiency (POTE) — i.e. the
theoretical ratio between bytes delivered and bytes transmitted
on the network. TRAINS POTE improves the POTE of the
best algorithm of the literature. For 5 processes, the POTE
improvement reaches a peak of 250% for 10 bytes messages.
Experimental evaluation confirms TRAINS high throughput ca-
pabilities. The trade-off of this throughput improvement is the
alteration of the latency. The worst alteration is in the case of
2 processes: 125%.

I. INTRODUCTION

Many distributed applications require stronger delivery
guarantees than those provided by a best-effort network broad-
cast. For instance, some web servers have to be replicated
for load-balancing or fault-tolerance. Video game industry has
another motivation for having messages delivered in the same
order on all the replicas: It provides a realistic user experience
in multiplayer video games such as Age of Empire [1]. For
all of these applications, the replicas broadcast their state
changes to the other replicas. Broadcast messages delivery
must be guaranteed. And the delivery order must be the
same on all replicas in order to be able to apply a state
machine approach [2], [3]. These requirements have led to
the specification of uniform total order (UTO-) broadcast [4].
A UTO-broadcast algorithm ensures the following properties:
1) Validity: if a correct process UTO-broadcasts message m,
then it will eventually UTO-deliver m; 2) Uniform agreement:
if a replica UTO-delivers a message m, then all correct replicas
eventually UTO-deliver m; 3) Integrity: for any message m,
a replica UTO-delivers m at most once, if and only if m was
previously UTO-broadcast by a process; 4) Total order: for
any message m and m1, if a replica UTO-delivers m without
having UTO-delivered m1, then no replica UTO-delivers m1
before m.

In parallel of this specification activity, an important al-
gorithmic activity took place. Between 1984 when Chang
and Maxemchuk published the historical first algorithm [5]
and the survey of Défago, Schiper, and Urbán in 2004 [6],
more than sixty algorithms were proposed. And, this research
field remains active with recent proposals such as LCR [7],

Ring Paxos [8] and FastCast [9]. The vast majority of pro-
posals tackles performance problems. They can be classified
into two categories: those targeting low latency, and those
targeting high throughput [10]. Latency measures the time
required to complete a single message broadcast. Sequencer-
based algorithm establishes a first record [11], improved by
Isis V3 [12]. Throughput measures the number of broadcasts
that the processes can complete per time unit. Totem uses a
token on a virtual ring to establish a first record [13]. Ring
Paxos combines Paxos algorithm with a virtual ring to improve
this record [8]. LCR combines vector clocks and a virtual ring
to establish the current throughput record [7].

Carrying on a research activity on throughput of UTO-
broadcast algorithms is important. For instance, Spread (an
industrial middleware offering UTO-broadcast) has released
version 4.4.0 in May 2014. The release notes emphasize
that Spread “is tailored for data center networks and can
provide 30%–50% higher throughput [. . .] in modern local
area networks” [14]. Indeed, UTO-broadcast algorithms are
used within data centers, thus in the context of clustered
environments. In this context, CPU is the limiting factor.
Improving throughput has an impact on CPU usage. For
instance, if we pack messages to avoid duplication of some
UTO-broadcast protocol data, we improve the throughput.
We also reduce the number of CPU interruptions related to
message exchange: This boosts the performance [15]. This
reduces energy consumption of the data center. Moreover,
UTO-broadcast algorithms are used between data centers —
e.g. in the context of geo-replicated databases. In this context,
network is the limiting factor. If we improve the throughput,
we improve the network usage: Cloud applications can handle
more requests.

LCR is considered as the best algorithm from a throughput
point of view (see Line 2 of Table I) [7]. Nevertheless, taking
a look at the maximum throughput efficiency (MTE) —
i.e. the rate between the maximum achieved throughput per
receiver and the nominal transmission capacity of the system
per receiver [8] — is revealing. We can evaluate MTELCR,
because we know that the nominal capacity of the system used
is 116 Mb/s [7]: We obtain Line 3 of Table I. For 100 bytes
UTO-broadcasts, MTELCR is only 28% — i.e. a loss of 72%.
This makes us think that LCR is not efficient enough when
dealing with short messages.

This paper presents TRAINS, a throughput-efficient uniform
total order broadcast algorithm. TRAINS has better throughput
efficiency than LCR because it requires less overhead bytes to

2015 International Conference on Protocol Engineering (ICPE) and International Conference on New Technologies of Distributed Systems (NTDS).

978-1-4673-9265-5/15/$31.00 ©2015 IEEE

TABLE I. THROUGHPUT PERFORMANCE OF LCR FOR 5 PROCESSES

UTO-broadcast size (bytes) 100 1 000 10 000
Throughput of LCR (Mb/s) 32 88 112
MTELCR 28% 76% 96%

carry UTO-broadcasts.

This paper makes the following contributions. First, it
proposes TRAINS, a new UTO-broadcast algorithm derived
from Train algorithm [16]: Participating processes are dis-
patched on a virtual ring. Several trains carrying wagons rotate
simultaneously on this ring. Each wagon belongs to one of the
processes. It carries one or several messages UTO-broadcast
by this process. Second, the paper presents the flow control
used in TRAINS. This flow control requires no additional
messages, nor piggybacked data on messages. Third, the paper
estimates the performance of TRAINS. The paper evaluates the
prediction-oriented throughput efficiency (POTE) — i.e. the
theoretical ratio between bytes delivered and bytes transmitted
on the network. POTETRAINS and POTELCR can be compared
because, unlike MTETRAINS and MTELCR, they do not depend
on the experimental setup. POTETRAINS improves POTELCR.
For 5 processes, the POTE improvement reaches a peak of
250% for 10 bytes messages. Experimental evaluation confirms
TRAINS high throughput capabilities. The trade-off of this
throughput improvement is the alteration of the latency. The
paper estimates the theoretical latency LTRAINS of TRAINS.
LTRAINS alters LLCR. The worst alteration is in the case of
2 processes: 125%.

The remainder of the paper is structured as follows.
Section II describes our system and performance model.
Section III presents TRAINS algorithm. Section IV describes
TRAINS flow control. Section V evaluates the performance of
TRAINS and compares it to LCR. Section VI comments on
related work. Section VII concludes the paper.

II. MODEL

We use the same model as the model used by LCR [7].

Concerning the system model, we assume a small cluster
of homogeneous machines interconnected by a local area
network. Each machine hosts a process participating to the
algorithm. Moreover, we assume that a process stays on
the same machine. It does not migrate from one machine
to another. TRAINS integrates a membership service1 [18].
This service implements the abstraction of a perfect failure
detector (P) [19] to which each process has access.

Concerning the performance model, we assume that our
LAN is based on a switch. Thus, we use the round-based
model used in [7]. In one round: 1) a network card can send
a message and simultaneously receive one; 2) a process can
send a message to all or a subset of processes; 3) the network
is able to carry several messages simultaneously.

III. ALGORITHM

In TRAINS, participating processes are dispatched on a
virtual ring. Several trains carrying wagons rotate simulta-

1The presentation of the algorithms of TRAINS membership service is
outside the scope of the paper. See [17] for details.

neously on this ring. Each wagon belongs to one of the
processes. It carries one or several messages broadcast by this
process. Section III-A presents all of the data structures used
in TRAINS. Section III-B describes straightforward procedures
and functions. Section III-C focuses on algorithms executed in
the absence of failures. It explains how TRAINS ensures UTO-
delivery. Section III-D describes the algorithm that is executed
when the virtual ring changes. Finally, Section III-E gives an
example.

A. Data structures

This section presents wagon and train, the two data struc-
tures exchanged between TRAINS processes. Then, it presents
data structures local to each process.

1) Wagon: In TRAINS, application messages are aggre-
gated inside wagons. A wagon contains the following fields:

‚ sender: address of the process sending the wagon,

‚ rotat: each wagon is attached to a train in order to
rotate on the virtual ring. rotat field contains the
identifier of the rotation made by this train on the
virtual ring when the wagon is attached to this train;

‚ msgs: ordered list of application messages broadcast
by the sender process.

2) Train: Wagons are themselves aggregated inside Trains.
Each train rotates between processes of the virtual ring. A train
contains the following fields:

‚ id: identifier of the train (coded as an integer),

‚ lc: logical clock used to avoid train duplication when
recovering from a process failure,

‚ rotat: identifier of the rotation made by the train on
the virtual ring,

‚ wag: ordered list of the wagons carried by the train.

3) Local Data: Each participating process pi uses the
following variables or constants local to pi:

‚ DELAY: (constant) maximum time process pi will wait
when it fails in its first tentative to participate to
TRAINS;

‚ NB_RO: (constant) minimum number of rotations
(done by each train) that we need to distinguish to
guarantee that TRAINS is a UTO-broadcast algorithm.
Section III-C proves that the value of NB_RO is 3;

‚ NB_TR: (constant) number of simultaneous trains ro-
tating on the virtual ring;

‚ idLast: identifier of the last train sent by process
pi;

‚ initDone: boolean set to true when TRAINS ini-
tialization is done for process pi;

‚ lastTrs: array containing the last NB_TR trains sent
by process pi;

‚ lastTrsView: array containing NB_TR views, each
one corresponding to the view when process pi sent
one of the NB_TR trains;

2015 International Conference on Protocol Engineering (ICPE) and International Conference on New Technologies of Distributed Systems (NTDS).

‚ nbJoin: number of times process pi tried to partici-
pate in TRAINS;

‚ rcvdWag: bi-dimensional array containing pNB_TRˆ
NB_ROq ordered lists of received wagons that process
pi cannot yet deliver (because pi has no guarantee that
uniformity and total order properties are verified);

‚ view: ordered list containing the last view of partic-
ipants to the membership protocol.

‚ wagToSnd: wagon containing the messages that pro-
cess pi wants to broadcast. These messages will be
added to the next train sent by pi;

B. Straightforward procedures and functions

This section presents the different procedures and functions
used by algorithms of sections III-C and III-D, which do not
need to be detailed:

‚ append(aList,anElement): adds element
anElement at the end of list aList;

‚ Fsend(aMsg) to pj : sends aMsg in FIFO order (this
includes reliability). TCP protocol is an example of
Fsend();

‚ goneSet(pi,oldView,newView): Returns the
set of gone processes between oldView and
newView, preceding pi on the virtual ring;

‚ succ(pi,aView): returns the address of pi’s suc-
cessor in view aView (or K if aView is []).

‚ UTO-deliver(aListOfMsgs): delivers the dif-
ferent messages contained in aListOfMsgs;

C. Failure-free behavior

This section presents the algorithms that are executed in
the absence of failure.

When a process pi wants to use TRAINS, the
initialize procedure is executed (see Algorithm 1). Once
initialize procedure is done, pi can broadcast a message
aMsg by invoking the UTO-broadcast procedure (see
Algorithm 2). This message is added to the wagon wagToSnd.
When the uniformity and total order properties are guaranteed
for a wagon, UTO-deliver procedure is called with the list
of messages contained in this wagon: aMsg is delivered.

To get uniformity and total order guarantees, there are two
cases to consider. In the first case, the sending process pi
is the only participant: UTO-broadcast calls immediately
UTO-deliver (Line 3 of Algorithm 2). In the second case,
the sending process pi is not alone. Train messages are
exchanged between processes participating in TRAINS (see
Algorithm 3). So pi receives a train tr. Let ι be the value of
tr.id and θ the value of rotat field. wagToSnd.rotat
receives the value θ; wagToSnd is appended to tr and to
rcvdWag[ι][θ] (Lines 25–27 of Algorithm 3). pi sends the
updated tr. When pi receives tr one rotation later, we have the
guarantee that pi has received all of the wagons w transported
by tr with w.rotat equal to θ. When pi receives tr another
rotation later, we have the guarantee that all of the other
processes have received all of the wagons w transported by

tr with w.rotat equal to θ. Therefore, pi UTO-delivers the
wagons in rcvdWag[ι][θ] (Lines 10–13 of Algorithm 3).

Moreover, we can determine the value of NB_RO. During
one rotation of a train tr, one process pj executes Line 7 of
Algorithm 3: tr.rotat is incremented by one during each
rotation. Previously, we have seen that pi waits 2 rotations of
the train tr before delivering the wagons in rcvdWag[ι][θ].
So, pi needs to distinguish the values θ, θ ` 1 and θ ` 2. By
definition of NB_RO, we conclude that the value of NB_RO
is 3.

Algorithm 1 Procedure initialize for any process pi
1: // Initialize global variables
2: nbJoinÐ 1
3: idLastÐ NB_TR´ 1
4: lastTrs[0...NB_TR-1]Ð tK, . . . ,Ku
5: lastTrsView[0...NB_TR-1]Ð t[], . . . ,[]u
6: rcvdWag[0...NB_TR-1][0...NB_RO-1] Ð

tt[], . . . ,[]u, . . . , t[], . . . ,[]uu
7: wagToSnd.sender Ð pi
8: wagToSnd.rotat Ð 0
9: wagToSnd.msgs Ð []

10: view Ð []
11: initDone Ð false
12: // Join participants (see section III-D for more information)
13: Join membership service
14: Wait for initDone to become true

Algorithm 2 Procedure UTO-broadcast(aMsg) for any
process pi

1: append(wagToSnd.msgs, aMsg)
2: if size(view) == 1 then
3: UTO-deliver(wagToSnd.msgs)
4: wagToSnd.msgs Ð []
5: end if

D. Taking care of virtual ring changes

To build our virtual ring and to manage changes in its
members, TRAINS integrates a membership service [18]. This
service handles joins (requests to join the group of processes)
and leaves (requests to leave the group). This service also
excludes processes that are suspected to have crashed. Fi-
nally, this service provides a view of the group members.
TRAINS membership service guarantees that the relative order
of processes in consecutive views is the same. For instance,
let view vi be rpA, pB , pDs. If process pC joins, new view
vi`1 can be rpA, pB , pC , pDs or rpC , pA, pB , pDs, but not
rpC , pB , pA, pDs.

Upon view change, a process pi that has a new successor
sends all of the last NB_TR trains pi sent to its previous
successor before view change (Lines 24–35 of Algorithm 4).
However, pi may not have yet received all of the NB_TR trains
— e.g. because pi joined recently the membership service.
So, pi is not able to send all of the last NB_TR trains. This
may lead to a deadlock: If a train tr was lost between pi
and pi’s successor before view change, pi`1 — the successor
of pi after view change — is waiting for pi to send tr; The
successor of pi`1 is waiting for pi`1 to send tr; . . . ; pi is

2015 International Conference on Protocol Engineering (ICPE) and International Conference on New Technologies of Distributed Systems (NTDS).

Algorithm 3 Receiving a train for any process pi
1: upon Freceive(tr) do
2: local id Ð tr.id
3: if initDone then
4: if id == (idLast + 1) mod NB_TR

and tr.lc ě lastTrs[id].lc then
5: local rotat Ð tr.rotat
6: if rotat == lastTrs[id].rotat then
7: rotat Ð (rotat + 1) mod NB_RO
8: end if
9: // pi delivers pending wagons.

10: local rÐ protat` 1q mod NB_RO
11: for all w P rcvdWag[id][r] do
12: UTO-deliver(w.msgs)
13: end for
14: rcvdWag[id][r] Ð []
15: // pi prepares the new train and saves

// received wagons.
16: lastTrs[id].lc Ð tr.lc + 1
17: lastTrs[id].rotat Ð rotat
18: lastTrs[id].wag Ð []
19: for all w P tr.wag so that

w.sender P

lastTrsViews[id] z ptpiuY
goneSet(pi,lastTrsViews[id],view)q

do
20: append(rcvdWag[id][w.rotat],w)
21: if w.sender != succ(pi,view) then
22: append(lastTrs[id].wag,w)
23: end if
24: end for
25: wagToSnd.rotat Ð rotat
26: append(lastTrs[id].wag,wagToSnd)
27: append(rcvdWag[id][rotat],wagToSnd)

28: wagToSnd.msgs Ð []
29: end if
30: else
31: lastTrs[id] Ð tr
32: initDoneÐ

(@i P v0,NB_TRv , lastTrs[i] ‰Kq
33: end if
34: Fsend(lastTrs[id]) to succ(pi,view)
35: lastTrsView[id] Ð view
36: idLast Ð id

waiting for its predecessor to send tr. Therefore, all of the
processes experience a deadlock. And, pi is the cause of this
deadlock. To break this deadlock, pi leaves the membership
service, waits for a random period, and joins again (Lines 39–
45 of Algorithm 4).

Once a process pi has received all of the NB_TR trains, pi
will never leave spontaneously the membership service: The
initialization of the algorithm is done (Line 32 of Algorithm 3).

E. Example

To illustrate the behavior of TRAINS, consider the message
sequence chart of Figure 1. Process pA joins the membership
service. Since pA is the only member of the view, pA sets

Algorithm 4 View change management for any process pi
1: upon viewChange(newView) do
2: if size(newView) == 1 then
3: if initDone then
4: // pi is left alone: It delivers pending wagons.
5: for j “ 1 to NB_RO do
6: for i “ 1 to NB_TR do
7: local idÐ pidLast` iq mod NB_TR
8: local rÐ

plastTrs[id].rotat`jq mod NB_RO
9: for all w P rcvdWag[id][r] do

10: UTO-deliver(w.msgs)
11: end for
12: rcvdWag[id][r] Ð []
13: end for
14: end for
15: UTO-deliver(wagToSnd.msgs)
16: wagToSnd.msgs Ð []
17: else
18: // pi is the first participant to TRAINS.
19: initDone Ð true
20: end if
21: view Ð newView
22: else if succ(pi,newView) != succ(pi,view)

and view ‰K then
23: if initDone then
24: // pi sends again all of its last sent trains, in case

// some did not reach its previous successor.
25: for i “ 1 to NB_TR do
26: local id Ð (idLast + i) mod NB_TR
27: if size(view) == 1 then
28: // pi was alone before view change.
29: lastTrs[id].lc Ð

lastTrs[id].lc` 1
30: lastTrs[id].wag Ð []
31: lastTrsView[id] Ð newView
32: end if
33: Fsend(lastTrs[id]) to

succ(pi,newView)
34: lastTrsView[id] Ð newView
35: end for
36: view Ð newView
37: else
38: // pi is missing trains. It cannot resend the NB_TR

// trains: pi leaves and tries to join again later.
39: Leave membership service
40: nbJoin Ð nbJoin + 1
41: Wait for a random time in r0,nbJoinˆ DELAYs
42: lastTrs[0...NB_TR-1]Ð tK, . . . ,Ku
43: lastTrsView[0...NB_TR-1]Ð

t[], . . . ,[]u
44: view Ð []
45: Join membership service
46: end if
47: else
48: view Ð newView
49: end if

2015 International Conference on Protocol Engineering (ICPE) and International Conference on New Technologies of Distributed Systems (NTDS).

initDone to true. Then, process pB joins the membership
service. pA notices it has a new successor: It sends trains t000
and t100. Upon receiving these trains, pB forwards them to its
own successor — i.e. pA. Moreover, since pB has received all
of the trains that rotate on the virtual ring, pB sets initDone
to true. Upon receiving train t000, process pA stores wagon
wA1m0 in rcvdWag[0][1] and sends train t011 containing
wagon wA1m0 to process pB . Upon receiving t011pwA1m0q, as
pB wants to UTO-broadcast message m1 in wagon wB1m1,
pB stores wA1m0 and wB1m1 in rcvdWag[0][1]. Then
pB sends t010pwB1m1q to pA. In parallel, pA receives train
t100: pA stores wA1m2 in rcvdWag[1][1] and sends
t111pwA1m2q. Trains go on rotating and carrying new wag-
ons. Upon receiving t042pwB2m5q, process pA increments the
rotat field of this train: rotat was 2; It is now 0. Thus,
pA knows that all of the wagons with rotation 1, carried by
train with id 0, have been received by all of the processes:
pA UTO-delivers the wagons contained in rcvdWag[0][1]
— i.e. wA1m0 and wB1m1. Afterwards, pA stores wA0m8 in
rcvdWag[0][0] and sends t050pwA0m8q to pB . Etc.

IV. FLOW CONTROL

Our flow control regulates processes that want to send
bursts of messages. In addition, our flow control allocates
more network bandwidth (if available) for these processes. For
this purpose, we introduce one new constant value, two new
global variables and two new algorithms. OPTIM_TR_SIZE
is a constant containing the optimal train size with respect to
the number of participating processes and NB_TR. Its value
is determined thanks to simulation or dedicated performance
tests. wagToSndMaxSize is a global variable containing the
maximum size of wagToSnd. wagToSndMaxSize is initial-
ized to 0 during TRAINS initialization. lastWagSizeDic
is a global dictionary. It associates the sender of each
wagon received in the last train to the size of this wagon.
lastWagSizeDic is initialized to {} during TRAINS ini-
tialization.

To enforce flow control on any participating processes
pi, pi now UTO-broadcasts its messages with Algorithm 5.
Lines 1–2 of Algorithm 5 regulate pi when pi wants to
broadcast more messages than TRAINS can convey.

Algorithm 5 Procedure utoBroadcastWithFlowCon-
trol(aMsg) for any process pi

1: if size(wagToSnd) + size(aMsg) >
wagToSndMaxSize

then
2: Wait until wagToSnd.msgs ““ []
3: end if
4: utoBroadcast(aMsg)// See algorithm 2

To compute the value of wagToSndMaxSize, we take
advantage of a TRAINS feature: When a process pi receives
a recent train, this train informs implicitly pi about how
all of the other processes fill up their wagon, and thus use
the bandwidth. Algorithm 6 does this computation. In order
to call Algorithm 6 each time a process receives a recent
train, we insert a call to Algorithm 6 between Line 4 and
Line 5 of Algorithm 3. Algorithm 6 classifies participating
processes into two categories. On the one hand, there are

greedy processes. The size of their wagon is larger than the
average size of a wagon. Or, it is larger than the previously
sent wagon (Line 10 of Algorithm 6). We need to know
how many greedy processes there are among participants.
With the number of greedy processes, we know how many
processes have to share extra bytes available in a train of
OPTIM_TR_SIZE bytes. On the other hand, there are sober
processes. For these processes, we need only to know how
many bytes they are sending. With the number of bytes used by
sober processes, we know how many extra bytes are available
for greedy processes. Since we want the current process to
send as many messages as possible, we assume that the current
process is greedy: We initialize nbGreedy with 1 (Line 4
of Algorithm 6). Then, we determine the number of greedy
processes and the number of bytes used by sober processes
(Lines 5–18 of Algorithm 6). Finally, we compute the updated
value of wagToSndMaxSize (Line 26 of Algorithm 6).

Notice that we need to make two adjustments because our
method counts the wagons of all n processes whereas a train
carries at most n´1 wagons. So, if we find that n processes are
greedy, we adjust the number of greedy processes to take into
account that the rotating train will always contain only n´ 1
wagons of greedy processes (Lines 20–22 of Algorithm 6).
Moreover, if there are sober processes, during the rotation of
the train, this train will not contain the wagon of the most sober
process. This is why we evaluate the value of minSober in
Algorithm 6. It influences the computation of the updated value
of wagToSndMaxSize (Line 26 of Algorithm 6).

Algorithms 5 and 6 are fully local. They require neither
piggybacked data on existing messages, nor additional mes-
sages.

V. PERFORMANCE EVALUATION

This section evaluates TRAINS performance and compares
it to LCR performance. Section V-A focuses on throughput.
Section V-B analyzes latency.

A. Throughput

TRAINS uses the same system model as LCR. Moreover,
like LCR, TRAINS does not use physical broadcast. But,
TRAINS sends UTO-broadcast messages around a virtual ring.
As a result, we can predict that TRAINS should have at least
the same throughput as LCR.

To compare more precisely the throughput of both algo-
rithms, we could compare their maximum throughput effi-
ciency (MTE) — i.e. the measured rate between the max-
imum achieved throughput per receiver and the nominal
transmission capacity of the system per receiver [8]. But,
MTETRAINS cannot be compared to MTELCR, because of
different experimental setup. For instance, the frequency of our
processors is 2.80 GHz, whereas the frequency of processors
used for LCR experiments is 1.66 GHz. In addition, MTE
is sensitive to optimizations in implementation. Therefore, we
define prediction-oriented throughput efficiency (POTE) —
i.e. the theoretical ratio between the number of bytes UTO-
delivered per message and the number of bytes of the message.
To compute POTE, we assume that there are n processes
participating to the algorithm, each of them UTO-broadcasting
messages of an average size of s bytes. Moreover, in the case

2015 International Conference on Protocol Engineering (ICPE) and International Conference on New Technologies of Distributed Systems (NTDS).

Fig. 1. Message sequence chart with two processes (We assume NB TR “ 2)

process pA

t132(wA2m6) t042(wB2m5)

process pB

Simultaneously, pB sends train t042(wB2m5) to pA

Process pA sends train t132(wA2m6) to pB

Train message
 wag (wagons) field
 rotat (rotation) field
 lc (logical clock) field
 id (identifier) field

t132(wA2m6)Wagon

 sender field

wA2m6

 rotat (rotation) field ("?" if uninitialized)
 msgs field. This wagon contains only message m6

(a) Key

process pA process pB

Join membership service

Join membership service

t000()

t100()

Delivered wagons:
wagToSend=wA?m0

rcvdWag
[0,0]= | [0,1]= | [0,2]=
[1,0]= | [1,1]= | [1,2]=

 t000()

 t100()

Delivered wagons:
wagToSend=wA?m2

rcvdWag
[0,0]= | [0,1]=wA1m0 | [0,2]=

[1,0]= | [1,1]= | [1,2]=

Delivered wagons:
wagToSend=wB?m1

rcvdWag
[0,0]= | [0,1]= | [0,2]=
[1,0]= | [1,1]= | [1,2]=

t011(wA1m0)

Delivered wagons:
wagToSend=wA?m4

rcvdWag
[0,0]= | [0,1]=wA1m0 | [0,2]=
[1,0]=wA1m2 | [1,1]= | [1,2]=

Delivered wagons:
wagToSend=wB?m3

rcvdWag
[0,0]= | [0,1]=wA1m0,wB1m1 | [0,2]=

[1,0]= | [1,1]= | [1,2]=

t111(wA1m2) t021(wB1m1)

Delivered wagons:
wagToSend=wA?m6

rcvdWag
[0,0]= | [0,1]=wA1m0,wB1m1 | [0,2]=wA2m4

[1,0]= | [1,1]=wA1m2 | [1,2]=

Delivered wagons:
wagToSend=wB?m5

rcvdWag
[0,0]= | [0,1]=wA1m0,wB1m1 | [0,2]=
[1,0]= | [1,1]=wA1m2,wB1m3 | [1,2]=

t032(wA2m4) t121(wB1m3)

Delivered wagons:
wagToSend=wA?m8

rcvdWag
[0,0]= | [0,1]=wA1m0,wB1m1 | [0,2]=wA2m4
[1,0]= | [1,1]=wA1m2,wB1m3 | [1,2]=wA2m6

Delivered wagons:
wagToSend=wB?m7

rcvdWag
[0,0]= |

[0,1]=wA1m0,wB1m1|[0,2]=wA2m4wB2m5
[1,0]= | [1,1]=wA1m2,wB1m2 | [1,2]=

t132(wA2m6) t042(wB2m5)

Delivered wagons:wA1m0,wB1m1
wagToSend=wA?ma

rcvdWag
[0,0]=wA0m8 | [0,1]= | [0,2]=wA2m4,wB2m5
[1,0]= | [1,1]=wA1m2,wB1m3 | [1,2]=wA2m6

Delivered wagons:
wagToSend=wB?m9

rcvdWag
[0,0]=

|[0,1]=wA1m0,wB1m1|[0,2]=wA2m4,wB2m5
[1,0]=|[1,1]=wA1m2,wB1m2|[1,2]=wA2m6,wB2m7

t050(wA0m8) t142(wB2m7)

Delivered
wagons:wA1m0,wB1m1,wA1m2,wB1m3

wagToSend=wA?mc
rcvdWag

[0,0]=wA0m8 | [0,1]= | [0,2]=wA2m4,wB2m5
[1,0]=wA0ma | [1,1]= | [1,2]=wA2m6,wB2m7

Delivered wagons:wA1m0,wB1m1
wagToSend=wB?mb

rcvdWag
[0,0]=wA0m8,wB0m9|[0,1]=|[0,2]=wA2m4,wB2m5
[1,0]=|[1,1]=wA1m2,wB1m2|[1,2]=wA2m4,wB2m4

t150(wA0ma) t060(wB0m9)

(b) Message Sequence Chart

of TRAINS, each wagon contains an average of u messages.
We demonstrate that POTETRAINS “

pn´1qus
10`pn´1qr7`up5`sqs (see

Appendix A) and POTELCR “
s

24`4n`s (see Appendix B).
Lines 2–4 of Table II synthetizes the results for n “ 5
processes and trains with an optimal size of 4 KiB (thus,
u “ 1014{p5 ` sq when s ă 1010 and u “ 1 otherwise).
POTETRAINS improves POTELCR according to the size of
the broadcast messages. The POTE improvement reaches a
peak of 250% for 10 bytes messages.

To confirm that TRAINS high throughput efficiency means

high throughput, we implement TRAINS. Then, we run per-
formance tests on n “ 5 Dell Precision T3500 computers,
equipped with processor Intel Xeon W3530 (2.80 GHz) and
4 GiB of RAM. These computers run Linux 3.14.9 SMP
kernel. They are interconnected with an HP ProCurve 2610-24
switch. 10 trains rotate in parallel. Each train has an optimal
size of 4 KiB (see constant OPTIM_TR_SIZE in Section IV).
Line 5 of Table II contains TRAINS results. Finally, we deter-
mine MTETRAINS. We do not want to compare it to MTELCR,
but to POTETRAINS. This comparison gives us an idea of
the quality of the optimizations in our implementation. To

2015 International Conference on Protocol Engineering (ICPE) and International Conference on New Technologies of Distributed Systems (NTDS).

Algorithm 6 Procedure updateWagToSendMaxSize(tr)
for any process pi

1: local wagSizeDic Ð {}
2: local bytesSober Ð 0
3: local minSober ÐK

4: local nbGreedy Ð 1
5: for all w P tr.wag so that

w.sender P lastTrsViews[id] z ptpiuY
goneSet(pi,lastTrsViews[id],view)q

do
6: wagSizeDic{w.sender} Ð size(w)
7: if w.sender not in lastWagSizeDic.keys then
8: lastWagSizeDic{w.sender} Ð 0
9: end if

10: if size(w) ą OPTIM_TR_SIZE{size(view)
or (size(w) ě lastWagSizeDic{w.sender}

and lastWagSizeDic{w.sender} ą 0)
then

11: nbGreedy Ð nbGreedy `1
12: else
13: bytesSober Ð bytesSober ` size(w)
14: if minSober ““K or size(w) ă minSober

then
15: minSober Ð size(w)
16: end if
17: end if
18: end for
19: lastWagSizeDic Ð wagSizeDic
20: if nbGreedy ““ size(view) then
21: nbGreedy Ð nbGreedy ´1
22: end if
23: if minSober ““K then
24: minSober Ð 0
25: end if
26: wagToSndMaxSize Ð (OPTIM_TR_SIZE -

bytesSober + minSober) / nbGreedy

determine MTETRAINS, we are missing the nominal capacity
of our system. With NetPerf [20], we measure that the TCP
point-to-point throughput is 94 Mb/s. The nominal capacity
of our system is the point-to-point throughput multiplied by
n{pn´ 1q [7]. Therefore, the nominal capacity of our system
is 94 ˆ n{pn ´ 1q “ 117.5 Mb/s. MTETRAINS is a few
percent below POTETRAINS (see Line 6 of Table II): Our
implementation is well optimized.

TABLE II. THROUGHPUT EVALUATION OF TRAINS AND LCR FOR
5 PROCESSES

UTO-broadcast size (bytes) 10 100 1 000 10 000
POTETRAINS 66.0% 94.3% 98.6% 99.9%
POTELCR 18.5% 69.4% 95.8% 99.6%
Improvement of POTELCR 257% 35.8% 2.9% 0.3%
Throughput of TRAINS (Mb/s) 76.1 108.7 113.6 113.9
MTETRAINS 64.8% 92.5% 96.7% 96.9%

B. Latency

The theoretical latency of broadcasting a single message is
defined as the number of rounds that are necessary from the
initial broadcast of message m until the last process delivers
m [7]. Appendix C demonstrates that the latency of TRAINS

is LTRAINS “
5
2n ´

1
2 . The latency of LCR is LLCR “ 2n ´

2 [7]. LTRAINS alters LLCR decreasingly with the number of
participating processes (see Table III). This higher latency is
due to the inherent trade-off that exists between throughput
and latency [21]: Since TRAINS improves throughput, it alters
latency. The worst alteration is in the case of 2 processes:
125%.

TABLE III. LATENCY EVALUATION OF TRAINS AND LCR

Number of processes 2 4 6 8 8

LLCR (rounds) 2 6 10 14 8

LTRAINS (rounds) 4.5 9.5 14.5 19.5 8

Alteration of LLCR 125.0% 58.3% 45.0% 39.3% 25%

VI. RELATED WORK

UTO-broadcast algorithms are classified into five families:
fixed sequencer, moving sequencer, privilege-based, commu-
nication history, and destinations agreement [6]. Since train
messages of TRAINS can be considered as tokens, TRAINS is
member of the privilege-based family.

TRAINS principles are inspired by the Train algorithm
where a single train rotates on a virtual ring [16]. In TRAINS,
to improve throughput, several trains rotate in parallel on the
virtual ring. Total order is preserved thanks to the rotat
field in trains and wagons. Moreover, we apply the technique
suggested by [7] to save bandwidth: Whenever a process pi
sends a train tr to its successor pi`1, pi discards pi`1’s wagon
from tr. In case of failure, the recovery of lost trains is inspired
by Totem’s technique to recover a lost token [13]: We resend
trains that may have been potentially lost.

Concerning flow control, Ring Paxos does not propose
any flow control [8]. Totem and LCR propose a mechanism
that requires piggybacked data [7], [13]. FastCast proposes a
mechanism that requires additional messages [9].

VII. CONCLUSION

This paper presents TRAINS, a token-based UTO-broadcast
algorithm. We propose a flow control that requires no ad-
ditional messages, nor piggybacked data on messages. This
paper estimates TRAINS performance. For 5 processes, we
evaluate that POTETRAINS improves POTELCR. The POTE
improvement reaches a peak of 250% for 10 bytes messages.
Experimental evaluation confirms TRAINS high throughput
capabilities. The trade-off of this throughput improvement is
the alteration of the latency. The worst alteration is in the
case of 2 processes: 125%. The main perspective of our work
is to improve TRAINS latency in order to make TRAINS
suitable for the context of geo-replicated databases. A C
implementation of TRAINS is available at https://github.com/
simatic/TrainsProtocol. A Java implementation of TRAINS is
available at https://github.com/simatic/TrainsProtocolJava.

ACKNOWLEDGMENT

The authors would like to thank Denis Conan (Télécom
SudParis) and Eric Gressier-Soudan (CNAM-CÉDRIC) for
their careful rereading and fruitful suggestions, and Vivien
Quéma and Gautier Berthou (Grenoble University) for giving
access to their implementation of LCR.

2015 International Conference on Protocol Engineering (ICPE) and International Conference on New Technologies of Distributed Systems (NTDS).

REFERENCES

[1] P. Bettner and M. Terrano, “1500 Archers on a 28.8: Network Program-
ming in Age of Empire and Beyond,” in Proceedings of the 2001 Game
Developer Conference. San Jose, California, USA, March 2001.

[2] L. Lamport, “The implementation of reliable distributed multiprocess
systems,” Computer Networks, vol. 2, no. 2, pp. 95–114, May 1978.

[3] F. B. Schneider, “Implementing fault-tolerant services using the state
machine approach: a tutorial,” ACM Comput. Surv., vol. 22, pp. 299–
319, December 1990.

[4] V. Hadzilacos and S. Toueg, “A modular approach to fault-tolerant
broadcasts and related problems,” Cornell University, Ithaca, NY, USA,
Tech. Rep. TR94-1425, 1994.

[5] J.-M. Chang and N. F. Maxemchuk, “Reliable broadcast protocols,”
ACM Trans. on Comput. Syst., vol. 2, no. 3, pp. 251–273, 1984.

[6] X. Défago, A. Schiper, and P. Urbán, “Total order broadcast and
multicast algorithms: Taxonomy and survey,” ACM Comput. Surv.,
vol. 36, pp. 372–421, December 2004.

[7] R. Guerraoui, R. R. Levy, B. Pochon, and V. Quéma, “Throughput
optimal total order broadcast for cluster environments,” ACM Trans. on
Comput. Syst., vol. 28, pp. 5:1–5:32, July 2010.

[8] P. J. Marandi, M. Primi, N. Schiper, and F. Pedone, “Ring Paxos: A
High-Throughput Atomic Broadcast Protocol,” in Proceedings of 40th
International Conference on Dependable Systems and Networks (DSN
2010), 2010.

[9] G. Berthou and V. Quéma, “FastCast: a Throughput- and Latency-
efficient Total Order Broadcast Protocol,” in Proceedings of the Inter-
national Middleware Conference (Middleware), ser. Middleware ’13,
2013.

[10] X. Défago, A. Schiper, and P. Urbán, “Comparative performance
analysis of ordering strategies in atomic broadcast algorithms,” IEICE
Trans. Inf. Syst. E86-D, pp. 2698–2709, December 2003.

[11] M. F. Kaashoek, A. S. Tanenbaum, S. F. Hummel, and H. E. Bal, “An
efficient reliable broadcast protocol,” SIGOPS Oper. Syst. Rev., vol. 23,
pp. 5–19, October 1989.

[12] K. P. Birman and T. A. Joseph, “Reliable communication in the presence
of failures,” ACM Trans. on Comput. Syst., vol. 5, pp. 47–76, January
1987.

[13] Y. Amir, L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, and
P. Ciarfella, “The Totem single-ring ordering and membership protocol,”
ACM Trans. on Comput. Syst., vol. 13, pp. 311–342, November 1995.

[14] Spread, “The Spread Toolkit,” http://www.spread.org/, October 1998.

[15] R. Friedman and R. van Renesse, “Packing messages as a tool for
boosting the performance of total ordering protocols,” in Proceedings
of the Sixth IEEE International Symposium on High Performance
Distributed Computing 1997, August 1997, pp. 233–242.

[16] F. Cristian, “Asynchronous atomic broadcast,” IBM Technical Disclo-
sure Bulletin, vol. 33, no. 9, pp. 115–116, February 1991.

[17] M. Simatic, “Contributions au rendement des protocoles de diffusion
à ordre total et aux réseaux tolérants aux délais à base de RFID
(Contributions to efficiency of total order broadcast protocols and to
RFID-based delay tolerant networks, in French),” Ph.D. dissertation,
Centre d’Étude et De Recherche en Informatique du Cnam (CÉDRIC)
/ Conservatoire National des Arts et Métiers (CNAM) / École Doctorale
ÉDITE, 2012.

[18] K. Birman and T. Joseph, “Exploiting virtual synchrony in distributed
systems,” in SOSP ’87: Proceedings of the eleventh ACM Symposium
on Operating systems principles. New York, NY, USA: ACM, 1987,
pp. 123–138.

[19] T. D. Chandra and S. Toueg, “Unreliable failure detectors for reliable
distributed systems,” Journal of ACM, vol. 43, pp. 225–267, March
1996.

[20] R. Jones, “Netperf,” http://www.netperf.org/, 2007.

[21] P. Urbán, X. Défago, and A. Schiper, “Contention-aware metrics for
distributed algorithms: Comparison of atomic broadcast algorithms,”
in Proceedings of the Nineth International Conference on Computer
Communications and Networks 2000, October 2000, pp. 582–589.

APPENDIX

A. POTETRAINS

Upon receiving a train, a process is able to deliver
the UTO-broadcast contained in the wagons attached to the
train received two rotations before. Therefore, to calculate
POTETRAINS, we analyze the structure of a train message.
A UTO-broadcast message is stored inside a wagon with the
length of the message (4 bytes), a message type (1 byte) and
the message itself (s bytes). Each wagon contains a length
(4 bytes), the address of the sender (reduced to 2 bytes [17]),
the rotat field of this wagon (1 byte) and an average of
u messages stored in this wagon. A train contains a length
(4 bytes), a message type (1 byte), a field related to integrated
membership service (2 bytes [17]), an id field (1 byte, since
we assume there will be no more than 256 trains circulating
in parallel on the virtual ring), a logical clock (shrunk to
1 byte [17]), a rotat field (1 byte), and the wagons. We
conclude: POTETRAINS “

pn´1qus
10`pn´1qr7`up5`sqs

B. POTELCR

Each LCR message mj contains piggybacked information
concerning a previously received message mk. So, when a
process receives mj , it is able to deliver the UTO-broadcast
contained in mk. Therefore, to calculate POTELCR, we an-
alyze the structure of LCR messages implemented by LCR
authors. Each LCR message contains the following fields: the
type of the message (coded as a C++ enum: 4 bytes), the
address of the sender (4 bytes), the identifier of the message
(4 bytes), the piggybacked acknowledgement of a received
message m made of m’s sender address (4 bytes) and m’s
identifier (4 bytes), the vector clocks (n participating pro-
cesses ˆ 4 bytes), the size of carried UTO-broadcast message
(4 bytes), and the UTO-broadcast message itself (s bytes). We
conclude: POTELCR “

s
24`4n`s

C. Latency of TRAINS

This appendix details the computation of TRAINS latency.

Let n be the number of participating processes. Let
p0, . . . , pn´1 be these processes. Let p0 be the process that
increments the rotation field of a received train. We assume
that there are enough rotating trains in parallel so that, when a
process wants to UTO-broadcast a message, a train is imme-
diately available to take the wagon containing this message.

When pi,iPv0,nv UTO-broadcasts a message m, it is put
in a wagon w. w is attached to train tr that is immediately
available. Moreover, w.rotat is set to t.rotat. p0 is the
process incrementing t.rotat. So, the last process that sees
the incremented value of t.rotat is pn´1. Train tr requires
n´ i´ 1 rounds to go from pi to pn´1. Afterwards, pn´1 has
to wait for two rotations of the train before pn´1 receives train
tr with w.rotat ““ pt.rotat ` 1q mod NB_RO. So, it
takes n´i´1`2n rounds for pn´1 to UTO-deliver w and thus
m. In other words, latency for messages UTO-broadcast by
pi,iPv0,nv is LUTOppiq “ n´ i´1`2n. In average, LTRAINS “
1
n

řn´1
i“0 LUTOppiq. We conclude that LTRAINS “

5
2n´

1
2 .

2015 International Conference on Protocol Engineering (ICPE) and International Conference on New Technologies of Distributed Systems (NTDS).

