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ABSTRACT
Squerall is a tool that allows the querying of heterogeneous, large-
scale data sources by leveraging state-of-the-art Big Data processing
engines: Spark and Presto. Queries are posed on-demand against a
Data Lake, i.e., directly on the original data sources without requir-
ing prior data transformation. We showcase Squerall’s ability to
query five different data sources, including inter alia the popular
Cassandra and MongoDB. In particular, we demonstrate how it
can jointly query heterogeneous data sources, and how interested
developers can easily extend it to support additional data sources.
Graphical user interfaces (GUIs) are offered to support users in (1)
building intra-source queries, and (2) creating required input files.

CCS CONCEPTS
• Information systems → Database query processing; Paral-
lel and distributed DBMSs; Mediators and data integration;
• Applied computing → Information integration and inter-
operability; • Computing methodologies → Knowledge repre-
sentation and reasoning.
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1 INTRODUCTION
During the last four decades, a variety of data storage and manage-
ment techniques have been developed in both research and industry.
Today, we benefit from a multitude of storage solutions, varying in
their data model (e.g. tabular, document, graph) or their ability to
scale storage and querying. There are dozens of continuously evolv-
ing storage and data management solutions; for the NoSQL family,
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Figure 1: Squerall High-level Architecture.

Cassandra, MongoDB, Couchbase, HBase, Neo4j, DynamoDB, are
just a few examples. As a result, users can choose a system that
suits their individual application needs.

However, those systems do not inter-operate, every stored datum
is locked in the respective system it is stored in. For example, an e-
commerce companymight store product information in a Cassandra
database, offers in MongoDB to benefit from its capability to store
hierarchical multi-level values, and information about Producers
obtained from an external source in a relational format. Without
transforming and moving the data into a unified (scalable) data
management solution, the data can hardly be explored and business
insights be extracted using ad hoc uniform querying.

We have taken on the mission of bridging this gap and developed
Squerall1, a software that allows to query heterogeneous data
directly in its original form and source. We have used standardized
and time-proven Semantic Web techniques to enable the uniform
querying of heterogeneous data. We support the mapping of terms
in the original data to terms in higher-level ontologies, and the
querying of the resulting uniform view using SPARQL [13].

Similar efforts to integrate and query large data sources exist
in the literature. For instance, [4] defines a mapping language to
express access links to NoSQL databases. [12] allows to run CRUD
operations over NoSQL databases. [1] proposes a unifying program-
ming model to directly access databases using get, put and delete
primitives. [8] proposes a SQL-like language containing invocations
to the native query interface of relational and NoSQL databases. [7]
is a hybrid platform with consideration for both heterogeneous and
1Associated website: <https://eis-bonn.github.io/Squerall/>
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Figure 2: Example of query decomposition, and ParSets join.

dynamic data sources (streams). However, Squerall offers the high-
est number of supported data sources while providing the richest
query capability, including joining, aggregation and ordering.

We demonstrate Squerall’s ability and efficiency in querying
five different data sources (namely: CSV, Parquet, Cassandra, Mon-
goDB and MySQL), and how it can be easily extended to support
additional data sources, through several application scenarios.

2 PRINCIPLES AND ARCHITECTURE
In this section we introduce the basic principles and terminology
needed to understand the architecture, subsequently described.
- Mappings: Squerall implements the so-called Ontology-Based
Data Access (OBDA) [11] paradigm. In OBDA, data schemata are
mapped to higher-level ontologies, forming a middleware against
which SPARQL queries are posed. For example, Offers(published,
closed) is a MongoDB collection mapped as follows: (published→
bsbm:validFrom, closed→ bsbm:validTo, Offers→ bsbm:Offer) with
bsbm:validFrom, bsbm:validTo and bsbm:Offer are two properties
and a class of the BSBM ontology, respectively. Mappings are a core
component of OBDA systems. Therefore, in order for every data
source entity (Cassandra tables, MongoDB documents, etc.) to be
queried using Squerall, having a mapping is a prerequisite.
- Distributed Query Execution: In Squerall, queries are exe-
cuted in a separate distributed environment, which is, in particular,
resilient to faults (node failure does not halt the entire query ex-
ecution), and elastic and horizontally-scalable (more nodes can
be added to accommodate more expensive computations). This is
required for the following reasons:
• As we are dealing with dispersed data sources, intra-source query
execution does not happen locally, but has to be brought into a
more resilient, elastic and distributed environment, e.g. HDFS [3],
or Spark’s RDDs [14]. An exception is when certain sub-queries
can be pushed down to the original source, which reduces what
is loaded into the query execution environment.

• As we are dealing with large data volumes, query execution
cannot be delegated to a single machine, as the intermediate
results can overflow both its storage and computational capacity.

• In many modern NoSQL databases, in order to guarantee query
performance, certain traditional query operators, e.g., join [10]
are dropped. Such missing operations have to be executed in a
higher-level capability environment.

- Enabling joinability:As data from different sources, e.g., Product
and Producer, is generated by different applications, they may not be
able to be readily cross-joined. Thus, modifications on the possible

SPARQL SELECT Queries from BSBM (adapted)
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q10

– Scale 1: scale factor of 0.5 millions products –
Presto 55.34 28.89 15.84 53.63 49.24 43.38 18.63 14.38 89.08
Spark 98.78 189.57 59.96 277.30 222.76 191.26 159.51 91.38 300.38
Diff. % 178.48 656.17 378.57 517.06 452.40 440.88 856.31 635.33 337.21

– Scale 2: scale factor of 1.5 millions products –
Presto 139.15 48.59 16.30 133.45 115.35 116.08 42.16 14.37 405.84
Spark 102.86 584.67 70.76 673.12 637.18 611.65 447.27 75.19 888.98
Diff. % 73.92 1203.36 434.05 504.41 552.40 526.93 1060.83 523.31 219.05

– Scale 3: scale factor of 5 millions products –
Presto 276.91 131.87 30.58 340.61 350.04 334.29 98.11 18.96 784.01
Spark 132.37 1813.69 93.19 2131.10 1846.59 1833.47 1390.99 79.33 2703.43
Diff. % 47.80 1375.40 304.71 625.67 527.54 548.46 1417.80 418.47 344.82

Table 1: Query execution times (seconds) using Presto and
Spark and the difference percentage between them (%).

join values ought to be incorporated, e.g., to enable Product to join
with Producer, modify Product.producer_id attribute values.

Squerall is comprised of five components (see Figure 1):

(1) Query Decomposer: Validates and analyzes SPARQL queries
provided by a user. Particularly, the Query Decomposer extracts
the Basic Graph Pattern (BGP, i.e., the conjunctive set of triple
patterns given in the where clause) of the query and decomposes
it into star-shaped sub-graph patterns having the same subject,
stars for short. This component also detects links between stars,
e.g., the triple ?product bsbm:producer ?producer repre-
sents a link between the two stars represented by the variables
?product and ?producer (e.g., see colored boxes in Figure 1).

(2) Relevant Entity Extractor: Each star is analyzed separately;
this component searches in the mappings for entities that are
mapped to every predicate of the star. For example, given the
graph pattern { ?x bsbm:validFrom ?y . ?x bsbm:validTo
?z ...}, the entityOffers(published, closed)—aMongoDB collec-
tion, and the mappings (published→ bsbm:validFrom, closed→
bsbm:validTo), this component decides that the entity Offer is
relevant to the star of ?x. Star type (when present in the query)
is taken into account, e.g., ?x a bsbm:Offer.

(3) Data Connector:Once relevant data entities are detected, they
are connected to the distributed execution environment. Ev-
ery detected entity is loaded into what we call a ParSet (short
of Parallel dataSet), which are data structures that can be dis-
tributed and operated on in parallel. The Data Connector ex-
pects external users to input the necessary connection metadata,
e.g., user, password, host, port, cluster name, etc.

(4) Distributed Query Processor: Following the principles intro-
duced earlier, queries are executed in parallel. Query execution
occurs on and across the ParSets. Links between stars retrieved
by the Query Decomposer are transformed into joins between
the relevant detected data entities. Figure 2 depicts the process:
stars and links between stars (left colored boxes) are mapped
to ParSets and joins between ParSets (step I). All stars are in-
crementally joined forming Results ParSet (step II). When dis-
joinability points are known, join values are altered to enable
joinability. We incorporate transformations which users need
to declare to determine what are the possible changes to make,
e.g., increase the values of the producer_id attribute in the
Product Cassandra table by a constant value.

(5) Query Designer: Querying the Data Lake using SPARQL as a
uniform query language assumes aminimum level of knowledge
about SPARQL. Therefore, we see the necessity of supporting



Figure 3: Data Connection GUI.

users in their query creation. Users are not expected to pro-
vide queries only in plain-text, but can interact with the Query
Designer to create correct queries in an intuitive way.

3 ACHIEVED PERFORMANCE
We evaluate the performance of Squerall in querying five differ-
ent data sources: Cassandra, MySQL, MongoDB, Parquet, and CSV.
As evaluation data we choose the BSBM [2] benchmark because it
allows to (1) generate increasing scales of data (2) generate data in a
friendly format, relational, and (3) provide a set of SPARQL queries.
We pick five relational tables (Product, Producer, Offer, Review, and
Person) and load them into the five data sources. To measure accu-
racy, we load the relational data into a relational database and run
equivalent SQL queries. For sizes beyond the relational database
capability (query time exceeds 3600s threshold) we self-compare
Spark-based and Presto-based Squerall. For performance and scal-
ability we evaluate the execution time of BSBM queries against
three increasing data sizes: 0.5m, 1,5m and 5m scale factors (num-
ber of products). We experiment with all BSBM SELECT queries
with some adaptation, i.e., queries are modified to involve only
the five tables we populated. All the queries have join, from one
between 2 data sources to 4 between all the data sources.

The evaluation was carried out in a cluster of three nodes, each
having a 16-core DELL PowerEdge processor, 256GB RAM, and 3TB
SATA disk. The evaluation results show 100% accuracy across all
the three scales. For performance and scalability, Squerall exhibits
reasonable performance across all three scales (see Table 1). Presto-
based Squerall exhibits better performance to the Spark-based
alternative in the majority of the cases. To measure this difference,
we calculate the difference, in percentage, between Presto and Spark
execution times (third row under each scale result in Table 1), e.g.,
for Q2 in the first scale Presto-based Squerall is 656% faster.

4 DEMONSTRABLE SCENARIOS
Squerall is a realization of the high-level architecture presented
in section 2. We here describe its core technologies as well as con-
crete demonstrable scenarios using it.
1. Core technologies: RML [6] along FNO [5] are used to ex-
press mappings and to declare query-independent transformations.
Apache Spark and Presto are used to implement both the Data Con-
nector and Distributed Query Processor. Spark is a general-purpose
processing engine, and Presto is a distributed SQL query engine

Figure 4: Data Mapping GUI.

for running interactive SQL queries. In Spark, ParSets are repre-
sented by DataFrames, and the Distributed Execution Environment
is the memory pool where DataFrames are stored and transformed.
DataFrames are tabular data structures, which are created and
queried using Spark SQL API. Presto, in the other hand, is used like
a database: users directly issue SQL queries without programmati-
cally dealing with its underlying data structure. Thus, ParSets are
represented by Presto’s internal data structures, which are trans-
parent to the user. Both Spark and Presto provide wrappers, called
connectors2 to connect to a data source. They load the data (fully,
or partially if part of the query is pushed down to the data source)
to their internal in-memory data structures. Dozens connectors are
available relieving developers from creating their own wrappers.

2. User Interfaces: We provide 3 GUIs to help users produce
Squerall’s inputs: Config and Mappings files and SPARQL query.
(a) Data Connection (Figure 3): This interface shows users the

query engine-specific options needed to connect to a particular
data source, e.g., user, password, port, host, cluster name, etc.

(b) Mapping Creation (Figure 4): using the connection informa-
tion from the Data Connection GUI, this interface extracts
the data schema and prompts users to map it. It has a built-in
search functionality that sends requests to the LOV catalog3
to search for adequate terms from existing ontologies.

(c) Query Designing SPARQL (Figure 5): This interface offers
users a number of widgets to interact with. It is able to auto-
matically generate a syntactically correct SPARQL query based
on users’ input. For example, users are prompted to only enter
variable values or to pick from a pre-existing menu list, other
constant query constructs are pre-entered.

3. Scenarios: Users can explore Squerall through a six-scenario
story. They start by using Squerall’s 3 GUIs to build the inputs
Squerall needs for query execution. Afterwards, they run queries
and observe the execution steps and results. Finally, they uncover
Squerall’s code and learn how it can be extended to support more
data sources and query engines. Those scenarios use similar data
as the ones used in the performance evaluation section 3.
(1) Providing connection metadata. Guided by the dedicated

GUI, Figure 3, users provide necessary information to enable
2<https://spark-packages.org> and <https://prestodb.io/docs/current/connector.html>
3Linked Open Vocabularies is a Web service to publish, search and visualize ontologies
<https://lov.linkeddata.es/>.

https://spark-packages.org
https://prestodb.io/docs/current/connector.html
https://lov.linkeddata.es/


Figure 5: Query Designing GUI.

Spark and Presto to know and connect to a data source. For
example, to load a CSV file, users specify the delimiter and select
the strategy to adopt when the parser encounters a mal-formed
line, e.g., dropping the line; or to connect to a MongoDB cluster,
users specify the replica-set name.

(2) Creatingmappings.Users leverage the dedicated interface, Fig-
ure 4, to create mappings for the previously connected data.
They visualize the data schema and map it to ontology terms
(properties and classes). They can try to find terms in existing
ontologies using the LOV catalog-powered search; in absence
of suitable results, they can input their own terms.

(3) Building SPARQL queries. Users explore and use the capabil-
ities of theQuery Designing GUI, Figure 5. They use the different
widgets and incrementally augment their SPARQL query. They
start building the query by forming stars (triple patterns of the
same subject) and linking them together, then include other
query operations like filtering. Users can experiment with the
full spectrum of SPARQL fragment supported, which includes
filters, aggregate functions, solution modifiers, and regex.

(4) Data Transformation Declaration. Users are invited to ex-
periment with the two offered options of declaring transfor-
mations: (1) as part of SPARQL query: they add a new clause at
the very end of a SPARQL query; (2) as part of the mappings:
they amend RML mappings to, instead of mapping an entity
attribute, e.g., column producer_id, directly to an ontology
term, they first modify its values using declared FNO functions.
The former is used when transformations vary from a query to
query, the latter is used when transformations are fixed.

(5) Executing SPARQL queries. Users experiment with query-
ing the data using Squerall. They can either evaluate BSBM
queries or their own queries. They explore the query execution
steps by visualizing the logs, from query parsing to stars and
joins detection, to mapping lookup, and then to query execution.

(6) Extending Squerallwithmore data sources andnewquery
engines.We show how developers can conveniently support
more data sources in both Spark and Presto implementations.
We also show them how they can programmatically incorpo-
rate a new query engine implementation, alongside Spark and
Presto, thanks to Squerall’s modular code design.

A screencast walking through the various interfaces and the
query execution is available4.
4 <https://github.com/EIS-Bonn/Squerall/blob/master/evaluation/screencasts>

5 CONCLUSION
Squerall addresses the Variety challenge of Big Data, which re-
mains poorly addressed, by making use of Semantic Web standards
and best practices. Squerall can conveniently be (pragmatically)
extended to embrace new data sources, by making use of the query
engines’ own wrappers. This approach solves one of the most te-
dious tasks acknowledged across the literature, i.e., handcrafting
wrappers. For example, in addition to the five sources evaluated
here, other sources like Couchbase or Elasticsearch can also be eas-
ily supported. As a result, Squerall is both innovative and unique
in its capability to support a high number of data source types.
Additionally, Squerall has been integrated5 into SANSA [9], a
framework for scalable processing and analysis of large-scale RDF
data, widening its scope to also access non-RDF data sources. As
future work, we plan to expand the supported SPARQL fragment to
include OPTIONAL and UNION. Squerall source code is publicly
available under an Apache-2.0 license on GitHub6, accompanied
by detailed documentation on installation and usage. This is fur-
ther facilitated with a Dockerfile to quickly run the BSBM use-case
described here (including the input files and adapted queries).
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