
Uniform Access to Multiform Data Lakes using Semantic
Technologies

Mohamed Nadjib Mami
Fraunhofer IAIS & SDA Group,
University of Bonn, Germany

mami@cs.uni-bonn.de

Damien Graux
Fraunhofer IAIS, Germany & ADAPT
Centre, Trinity College of Dublin
damien.graux@adaptcentre.ie

Simon Scerri
Fraunhofer IAIS, Germany

simon.scerri@iais.fraunhofer.de

Hajira Jabeen
SDA Group, University of Bonn,

Germany
jabeen@cs.uni-bonn.de

Sören Auer
TIB Leibniz Information Centre &
University of Hannover, Germany

auer@l3s.de

Jens Lehmann
Fraunhofer IAIS & SDA Group,
University of Bonn, Germany
jens.lehmann@cs.uni-bonn.de

ABSTRACT
Increasing data volumes have extensively increased application pos-
sibilities. However, accessing this data in an ad hoc manner remains
an unsolved problem due to the diversity of data management ap-
proaches, formats and storage frameworks, resulting in the need
to effectively access and process distributed heterogeneous data at
scale. For years, Semantic Web techniques have addressed data inte-
gration challenges with practical knowledge representation models
and ontology-based mappings. Leveraging these techniques, we
provide a solution enabling uniform access to large, heterogeneous
data sources, without enforcing centralization; thus realizing the
vision of a Semantic Data Lake. In this paper, we define the core
concepts underlying this vision and the architectural requirements
that systems implementing it need to fulfill. Squerall, an example of
such a system, is an extensible framework built on top of state-of-
the-art Big Data technologies. We focus on Squerall’s distributed
query execution techniques and strategies, empirically evaluating
its performance throughout its various sub-phases.

CCS CONCEPTS
• Information systems → Database query processing; Paral-
lel and distributed DBMSs; Mediators and data integration;
• Applied computing → Information integration and inter-
operability; • Computing methodologies → Knowledge repre-
sentation and reasoning.

KEYWORDS
Semantic Data Lake, Data Variety, Big Data, SPARQL, NoSQL

ACM Reference Format:
Mohamed Nadjib Mami, Damien Graux, Simon Scerri, Hajira Jabeen, Sören
Auer, and Jens Lehmann. 2019. Uniform Access to Multiform Data Lakes

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
iiWAS2019, December 2–4, 2019, Munich, Germany
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7179-7/19/12. . . $15.00
https://doi.org/10.1145/3366030.3366054

using Semantic Technologies. In The 21st International Conference on In-
formation Integration and Web-based Applications & Services (iiWAS2019),
December 2–4, 2019, Munich, Germany. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3366030.3366054

1 INTRODUCTION
The massive collection of data enabled by technological advance-
ments achieved in the last decade introduced several data manage-
ment challenges, hindering the effective data use and exploitation.
For example, traditional highly-structured data management tech-
niques and technologies face prohibitive performance bottlenecks
when processing both large batches and fast streams of data. Fur-
thermore, the multiplicity of data formats and data management
systems make it very challenging to offer ad hoc uniform access to
heterogeneous data. Both research and industry continue to investi-
gate methods tackling those challenges along the Volume, Velocity
and Variety Big Data dimensions [16]. Volume and Velocity can
be addressed by distributing the heavy workloads and fast stream
processing across commodity clusters. Variety is tackled by either
enforcing centralization and converting the various formats to a
unique representation that can be accessed in an ad hoc manner, or
by creating a virtual middleware under which the heterogeneous
formats are homogenized on-the-fly without data transformation
or materialization.

Implementing the latter virtual approach, we propose Squer-
all [21] framework. Squerall allows the querying of large and het-
erogeneous sources in their original form, without prior transfor-
mation; an environment that is known as a Data Lake [7]. A Data
Lake is a schema-less repository of original data stored as is, with-
out requiring prior transformations or pre-processing. Originally
coined within the Hadoop environment [7], Data Lake concept was
quickly generalized to include other data sources, such as Amazon
S3 file system or the various modern NoSQL stores (e.g., Cassandra,
MongoDB, Neo4j, HBase, etc.). Squerall promotes the Data Lake
abstraction to a Semantic Data Lake (SDL, briefly introduced in our
previous work [2]), whereby distributed and heterogeneous data is
glued together for interpretation using a common Semantic model,
or ontology. This results in a virtual (semantic) layer, against which
ad hoc queries can be posed.

The software implementation details behind Squerall were pre-
sented in [19, 21]. In this paper we add the following contributions:

https://doi.org/10.1145/3366030.3366054
https://doi.org/10.1145/3366030.3366054

iiWAS2019, December 2–4, 2019, Munich, Germany Mami et al.

• We provide a more formal and thorough description of the SDL’s
underlying concepts and components.

• We suggest six requirements that need to be fulfilled by a system
implementing the SDL.

• We detail the distributed query execution aspects of the SDL.
• Present an empirical evaluation of Squerall, detailing the vari-
ous involved stages of query processing, as well as the resource
consumption along the memory, disk and network utilization.
The rest of the paper is structured as follows. Section 2 defines

SDL’s underlying concepts and requirements. Section 3 reminds
about SDL architecture and our proposed implementation. In Sec-
tion 4 we detail the query execution aspects of the SDL with pro-
jection on our implementation. We report in Section 5 on the ex-
perimental study conducted using our implementation. Finally,
Section 7 concludes the paper and presents ideas for future work.

2 SEMANTIC DATA LAKE PRINCIPLES
Semantic Data Lake is an extension of the Data Lake supplying it
with a semantic middleware, which allows the uniform access to
original heterogeneous data sources. Squerall makes use of estab-
lished Semantic Web techniques, such as ontologies, mappings and
SPARQL queries. In the next, we define the concepts underlying the
SDL, and suggest a set of requirements that SDL implementations
must meet.

2.1 Running Example
In order to facilitate the understanding of subsequent definitions,
we will use the SPARQL query in Listing 1 as a reference. ns denotes
an example ontology where classes and properties are defined.

1 SELECT DISTINCT ?type ?price
2 WHERE {
3 ?product a ns:Product .
4 ?product ns:hasType ?type .
5 ?product ns:hasPrice ?price .
6 ?product ns:hasProducer ?producer .
7 ?producer a ns:Producer .
8 ?producer ns:homepage ?page .
9 FILTER (? price > 1200)
10 } ORDER BY ?type LIMIT 10

Listing 1: Example SPARQL Query.

2.2 SDL Building Blocks
Definition 2.1 (Data Source). A data source refers to any data

storage medium, e.g., plain file, structured file or a database. We
denote a data source by d and the set of all data sources byD = {di }.

Definition 2.2 (Data Entities and Attributes). Entities are collec-
tions of data that share similar form and characteristics. These
characteristics are encoded into attributes. For example, ‘Product’
is an entity of relational form, and is characterized by (Name, Type,
Producer) attributes. We denote an entity by ex = {ai }, where x is
the entity name and ai are its attributes. A data source consists of
one or more entities, d = {ei }.

Definition 2.3 (Ontology). An ontology O is a set of terms that
describe a common domain conceptualization. It principally de-
fines classes C of concepts, and properties P about concepts, O =

C ∪ P . For example, ns:Product is the class of all products in an
e-commerce system (ns: is ontology identifier, or namespace), of
which ns:hasType, ns:hasPrice and ns:hasProducer are prop-
erties and ns:Book is a sub-class .

Definition 2.4 (Semantic Mapping). A semantic mapping is a
relation linking two semantically-equivalent terms.We differentiate
between two types of semantic mappings:

• Entity mappings:men = (e, c) a relation mapping an entity e from
d onto an ontology class c . For example, (ProductTable, ns:Product)
is mapping the entity ProductTable from a Cassandra database
to the class ns:Product of the ontology ns.Men is the set of all
entity mappings.

• Attribute mappings:mat = (a,p) a relation mapping an attribute
a from an entity e onto an ontology property p. For example,
(price, ns:hasPrice) is mapping attribute price of a Cassandra
table to the ontology property ns:hasPrice. Mat is the set of
all attribute mappings.

Definition 2.5 (Query). A query q is a statement in a query lan-
guage used to extract entities bymeans of describing their attributes.
We consider SPARQL as query language, which is used to query
(RDF [17]) triple data (subject, property, object). In particular, we
are concerned with the following fragment: the BGP section (Basic
Graph Pattern), which is conjunctive set of triple patterns (?sub-
ject, ?property, ?object), filtering, aggregation and solution modifiers
(projection, limiting, ordering, and distinct).

Definition 2.6 (Query Star). A query star is a shorthand version
of subject-based star-shaped sub-BGP, a set of triple patterns sharing
the same subject.We denote a star by stx =

{
ti = (x ,pi ,oi) | t ∈BGPq

}
where x is the shared subject and BGPq = {(si ,pi ,oi) | pi ∈ O}, i.e.,
triple patterns of a star (thus of the BGP) use properties from the
ontology. We call star variable the subject shared by the star’s
triples. A star is typed if it has a triple with a typing property (e.g.,
rdf:type or a). For example, (?product rdf:type ns:Product .
?product ns:hasPrice ?price . ?p ns:hasType ?type .
?product ns:hasProducer ?producer .) is a star of variable
product and of type ns:Product.

Definition 2.7 (Query Star Connection). A star sta is connected to
another star stb if sta has a triple pattern with the object being the
star variable of stb , i.e., connected(sta , stb) → ∃ti = (si ,pi ,b) ∈ sta .
For example, triple (?product ns:hasProducer ?producer) of
stproduct connects stproduct with stproducer .

Definition 2.8 (Relevant Entities to Star). An entity e is relevant
to a star st if it contains attributes ai mapping to every triple prop-
erty pi of the star i.e., relevant(e, st) → ∀pi ∈ prop(st)∃aj ∈ e |

(pi ,aj) ∈ Mat , where prop is a relation returning the set of proper-
ties of a given star.

Definition 2.9 (Distributed Execution Environment). ADistributed
Execution Environment, DEE, is the shared physical space where
large data can be transformed, aggregated and joined together. It
has an internal data structure that contained data comply with. For
example, DEE can be a shared pool of memory in a cluster where
data is organized in large distributed tables.

Uniform Access to Multiform Data Lakes using Semantic Technologies iiWAS2019, December 2–4, 2019, Munich, Germany

PS2PS1 PSn

Join

ParSets

Transformed
ParSets

Relevant
Data Sources

Distributed
Query

Processing

Transformation

PS2tQuery
Decomposition

Mappings PSr

Final Results

Data Wrapping
Relevant Entity

Detection

Data Lake

Distribute
Execution
Environment
(DEE)

Union

PS1t

Config

Query

4

1

2 3

Figure 1: Squerall Architecture (Mappings, Query and Con-
fig are user inputs).

Definition 2.10 (ParSet (Parallel dataSet)). A ParSet is a data struc-
ture that is partitioned and distributed, and that is queried in parallel.
ParSet has the following properties:
• It is created by loading star’s relevant entities into the DEE.
• It has a well-defined data model, e.g., relational, graph, key-value.
• It is populated on-the-fly and not materialized, i.e., used only
during query processing then cleared.

Its main purpose is to abstract away the structural differences be-
tween various varied data sources. We denote by PSx the ParSet
corresponding to the star stx , PS = {stx } is the set of all ParSets.

Definition 2.11 (ParSet Schema). ParSet has a schema that is com-
posed of the properties of its corresponding star, plus an ID that
uniquely identifies ParSet’s individual elements. For example, the
schema of PSproduct is {hasPrice, hasType, hasProducer, ID}. To refer
to a property p of a ParSet, the following notation is used PSstar .p,
e.g., PSproduct .hasPrice .

Definition 2.12 (Joinable ParSets). Joinable ParSets are ParSets
that store inter-matching values. For example, if the ParSet has a
tabular representation, joinable ParSets have the same meaning as
joinable tables in relational algebra, i.e., tables sharing common
attribute values. ParSets are incrementally joined in the course of a
query, result of which is called Results ParSet, denoted PSr esults

Definition 2.13 (Entity Wrapping). Entity wrapping is a function
wrap that takes one or more relevant entities to a star and returns
a ParSet. It loads entity elements (e.g., collection documents of
a Document database) and organizes them according to ParSet’s
model and schema.wrap : En → PS .

2.3 SDL Requirements
Stemming from the Data Lake, Semantic Data Lake specializes
in accessing large and heterogeneous data sources. Therefore, a
SDL-compliant system must meet the following requirements:
• R1. It should be able to access large-scale data sources. Typ-
ical data sources inside a Data Lake rage from large plain files

stored in a scale-out file/block storage infrastructure (e.g., Hadoop
Distributed File System, Amazon S3) to scalable databases (e.g.,
NoSQL stores). Typical applications built to access a Data Lake
are data- and compute-intensive. While a Data Lake may con-
tain a centralized relational database, or small files fitting into a
single-machine’s memory, the primary focus of Data Lake is, by
its definition [7], data and computations that grow beyond the
capacity of single-machine deployments.

• R2. It should be able to access heterogeneous sources. The
value of a Data Lake-accessing system increases with its ability to
support as much data as possible. Thus, a SDL system should be
able to access data of various forms, in plain-text files e.g., CSV,
JSON, in structured file formats, e.g., Parquet, ORC, in databases,
e.g., MongoDB, Cassandra, etc.

• R3. Query execution should be performed in a distributed
manner. This is natural for multiple reasons. (1) Queries join-
ing or aggregating only a sub-set of the large stored data may
incur large intermediate results that can only be calculated and
contained in multiple compute nodes. (2) As original data is
already distributed across multiple nodes, e.g., in HDFS or high-
availability MongoDB cluster, query intermediate results can
only be stored distributedly and computed in parallel. (3) Many
NoSQL stores, e.g., Cassandra and MongoDB, have dropped the
support for certain query operations in favor of improving stor-
age scalability and query performance [14, 22]. In order to join
entities of even one same database, e.g., tables in Cassandra, they
need to be loaded on-the-fly into an execution environment that
supports join, e.g., using Apache Spark [32].

• R4. It should be able to query heterogeneous data sources
in a uniform manner. One of the main purposes of adding a
semantic layer on top of the various sources is to abstract away
the structural differences found across Data Lake sources. This
semantic middleware adds a schema to the originally schema-less
repository of data, which can then be uniformly queried using a
unique query language.

• R5. It should query fresh original data without prior pro-
cessing. One of the ways Data Lake concept contrasts with the
traditional Data Warehouse concept is that it does not enforce
centralization by transforming the whole data into a new format
and form; it rather queries directly the original version of the
data. Querying transformed data compromises data freshness,
i.e., a query returns an outdated response when data has changed
or been added to the Data Lake after the transformation. Such
pre-processing also includes indexing; once new data has been
added to the Data Lake, queries will no longer access the original
data, but excludes the new yet un-indexed data. Besides Data
Lake requirements, index creation in the highly scalable environ-
ment of the Data Lake is an expensive operation that requires
both storage space and time as it parses the full pool of data.

• R6. It should have amechanism to enable the join of origi-
nally disparate unrelated sources. Data Lake is often created
by dumping silos of data, i.e., data generated using separate
applications but has the potential to be linked to derive new
knowledge and drive new business decisions. As a result, Data
Lake-contained data may not be readily joinable, so it is required
to introduce changes at query-time to enable the join operation.

iiWAS2019, December 2–4, 2019, Munich, Germany Mami et al.

3 SDL ARCHITECTURE AND
IMPLEMENTATION

We envision a SDL architecture to contain four core components
(see Figure 1): Query Decomposition, Relevant Source Detection,
Data Wrapping and Distributed Query Processing. We later on
describe our implementation [21] of the architecture.

3.1 SDL Architecture
3.1.1 Query Decomposition. Once query is issued, it is analyzed
to extract its contained query stars (Definition 2.6), as well as the
connections between them (Definition 2.7).

3.1.2 Relevant Source Detection. For every star, mappings are vis-
ited to find relevant entities (i.e., having attribute mappings to every
property of the star). If more than an entity is relevant, they are
combined (union). If a star is typed with an ontology class, then
only entities with entity mapping to that class are extracted.

3.1.3 Data Wrapping. Relevant entities are loaded as ParSets, one
ParSet per query star. This component implements the Entity Wrap-
ping function (Definition 2.13), namely loading entities under ParSet’s
model and schema, e.g., flattening of various data into tables.

3.1.4 Distributed Query Execution. Connections between stars de-
tected in Query Decomposition step will be translated into joins
between ParSets. Any operations on star properties (e.g., filtering)
or results-wide operations (e.g., aggregation) are translated to oper-
ations on ParSets. Section 4 is reserved to detailing this component.

There are three inputs to the architecture: the query, semantic
mappings and access information (e.g., username, password, cluster
configurations, etc.)

3.2 SDL Implementation: Squerall
Squerall (from Semantically query all) is our implementation of the
Semantic Data Lake architecture. Squerall makes use of state-of-the
art Big Data technologies Apache Spark [32] and Presto [26] as
query engines. Apache Spark is a general-purpose Big Data pro-
cessing engine with modules for general batch processing, stream
processing, Machine Leaning and structured data access using SQL.
Presto is a SQL query engine allowing the joint querying of het-
erogeneous data sources using a single SQL query. Both engines
primarily base their computations in-memory. In addition to their
ability to query large-scale data, we chose Spark and Presto be-
cause they both have connectors (wrappers) allowing the access to
a wide array of data sources. Using those connectors, we are able to
avoid reinventing the wheel, and only resort to manually building
a wrapper for a data source when no wrapper is available. We have
explained and exemplified extending Squerall with an RDF connec-
tor in our another publication [20]. Dedicated graphical interfaces1
guide Squerall users through the creation of the necessary inputs.

4 QUERY PROCESSING IN THE SDL
The pivotal property of the SDL distinguishing it from traditional
centralized data integration and federated systems is its ability
to query large-scale data sources in a distributed manner. This
1https://github.com/EIS-Bonn/Squerall-GUI

1 parset = wrapper(entity)
2 filter(parset)
3 aggregate(parset)
4 join(parset,otherParSet)

Listing 2: ParSets manipulation.

requires the incorporation of adapted or new approaches, which
are able to overcome the data scale barrier. In this section we detail
the various mechanisms and techniques underlying the distributed
query execution in the SDL, and project it on our implementation.

4.1 ParSets Formation
ParSets are the unit of computation in the SDL architecture. They
are loaded from relevant data source entities and then filtered,
transformed, joined and aggregated as necessary in the course of a
query. They can be seen as views that are populated from underlying
data entities and are available during the query execution time.

4.1.1 ParSets Language as ’Intermediate’ Query Language. ParSets
have a specific data model and, thus, can be queried using a specific
query language, e.g., tabular model and SQL. The query language
of the ParSets can then be used as an intermediate query language.
Using the latter, it becomes possible to convert SDL’s unique query
language (SPARQL in our case) to ParSet’s unique query language
(SQL in our case), instead of the languages of every data source.
Solving data integration problems using an intermediate or meta
query language is an established approach throughout the literature.
It has been used in recent works to access large and heterogeneous
data sources (e.g., [4, 28]).

4.1.2 Data Source’s Model to ParSet’s Model. Wrappers, or as also
known as connectors, are the components responsible for retrieving
data from a data source and populating the ParSet, which includes
model conversion. For example, if ParSet is of a tabular model
and one source is of a graph model, the wrapper creates a tabular
version of the graph data using the available data source access
methods (e.g., API, HTTP requests, JDBC, query language, etc.) and
necessary structural adaptations (e.g., flattening).

4.1.3 Interaction with ParSets. Once ParSets are created, they are
used in two different ways, which we will next detail and relate to
our implementation.

• Manipulated ParSets. This is the case of wrappers generating
ParSets in a format that users can manipulate. For example, if the
model of the ParSet is tabular, the returned ParSet would be a
table that users can interact with by means of SQL-like functions.
This approach is more flexible as users have direct access to and
control over the ParSets using e.g., a programming language.
However, knowledge about the latter is, thus, a requirement; List-
ing 2 illustrates this mechanism. For example, this mechanism
is the one used in Spark-based Squerall. We use Spark SQL API
to create DataFrames, which are the implementation of ParSets
having a tabular model. These DataFrames can then be manip-
ulated using various specialized Spark SQL-like functions, e.g.,
filter, groupBy, orderBy, join, etc.

https://github.com/EIS-Bonn/Squerall-GUI

Uniform Access to Multiform Data Lakes using Semantic Technologies iiWAS2019, December 2–4, 2019, Munich, Germany

1 SELECT C.type ... FROM cassandra.cdb.product C JOIN
2 mongo.mdb.producer M ON C.producerID = M.ID
3 WHERE M.page="www.site.com" ...

Listing 3: A self-contained SQL query.

• Self-Contained Query. This is the case where wrappers do not
create ParSets in a data structure that users can control and ma-
nipulate. Users can only write one universal self-contained declar-
ative query (i.e., ask for what is needed and not how to obtain
it) containing directly references to the needed data sources. An
example of such a self-contained query is presented in Listing 3,
where product and producer are two tables from Cassandra cdb
and MongodB mdb databases, respectively. This mechanism is
followed in our Presto-based Squerall, where we incrementally
augment one self-contained SQL query starting from ParSets,
details given in the next subsection.

This classification can categorize the various existing engines
that can implement the SDL. For example, the first mechanism is
applicable using Apache Flink2, the second mechanism is applicable
using Impala3 or Drill4.

4.2 ParSet Querying
4.2.1 From SPARQL to ParSet Operations. As previously explained
(Definition 2.8), for every query star a ParSet is created from the en-
tities relevant to that star. A ParSet has a schema that is composed of
the properties of its corresponding star (Definition 2.11). In order to
avoid property naming conflicts, i.e., multiple stars having an identi-
cal property, we form the components of ParSet’s schema using the
following template: {star-variable}_{property}_{property-namespace},
e.g., product_hasType_ns. Then, SPARQL query is translated into
ParSets operations following the algorithm in Listing 5:

(1) For each star, relevant entities are extracted (lines 5 to 7).
(2) For each relevant entity, a ParSet (oneParSet) is loaded and

changed in the following way. If SPARQL query contains condi-
tions on a star property, equivalent ParSet filtering operations
are executed (lines 10 and 11). If there are joinability transforma-
tions [21] (requirement 6), also equivalent transformation oper-
ations on ParSets are executed. Then, the loaded oneParSet is
combined with the other entity ParSets of the same star (line 14).
Finally, add the changed and combined starParSet to a list of
all ParSets (line 15).

(3) Connections between query stars translate into joins between
the respective ParSets, resulting in an array of join pairs e.g.,
[(Product,Producer),(Product,Review)] (line 17). As shown in the
dedicated algorithm in Listing 6, results ParSet (PSr esults) is
created by iterating through the ParSet join pairs (operands)
and incrementally apply the join between them (line 18).

(4) Finally, if SPARQL query contains aggregations or solution mod-
ifiers (project, limit, distinct or ordering) equivalent operations
are executed on the results ParSet (lines 19 to 28).

Steps 1–3 are also illustrated in Table 1.

2https://flink.apache.org
3https://impala.apache.org
4https://drill.apache.org/

1 SELECT DISTINCT C.type , C.price
2 FROM cassandra.cdb.product C
3 JOIN mongo.mdb.producer M ON C.producerID = M.ID
4 WHERE C.price > 1200 ORDER BY C.type LIMIT 10

Listing 4: Generated self-contained SQL Query.

1 Input: SPARQL query q
2 Output: resultsParSet
3
4 allParSets = new ParSet ()
5 foreach s in stars(q)
6 starParSet = new ParSet ()
7 relevant -entities = extractRelevantEntities(s)
8 foreach e in relevant -entities // e one or more
9 oneParSet = loadParSet(q)
10 if containsConditions(s,q)
11 oneParSet = filter(oneParSet ,conditions(s))
12 if containsTransformations(s,q)
13 oneParSet = transform(oneParSet ,conditions(s))
14 starParSet = combine(starParSet ,oneParSet)
15 allParSets += starParSet
16
17 parSetJoinsArray = detectJoinPoints(allParSets ,q)
18 resultsParSet = joinAll(parSetJoinsArray)

19 if containsGroupBy(b)
20 resultsParSet = aggregate(resultsParSet ,q)

21 if containsOrderBy(q)
22 resultsParSet = order(resultsParSet ,q)
23 if containsProjection(q)
24 resultsParSet = project(resultsParSet ,q)

25 if containsDistinct(q)
26 resultsParSet = distinct(resultsParSet ,q)
27 if containsLimit(q)
28 resultsParSet = limit(resultsParSet ,q)

Listing 5: ParSet Querying Process (simplified).

4.2.2 ParSet Operations Execution. ParSet operations are marked
with underline in the algorithm of Listing 5. The way those oper-
ations are executed depends on the interaction mechanism of the
implementing sustem described in 4.1.3.
• Manipulated ParSets. This applies when ParSets are manually
loaded and manipulated using execution engine functions. This is
the case of DataFrames, the implementation of ParSets in Spark,
which undergo Spark transformations, e.g., map, filter, join,
groupByKey, sortByKey, etc. If we consider oneParSet of line 9
Listing 5 as a DataFrame, then every ParSet operation can be
implemented using an equivalent Spark transformation.

• Self-Contained Query. As in this case a high-level declarative
query is generated, there are no explicit operations to manually
run in a sequence. Rather, ParSet operations of Listing 5 create
and gradually augment a query, e.g., SQL query in our Presto-
based implementation. For example, in the query of Listing 1,
there is a condition filter ?price > 1200, ParSet operation of
line 11 augments the query with WHERE price > 1200. Similarly,
the query parts ORDER BY ?type and LIMIT represented by ParSet
operations order (line 22) and limit (line 28) augment the query
by ORDER BY C.type LIMIT 10. Full generated SQL query of the
query in Listing 1 is presented in Listing 4. Query augmentation
is a known technique in query translation literature, e.g., [8].

https://flink.apache.org
https://impala.apache.org
https://drill.apache.org/

iiWAS2019, December 2–4, 2019, Munich, Germany Mami et al.

1 Input: ParSetJoinsArray // Pairs [ParSet ,ParSet]
2 Output: ResultsParSet // ParSet joining all ParSets
3
4 ResultsParSet = ParSetJoinsArray [0] // 1st pair
5 foreach currentPair in ParSetJoinsArray
6 if joinableWith(currentPair ,ResultsParSet)

7 ResultsParSet = join(ResultsParSet ,currentPair)

8 else PendingJoinsQueue += currentPair
9 // Next , iterate through PendingJoinsQueue
10 // similarly to ParSetJoinsArray

Listing 6: JoinAll - Iterative ParSets Join.

Starpr oduct :
?product a ns:Product .
?product ns:hasType ?type .
?product ns:hasPrice ?price .

Mappings:
Product→ ns:Product
type→ ns:hasType
price→ ns:hasPrice

↰

PSP r oduct :
SELECT type AS product_hasType_ns, price AS product_hasPrice_ns
Starpr oducer :
?producer a ns:Producer .
?producer ns:homepage ?page .

Mappings:
Producer→ ns:Producer
website→ ns:homepage

↰

PSP r oducer :
SELECT website AS producer_homepage_ns
Starpr oduct (follow up)
?product ns:hasProducer ?producer
PSr esul t s :

Product JOIN Producer ON Product.product_hasProducer_ns = Producer.ID

Table 1: ParSets generation from SPARQL & mappings.

4.2.3 Optimization Strategies. In order to optimize query execution
time, we have designed the query processing algorithm (Listing 5)
in such a way that we reduce as much data as soon as possible,
especially before the cross-ParSet join is executed. There are three
locations where this is applied:

(1) We push the query operations that effect only the elements of
a single ParSet to the ParSet itself, not until obtaining results
ParSet. Concretely, we execute the filter and transform op-
erations before the join. Aggregation and the other solution
modifiers are left to the final results ParSet, as those operations
have results-wide effect.

(2) Filter operation runs before transform (line 11 then 13). This
is because the transform affects the attribute values (which will
later participate in a join), so if they are reduced by the filter,
less data will have to be transformed (then joined).

(3) We leverage filter push-down optimization offered by both
Spark and Presto. Namely, we allow the engines to filter data,
whenever possible (e.g., possible with Parquet and not with
CSV), even before loading them into ParSets.

Optimization decisions 1 and 2 only apply to Spark implementa-
tion, where we can manipulate DataFrames. In Presto implemen-
tation, we do not have control over the internal data structures
implementing the ParSets. In either case, both Spark and Presto
apply internally built-in optimization strategies. For example, Spark
analyses the query and decides on the DataFrames join order, e.g.,
join between a Parquet entity and a Cassandra entity, then results
of which are joined with a CSV entity.

Product Offer Review Person Producer
of tuples Cassandra MongoDB Parquet CSV MySQL
Scale 1 (0.5M) 0.5M 10M 5M ~26K ~10K
Scale 2 (1.5M) 1.5M 30M 15M ~77K ~30K
Scale 3 (5M) 5M 100M 50M ~2.6M ~100K
Table 2: Data loaded and corresponding number of tuples.

5 EVALUATION
In this section we will report on the empirical study that we have
conducted in order to evaluate Squerall’s performance with regard
to various metrics. We set to answer the following questions:

• RQ1:What is the query performance when Spark and Presto
are used as underlying Squerall query engine?

• RQ2: What is effect of query analysis and relevant source
detection on the overall query execution time?

• RQ3: What is the performance of Squerall when increasing
data sizes are queried?

• RQ4: Is there a direct impact of involving more data sources
in a join query?

• RQ5:What is the resource consumption (CPU, memory, data
transfer) of the run queries?

5.1 Data and Queries
As we have explored in [21], there is still no dedicated benchmark
for evaluating Semantic Data Lake implementations, i.e., querying
large and heterogeneous sources right on their original form using
SPARQL. We resort to using and adapting BSBM Benchmark [3],
which is originally designed to evaluate the performance of RDF
triple stores with SPARQL-to-SQL rewriters. As Squerall currently
supports five data sources: Cassandra, MongoDB, Parquet, CSV,
and JDBC, we have chosen to load five BSBM-generated tables into
the five supported data sources as shown in Table 2. We generate
three scales: 500k, 1.5M and 5M (in terms of number of products),
which we will refer to in the following as Scale 1, Scale 2 and Scale
3, respectively.

We have adapted the original BSBM queries so they involve
only the tables we have effectively used (e.g., Vendor table was not
populated), and not include unsupported SPARQL constructs like,
e.g., DESCRIBE, CONSTRUCT. This resulted in nine queries5 joining
different tables with various SPARQL query operations, see Table 3.

5.2 Metrics
Our main objective is to evaluate Query Execution Time. In partic-
ular, we observe Squerall’s performance with (1) increasing data
sizes, (2) increasing data sources. We evaluate the effect of Query
Analyses and Relevant Source Detection on the overall query exe-
cution time. We leave time markers at the beginning and end of
each phase. Considering the distributed nature of Squerall, we also
include a set of system-related metrics, following the framework
presented in [13], e.g., average CPU consumption and spikes, mem-
ory usage, data read from disk and transferred across the network.
We run every query three times on a cold cache. As we report on the
impact of every phase on the total query time, we cannot calculate
the average of the recorded times. Rather, we calculate the sum of
5Available at: https://github.com/EIS-Bonn/Squerall/tree/master/evaluation/input_
files/queries

https://github.com/EIS-Bonn/Squerall/tree/master/evaluation/input_files/queries
https://github.com/EIS-Bonn/Squerall/tree/master/evaluation/input_files/queries

Uniform Access to Multiform Data Lakes using Semantic Technologies iiWAS2019, December 2–4, 2019, Munich, Germany

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q10
Product ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Offer ✓ ✓ ✓ ✓ ✓ ✓
Review ✓ ✓ ✓ ✓ ✓ ✓ ✓
Person ✓ ✓
Producer ✓ ✓ ✓ ✓
FILTER ✓1 ✓2 ✓1 ✓3 ✓1r ✓2 ✓1 ✓3
ORDER BY ✓ ✓ ✓ ✓ ✓ ✓
LIMIT ✓ ✓ ✓ ✓ ✓ ✓
DISTINCT ✓ ✓ ✓ ✓ ✓ ✓

Table 3: Tables and query operations involved in theQueries.
Numbers in FILTER are the number of conditions involved
and r denotes the presence of a regex filter.

the overall query times of the nine queries of the three runs and
take the run with the median sum value. Threshold is set to 3600s.

5.3 Environment
All queries are run on a cluster of three nodes having DELL Pow-
erEdge R815, 2x AMD Opteron 6376 (16 cores) CPU and 256GB
RAM. No caching or engine optimizations tuning were exploited.

5.4 Results & Discussions
Our extensive literature review reveals no single work that was
openly available and that supported all the five sources and the
SPARQL fragment that we support. Thus, we compare Squerall
performance when Spark and Presto are used as query engines.

5.4.1 Performance: The columns in Figure 2 show the query exe-
cution time divided into three phases (each with a distinct color):

(1) Query Analysis: Time taken to extract the stars, detect
joins between stars, and various query operations linked to
every star e.g., filtering, ordering, aggregation, etc.

(2) Relevant Source Detection: Time taken to visit the map-
pings and find relevant entities by matching SPARQL star
types and properties against data entities and attributes.

(3) Query Execution: Time taken by the underlying engine
(Spark or Presto) to effectively query the (relevant) data
sources and collect the results. This includes loading the
relevant entities into ParSets (or sub-sets of them if filters
are pushed down to the source), performing ParSet-related
operations e.g., filtering, executing joins between ParSets,
and finally performing results-wide operations e.g., ordering,
aggregation, and de-duplication.

The results6 presented in Figures 2 and 3 suggest the following:
• Presto-based Squarall is faster than Spark-based in most cases
except for Q3 and Q10 at Scale 1; it has comparable to slightly
lower performance in Q1 and Q8 at Scale 2. Presto is built and
optimized for running ad hoc analytical SQL queries. Spark on
the other hand is a general-purpose engine with a SQL layer,
which builds on Spark’s core in-memory structures that were not
originally designed for ad hoc querying. Spark is optimized for
fault tolerance and query recovery, in contrast to Presto which
is optimized for speed in favor of weaker query resiliency. This

6Also available online: https://github.com/EIS-Bonn/Squerall/tree/master/evaluation

16.9 8.6 34.6

9.0

7.9

10.8 35.0

33.3 7.9
81.9

90.4

63.5

90.3

90.5

88.2

62.5 63.5

91.3

83

197

52

267

241

212

80 63

229

0

50

100

150

200

250

300

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q10

Query Execution Relevant Source Detection Query Analysis

(a) Spark Scale 1.

67

520

40

624
560

575

134 18

818

81

581

61

625
586

556

156
40

832

0

200

400

600

800

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q10

Query Execution Relevant Source Detection Query Analysis

(b) Spark Scale 2.

10 14

299

123 120 120

36
3

252

13 23

302

132 128 124

38 7

283

0

50

100

150

200

250

300

350

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q10

Query Execution Relevant Source Detection Query Analysis

(c) Presto Scale 1.

16.9 8.6 34.6

9.0

7.9

10.8 35.0

33.3 7.9
81.9

90.4

63.5

90.3

90.5

88.2

62.5 63.5

91.3

83

197

52

267

241

212

80 63

229

0

50

100

150

200

250

300

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q10

Query Execution Relevant Source Detection Query Analysis

(d) Presto Scale 2.

Figure 2: Stacked view of the times (seconds): (1) QueryAnal-
yses, (2) Relevant Source Detection, (3) Query Execution,
sum of which is the total execution time (labels on top).

https://github.com/EIS-Bonn/Squerall/tree/master/evaluation

iiWAS2019, December 2–4, 2019, Munich, Germany Mami et al.

0

100

200

300

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q10

Presto Spark

(a) Scale 1.

0

200

400

600

800

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q10

Presto Spark

(b) Scale 2.

0

500

1000

1500

2000

2500

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q10

Presto Spark

(c) Scale 3.

Figure 3: Query Execution Time (seconds): comparison
Spark-based vs. Presto-based Squerall.

explains Presto’s superiority. Spark, on the other hand, performs
better on long-running complex queries, which is not the case
for our benchmark queries. (RQ1)

• Query Analysis time is negligible, in all the cases it did not ex-
ceed 4 seconds, ranging from < 1% to 8% of the total execution
time. Relevant Source Detection time varies with the queries and

0 500 1,000 1,500 2,000 2,500 3,000 3,500
0

20

40

60

80

100

CP
U
(%
)

0 500 1,000 1,500 2,000 2,500 3,000 3,500

105

107

109

Time (s)

D
at
a
Se
nt

(B
)

0.4

0.6

0.8

1 ·1011

M
em

or
y
(B
)

Figure 4: Resources of node2 with Spark Scale 2.

scales. It ranges from 0.3% (Q3 Presto Scale 1) to 38.6% (Q8 Spark
Scale 2). It is however homogeneous across the queries of the
same scale and query engine. Query Execution time is what dom-
inates the total query execution time in all the cases. It ranges
from %42.9 (Q8 Presto Scale 1) to 99% (Q3 Spark Scale 2), with
most percentages being about or above 90%, regardless of the
total execution time. Both Query Analysis and Relevant Source
Detection depend on the query not the data, so their performance
is not affected by the size of the data. That is why we did not
include the numbers for the performance at Scale 3. (RQ2)

• Increasing the size of the queried data did not deteriorate query
performance. Co-relating query time and data scale indicates
that performance is proportional to data size. In addition, all the
queries finished within the threshold. (RQ3)

• The number of joins did not have a decisive impact on query
performance, it rather should be taken in consideration with
other factors, e.g., size of involved data, presence of filters. For
example, Q2 joins only two data sources but has comparable
performance with Q5 and Q6, which join three. This may be due
to the presence of filtering in Q5 and Q6. Q7 and Q8 involve
four data sources, yet they are among the fastest queries. This
is because they involve the small entities Person and Producer,
which significantly reduce intermediate results to join. With four
data sources to join, Q4 is among the most expensive. This can
be attributed to the fact that the filter on Product is not selective
(?p1 > 630), in contrast to Q7 and Q8 (?product = 9). Although,
the three-source join Q10 involves the small entity Producer, it is
the most expensive; this can be attributed to the very unselective
product filter it has (?product > 9). (RQ4)

5.4.2 Resource Consumption: We record (1) CPU utilization by
calculating its average percentage usage as well as the sum of times
it reached 80% and 90%, (2) memory used in GB, (3) data sent across
the network in GB, and (4) data read from disk in GB (see Table 4).
We could make the following observations (RQ5) (see Table 4):

Uniform Access to Multiform Data Lakes using Semantic Technologies iiWAS2019, December 2–4, 2019, Munich, Germany

Metrics Spark Presto
Node 1 Node 2 Node 3 Node 1 Node 2 Node 3

CPU average (%) 4.327 7.141 4.327 2.283 2.858 2.283
Time above 90% CPU (s) 9 71 9 0 2 0
Time above 80% CPU (s) 19 119 19 0 5 0

Max memory (GB) 98.4 100 98.4 99.5 99.7 99.5
Data sent (GB) 4.5 6.3 4.5 5.4 8.5 5.4

Data received (GB) 3.5 3.0 3.5 8.4 4.6 8.4
Data read (GB) 9.6 5.6 9.6 1.9 0.2 1.9

Table 4: Resource Consumption by Spark and Presto across
the three nodes on Scale 2.

• Although the average CPU is low (below 10%), monitoring the
90% and 80% spikes shows that there were lots of instants where
the CPU was almost fully used. The latter applies to Spark only,
as Presto had far less 80%, 90% and average CPU usage, making
it a lot less CPU-greedy than Spark.

• From the CPU average, it still holds that the queries overall are
not CPU-intensive, CPU is in most of the time idle, the query
time is then divided between loading and transferring (shuffling)
data between the nodes.

• The total memory reserved, 250GB per node, was not fully used;
at most ≈100GB was used by both Spark and Presto.

• Presto reads less data from disk (Data read), this possibly reflects
its effectiveness at filtering irrelevant data (through predicate
push down) and already starting query processing with reduced
intermediate results.

Moreover, in Figure 4, we represent in function of time the CPU
utilization (in orange), the memory usage (in dashed red) and the
data sent over the network7 (in light blue) second by second during
the complete run of the benchmark at Scale 2 with Spark8. The
noticed curve stresses correspond to the nine evaluated queries. We
observe the following:

• CPU utilization curves change simultaneously with Data Sent
curve, which implies that there is a constant data movement
throughout query processing. Data movement is mainly due to
the join operation that exists in all queries.

• Changes in all the three represented metrics are almost simulta-
neous throughout all query executions, e.g., there is no apparent
delay between data sent or memory usage and the beginning of
the CPU computation.

• Memory activity is correlated with the data (received and sent)
activities, all changes of memory usage levels are correlated with
a high network activity.

• Unexpectedly, the memory usage seems to remain stable between
two consecutive query executions, which is in contradiction with
our experimental protocol that applies cache clearing between
each query run. In practice, this can be attributed to the fact that
even if some blocks of memory are freed, they remain shown
as used as long as they are not used again by another process
following the common UNIX strategy of memory management9.

7For clarity reason we do not add here the received data traffic since it is completely
synchronized with the sent data.
8Note: the case of node2 with Spark is representative of the other nodes and
configurations.
9For more details, see: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.
git/commit/?id=34e431b0ae398fc54ea69ff85ec700722c9da773

6 RELATEDWORK
Providing a uniform access to multiform data sources is a promising
research area that continues to attract a lot of attention. Our study’s
scope is accessing large and heterogeneous data sources including
the famousNoSQL family, aroundwhich also plentywork have been
published. Different efforts used different approaches to provide
the unified access interface to the data.

• Using SPARQL query language. Optique [12] is a platform that
allows to access both static and dynamic data sources (streams).
It implements a large-scale application using the open-source
Ontop, code-source of which is unfortunately not available. On-
tario [9] is an implementation of the Semantic Data Lake; how-
ever, it was applied to small and few data sources. [6] also accesses
heterogeneous data but using only simple queries with minimal
and centralized join support.

• Using SQL query language. [5] suggests an intermediate query
language that transforms SQL to Java methods accessing NoSQL
databases. A dedicated mapping language to express access links
to NoSQL databases was defined. The underlying approach, e.g.,
join processing, is not explained and the prototype is not evalu-
ated. [4, 28, 29] are efforts aiming at bridging the gap between
relational and NoSQL databases, but evaluating with only indi-
vidual NoSQL stores and in cases only with small data sizes.

• Using access methods: [1] allows direct access to NoSQL databases
using get, put and delete primitives based on a suggested unified
programming model. Cross-database join was not addressed. [24]
enables running CRUD operations over NoSQL stores. The au-
thors extend their approach to support joins [25] but not in a
scalable way; the approach performs joins locally if involved
data is located in the same database and the latter supports join,
otherwise, data is moved to another capable database.

• Using a hybrid query language: [23] suggests a generic query lan-
guage based on SQL and JSON, called SQL++. It tries to cover the
capabilities of various NoSQL query languages. However, here
again, only one data source, MongoDB, was used to showcase the
query capabilities. In [15], a SQL-like language is suggested invok-
ing the native query interfaces of relational and NoSQL databases.
Their general architecture is distributed; however, we were not
able to verify whether intra-source join is also distributed in
absence of the source-code. In both efforts, users are expected to
learn syntaxes of other languages in addition to SQL’s.

There are two other solution families that are similar to the
Semantic Data Lake concept in that heterogeneous stores are to
be accessed. However, they differ in the scope of data sources to
access or the access mechanism. The first family is represented
by the solutions mapping relational databases to RDF [27], and
Ontology-Based Data Access over relational databases [31], e.g.,
Ontop, Morph, Ultrawrap, Mastro, Stardog. These solutions are not
designed to query large-scale data sources, e.g., NoSQL stores or
HDFS. The second family is represented by the so-called polystore
solutions, which address large-scale sources, but involves the move-
ment of data across the data sources, or the data itself is duplicated
across the sources, e.g., [10, 11, 30]. The task is to find which store
answers best a given query (analytical, transactional, etc.) or which
store to move all/part of the data to.

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=34e431b0ae398fc54ea69ff85ec700722c9da773
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=34e431b0ae398fc54ea69ff85ec700722c9da773

iiWAS2019, December 2–4, 2019, Munich, Germany Mami et al.

All surveyed efforts support a few data sources (1-3) with limited
query capabilities, e.g., not supporting (distributed) joins. More
importantly, wrappers are manually created or hard-coded. Further,
in order to support as many data sources as possible, we choose
not reinvent the wheel and leverage the wrappers offered by or
built for the variety of existing engines. This makes it the solution
with the broadest support of Big Data Variety dimension in terms
of data source types. Further, Squerall has among the richest query
capabilities10, e.g., join, aggregation, and solution modifiers.

7 CONCLUSION & FUTUREWORK
In this paper we provided a (semi)formal description of the terms
and principles underlying the Semantic Data Lake concept, and
suggested six requirements that must be met for an implemented
system to be SDL-compliant. Further, we provided detailed descrip-
tion of the various query execution mechanisms underlying the
SDL. Furthermore, we have conducted experiments to evaluate
Squerall’s query execution performance throughout various ex-
ecution stages. In the future we plan to enrich Squerall’s query
capability by supporting OPTIONAL constructs and sub-queries. Af-
ter having been integrated in the SANSA Stack [18], Squerall is
already being internally used by a large industrial company. As a re-
sult, we also plan to evaluate Squerall’s performance on real-world
data in addition to the synthetic data used in this study. Finally, we
intend to leverage more thoroughly the optimization techniques
offered by the query engines, e.g., various types of join algorithms,
partitioning, and statistics.

ACKNOWLEDGMENTS
This work is partly supported by the EU H2020 projects BETTER
(GA 776280) and QualiChain (GA 822404); and by the ADAPT Cen-
tre for Digital Content Technology funded under the SFI Research
Centres Programme (Grant 13/RC/2106) and co-funded under the
European Regional Development Fund.

REFERENCES
[1] Paolo Atzeni, Francesca Bugiotti, and Luca Rossi. 2012. Uniform Access to Non-

relational Database Systems: The SOS Platform.. In In CAiSE, Jolita Ralyté, Xavier
Franch, Sjaak Brinkkemper, and Stanislaw Wrycza (Eds.), Vol. 7328. Springer,
160–174.

[2] Sören Auer, Simon Scerri, Aad Versteden, Erika Pauwels, Stasinos Konstantopou-
los, Jens Lehmann, Hajira Jabeen, Ivan Ermilov, Gezim Sejdiu, Mohamed Nadjib
Mami, et al. 2017. The BigDataEurope platform–supporting the variety dimension
of big data. In International Conference on Web Engineering. Springer, 41–59.

[3] Christian Bizer and Andreas Schultz. 2009. The Berlin SPARQL benchmark.
International Journal on Semantic Web and Information Systems (IJSWIS) 5, 2
(2009), 1–24.

[4] Elena Botoeva, Diego Calvanese, Benjamin Cogrel, Julien Corman, and Guohui
Xiao. 2018. A Generalized Framework for Ontology-Based Data Access. In Inter-
national Conference of the Italian Association for Artificial Intelligence. Springer,
166–180.

[5] Olivier Curé, Robin Hecht, Chan Le Duc, and Myriam Lamolle. 2011. Data
integration over NoSQL stores using access path based mappings. In International
Conference on Database and Expert Systems Applications. Springer, 481–495.

[6] Oliver Curé, Fadhela Kerdjoudj, David Faye, Chan Le Duc, and Myriam Lamolle.
2013. On the potential integration of an ontology-based data access approach
in NoSQL stores. International Journal of Distributed Systems and Technologies
(IJDST) 4, 3 (2013), 17–30.

[7] James Dixon. 2010. Pentaho, Hadoop, and Data Lakes. (2010). https://jamesdixon.
wordpress.com/2010/10/14/pentaho-hadoop-and-data-lakes Online; accessed
06-August-2019.

10Details about the full fragment supported can be found at https://github.com/EIS-
Bonn/Squerall/tree/master/evaluation

[8] Brendan Elliott, En Cheng, Chimezie Thomas-Ogbuji, and Z Meral Ozsoyoglu.
2009. A complete translation from SPARQL into efficient SQL. In Proceedings of
the International Database Engineering & Applications Symposium. ACM, 31–42.

[9] Kemele M Endris, Philipp D Rohde, Maria-Esther Vidal, and Sören Auer. 2019. On-
tario: Federated Query Processing Against a Semantic Data Lake. In International
Conference on Database and Expert Systems Applications. Springer, 379–395.

[10] Vijay Gadepally, Peinan Chen, Jennie Duggan, Aaron Elmore, Brandon Haynes,
Jeremy Kepner, Samuel Madden, Tim Mattson, and Michael Stonebraker. 2016.
The bigdawg polystore system and architecture. In High Performance Extreme
Computing Conference. IEEE, 1–6.

[11] Victor Giannakouris, Nikolaos Papailiou, Dimitrios Tsoumakos, and Nectarios
Koziris. 2016. MuSQLE: Distributed SQL query execution over multiple engine
environments. In 2016 IEEE International Conference on Big Data (Big Data). IEEE,
452–461.

[12] Martin Giese, Ahmet Soylu, Guillermo Vega-Gorgojo, Arild Waaler, Peter Haase,
Ernesto Jiménez-Ruiz, Davide Lanti, Martín Rezk, Guohui Xiao, Özgür Özçep,
et al. 2015. Optique: Zooming in on big data. Computer 48, 3 (2015), 60–67.

[13] Damien Graux, Louis Jachiet, Pierre Geneves, and Nabil Layaïda. 2018. A Multi-
Criteria Experimental Ranking of Distributed SPARQL Evaluators. In 2018 IEEE
International Conference on Big Data (Big Data). IEEE, 693–702.

[14] Eben Hewitt. 2010. Cassandra: the definitive guide. " O’Reilly Media, Inc.".
[15] Boyan Kolev, Patrick Valduriez, Carlyna Bondiombouy, Ricardo Jiménez-Peris,

Raquel Pau, and José Pereira. 2016. CloudMdsQL: querying heterogeneous cloud
data stores with a common language. Distributed and Parallel Databases 34, 4
(2016), 463–503.

[16] Doug Laney. 2012. Deja VVVu: others claiming Gartner’s construct for big data.
Gartner Blog, Jan 14 (2012).

[17] Ora Lassila, Ralph R Swick, et al. 1998. Resource description framework (RDF)
model and syntax specification. (1998).

[18] Jens Lehmann, Gezim Sejdiu, Lorenz Bühmann, Patrick Westphal, Claus Stadler,
Ivan Ermilov, Simon Bin, Nilesh Chakraborty, Muhammad Saleem, and Axel-
Cyrille Ngonga Ngomo. 2017. Distributed Semantic Analytics using the SANSA
Stack. In ISWC. Springer, 147–155.

[19] Mohamed Nadjib Mami, Damien Graux, Simon Scerri, Hajira Jabeen, and Sören
Auer. 2019. Querying Data Lakes using Spark and Presto. In The World Wide Web
Conference. ACM, 3574–3578.

[20] Mohamed Nadjib Mami, Damien Graux, Simon Scerri, Hajira Jabeen, Sören Auer,
and Jens Lehman. 2019. How to feed the Squerall with RDF and other data nuts?
Proceedings of 18th International Semantic Web Conference (Poster & Demo Track)
(2019).

[21] Mohamed Nadjib Mami, Damien Graux, Simon Scerri, Hajira Jabeen, Sören Auer,
and Jens Lehman. 2019. Squerall: Virtual Ontology-Based Access to Heteroge-
neous and Large Data Sources. Proceedings of 18th International Semantic Web
Conference (2019).

[22] Franck Michel, Catherine Faron-Zucker, and Johan Montagnat. 2016. A mapping-
based method to query MongoDB documents with SPARQL. In International
Conference on Database and Expert Systems Applications. Springer, 52–67.

[23] Kian Win Ong, Yannis Papakonstantinou, and Romain Vernoux. 2014. The SQL++
unifying semi-structured query language, and an expressiveness benchmark of
SQL-on-Hadoop, NoSQL and NewSQL databases. CoRR, abs/1405.3631 (2014).

[24] Rami Sellami, Sami Bhiri, and Bruno Defude. 2016. Supporting Multi Data Stores
Applications in Cloud Environments. IEEE Trans. Services Computing 9, 1 (2016),
59–71.

[25] Rami Sellami and Bruno Defude. 2018. Complex Queries Optimization and
Evaluation over Relational and NoSQL Data Stores in Cloud Environments. IEEE
Trans. Big Data 4, 2 (2018), 217–230.

[26] Raghav Sethi, Martin Traverso, Dain Sundstrom, David Phillips, Wenlei Xie,
Yutian Sun, Nezih Yegitbasi, Haozhun Jin, Eric Hwang, Nileema Shingte, et al.
2019. Presto: SQL on Everything. In 2019 IEEE 35th International Conference on
Data Engineering (ICDE). IEEE, 1802–1813.

[27] D.E. Spanos, P. Stavrou, and N. Mitrou. 2010. Bringing relational databases into
the semantic web: A survey. Semantic Web (2010), 1–41.

[28] Jörg Unbehauen and Michael Martin. 2016. Executing SPARQL queries over
Mapped Document Stores with SparqlMap-M. In 12th Int. Conf. on Semantic
Systems.

[29] Ágnes Vathy-Fogarassy and Tamás Hugyák. 2017. Uniform data access platform
for SQL and NoSQL database systems. Information Systems 69 (2017), 93–105.

[30] Marco Vogt, Alexander Stiemer, and Heiko Schuldt. 2017. Icarus: Towards a
multistore database system. 2017 IEEE International Conference on Big Data (Big
Data) (2017), 2490–2499.

[31] Guohui Xiao, Diego Calvanese, Roman Kontchakov, Domenico Lembo, Antonella
Poggi, Riccardo Rosati, and Michael Zakharyaschev. 2018. Ontology-based data
access: A survey. IJCAI.

[32] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion
Stoica. 2010. Spark: Cluster computing with working sets. HotCloud 10, 10-10
(2010), 95.

https://jamesdixon.wordpress.com/2010/10/14/pentaho-hadoop-and-data-lakes
https://jamesdixon.wordpress.com/2010/10/14/pentaho-hadoop-and-data-lakes
https://github.com/EIS-Bonn/Squerall/tree/master/evaluation
https://github.com/EIS-Bonn/Squerall/tree/master/evaluation

	Abstract
	1 Introduction
	2 Semantic Data Lake Principles
	2.1 Running Example
	2.2 SDL Building Blocks
	2.3 SDL Requirements

	3 SDL Architecture and Implementation
	3.1 SDL Architecture
	3.2 SDL Implementation: Squerall

	4 Query Processing in the SDL
	4.1 ParSets Formation
	4.2 ParSet Querying

	5 Evaluation
	5.1 Data and Queries
	5.2 Metrics
	5.3 Environment
	5.4 Results & Discussions

	6 Related Work
	7 Conclusion & Future Work
	Acknowledgments
	References

