
Interroger des Lacs de Données en utilisant Spark & Presto

Mohamed Nadjib Mami†,§, Damien Graux†,⋄, Simon Scerri†,§, Hajira Jabeen§, and Sören Auer£∗
† Fraunhofer IAIS ; § University of Bonn

⋄ ADAPT Centre, Trinity College Dublin ; £ TIB and L3S Research Center
{mami,scerri,jabeen}@cs.uni-bonn.de;damien.graux@adaptcentre.ie;auer@l3s.de

ABSTRACT
Squerall est un outil permettant l’interrogation de sources de
données hétérogènes à large échelle en utilisant à bon escient des
moteurs de traitement dédiés aux larges volumes de données issus
de la littérature: Spark et Presto. Les requêtes à destination des lacs
de données sont évaluées à la volée, i.e., directement sur les sources
originelles sans procéder à de quelconques transformations préal-
ables des données. Nous démontrons la capacité qu’a Squerall à
interagir avec cinq sources différentes parmi lesquelles Cassandra
et MongoDB. En particulier, nous mettons en évidence que notre
outil peut joindre ensemble plusieurs sources en même temps, tout
en montrant qu’étendre la couverture à d’autres sources poten-
tielles reste simple. Des interfaces graphiques sont aussi mises à
disposition pour (1) construire les requêtes SPARQL et (2) mettre
en place les fichiers de configuration nécessaires.

CCS CONCEPTS
• Information systems → Database query processing; Paral-
lel and distributed DBMSs; Mediators and data integration;
• Applied computing → Information integration and inter-
operability; • Computing methodologies → Knowledge repre-
sentation and reasoning.

1 INTRODUCTION
During the last four decades, a variety of data storage and manage-
ment techniques have been developed in both research and industry.
Today, we benefit from a multitude of storage solutions, varying
in their data model (e.g. tabular, document, graph) or their ability
to scale storage and querying. There are dozens of continuously
evolving storage and data management solutions. As a result, users
can choose a system that suits their individual application needs.
However, those systems do not inter-operate, every stored datum
is locked in the respective system it is stored in. For example, an e-
commerce companymight store product information in a Cassandra
database, offers in MongoDB to benefit from its capability to store
hierarchical multi-level values, and information about Producers
obtained from an external source in a relational format. Without
transforming and moving the data into a unified (scalable) data
∗This research was partially supported by the European Union’s H2020 research
and innovation programme BETTER (GA. 776280); and by the ADAPT Centre for
Digital Content Technology funded under the SFI Research Centres Programme (Grant
13/RC/2106) and co-funded under the European Regional Development Fund.

© 2020, Copyright is with the authors. Published in the Proceedings of the BDA 2019
Conference (15-18 October 2019, Lyon, France). Distribution of this paper is permitted
under the terms of the Creative Commons license CC-by-nc-nd 4.0.
© 2020, Droits restant aux auteurs. Publié dans les actes de la conférence BDA 2019
(15 au 18 octobre 2019, Lyon, France). Redistribution de cet article autorisée selon les
termes de la licence Creative Commons CC-by-nc-nd 4.0.

PS2PS1 PSn

Join 

ParSets

Transformed
ParSets

Relevant
Data Sources

Distributed
Query 

Processor

Transformation

PS2tQuery 
Decomposer

Mappings

PSr

Final Results

Data Connector
Relevant Entity 

Extractor

Data Lake

Distributed 
Execution 
Environment

Union 

PS1t

Query Designer

Config

Query

Figure 1: Squerall High-level Architecture.

management solution, the data can hardly be explored and business
insights be extracted using ad hoc uniform querying. We have taken
on the mission of bridging this gap and developed Squerall1 [9]: a
software that gives access to heterogeneous data kept in their orig-
inal forms and sources using Semantic Web techniques to enable
uniform querying with SPARQL2.

Similar efforts to integrate and query large data sources exist
in the literature. For instance, [3] defines a mapping language to
express access links to NoSQL databases. [11] allows to run CRUD
operations over NoSQL databases. [1] proposes a unifying program-
ming model to directly access databases using get, put and delete
primitives. [7] proposes a SQL-like language containing invocations
to the native query interface of relational and NoSQL databases.
[6] is a hybrid platform with consideration for both heterogeneous
and dynamic data sources (streams). However, Squerall offers the
highest number of supported data sources (namely: CSV, Parquet,
Cassandra, MongoDB and MySQL) while providing the richest
query capability, including joining, aggregation and ordering.

2 SQUERALL: CONCEPTS & ARCHITECTURE
Squerall [9] implements the so-called Ontology-Based Data Ac-
cess (OBDA) [10] paradigm. In OBDA, data schemata are mapped
to higher-level ontologies, forming a middleware against which
queries are posed. These SPARQL queries are then executed in a
separate distributed environment, which is, in particular, resilient
to faults (node failure does not halt the entire query execution),
and elastic and horizontally-scalable (more nodes can be added to
accommodate more expensive computations). In addition, as data
from different sources is generated by different applications, they
1Associated website: <https://eis-bonn.github.io/Squerall/>
2<http://www.w3.org/TR/sparql11-overview/>

https://eis-bonn.github.io/Squerall/
http://www.w3.org/TR/sparql11-overview/


35th BDA Edition, October 2019, Lyon, France. M. N. Mami et al.

SPARQL SELECT Queries adapted from BSBM
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q10

– Scale 1: scale factor of 0.5 millions products –
Presto 55.34 28.89 15.84 53.63 49.24 43.38 18.63 14.38 89.08
Spark 98.78 189.57 59.96 277.30 222.76 191.26 159.51 91.38 300.38
Diff. % 178.48 656.17 378.57 517.06 452.40 440.88 856.31 635.33 337.21

– Scale 2: scale factor of 1.5 millions products –
Presto 139.15 48.59 16.30 133.45 115.35 116.08 42.16 14.37 405.84
Spark 102.86 584.67 70.76 673.12 637.18 611.65 447.27 75.19 888.98
Diff. % 73.92 1203.36 434.05 504.41 552.40 526.93 1060.83 523.31 219.05

– Scale 3: scale factor of 5 millions products –
Presto 276.91 131.87 30.58 340.61 350.04 334.29 98.11 18.96 784.01
Spark 132.37 1813.69 93.19 2131.10 1846.59 1833.47 1390.99 79.33 2703.43
Diff. % 47.80 1375.40 304.71 625.67 527.54 548.46 1417.80 418.47 344.82

Table 1: Query execution times (seconds) using Presto and
Spark and the difference percentage between them (%).

may not be able to be readily cross-joined. Thus, modifications
on the possible join values ought to be incorporated. Squerall is
comprised of five components (see Figure 1):
• Query Decomposer: Validates and analyzes SPARQL queries
provided by a user. Particularly, the Query Decomposer extracts
the Basic Graph Pattern fragment of the query and decomposes
it into star-shaped sub-graph patterns having the same subject,
stars for short. This component also detects links between stars.

• Relevant Entity Extractor: Each star is analyzed separately;
this component searches in the mappings for entities that are
mapped to every predicate of the star.

• Data Connector: Once relevant data entities are detected, they
are connected to the distributed execution environment. Every
detected entity is loaded into a ParSet (Parallel dataSet): a data
structure that can be distributed and operated on concurrently.
The Data Connector expects users to input connection metadata.

• Distributed Query Processor: Following the principles intro-
duced earlier, queries are executed in parallel. Query execution
occurs on and across the ParSets. Links between stars retrieved
by the Query Decomposer are transformed into joins between
the relevant detected data entities and all stars are incrementally
joined. When disjoinability points are known, join values are
altered to enable joinability.

• Query Designer: We see the necessity of supporting users in
their SPARQL query creation.

3 TECHNICAL DETAILS
Core technologies. RML [5] and FNO [4] are used to express map-
pings and to declare query-independent transformations. Apache
Spark and Presto are used to implement both the Data Connector
and Distributed Query Processor. Spark is a general-purpose pro-
cessing engine, and Presto is a distributed SQL query engine. Both
provide dozens of wrappers3 to connect to a data source. They load
the data (fully, or partially) to their in-memory data structures.

Achieved Performance.We evaluate the performance query-
ing five different data sources: Cassandra, MySQL, MongoDB, Par-
quet, and CSV. As evaluation data we choose the BSBM [2] bench-
mark. We pick five relational tables (Product, Producer, Offer, Review,
and Person) and load them into the five data sources. For perfor-
mance and scalability we evaluate the execution time of BSBM
queries against three increasing data sizes: 0.5m, 1,5m and 5m scale
factors (number of products). We experiment with all BSBM SELECT
queries with some adaptation (queries are altered to involve the five
3<https://spark-packages.org> and <https://prestodb.io/docs/current/connector.html>

tables we populated). The evaluation was carried out in a cluster
of three nodes, each having a 16-core DELL PowerEdge processor,
256GB RAM, and 3TB SATA disk. Presto-based Squerall exhibits
better performance to the Spark-based alternative in the majority
of the cases. To measure this difference, we calculate the difference,
in percentage, between Presto and Spark execution times (third
row under each scale result in Table 1), e.g., for Q2 in the first scale
Presto-based Squerall is 656% faster.

User Interfaces. We provide 3 GUIs to help users produce
Squerall’s inputs: Config, Mappings files and SPARQL query. They
have built-in search functionalities that send requests to the LOV
catalog4 to search for adequate terms from existing ontologies.

4 CONCLUSION
Squerall addresses the Variety challenge of Big Data by making
use of SemanticWeb standards and best practices. It can be extended
to embrace new data sources, by making use of the query engines’
own wrappers. Additionally, Squerall has been integrated5 into
SANSA [8], a framework for scalable processing and analysis of
large-scale RDF data, widening its scope to also access non-RDF data
sources. Squerall source code is available under an Apache-2.0
license on GitHub6. In addition, a screencast presenting the various
interfaces and the query execution is available7. The deployment
is further facilitated with a Dockerfile to quickly run the BSBM
use-case described here.

REFERENCES
[1] Paolo Atzeni, Francesca Bugiotti, and Luca Rossi. 2012. Uniform access to non-

relational database systems: The SOS platform. In International Conference on
Advanced Information Systems Engineering. Springer, 160–174.

[2] Christian Bizer and Andreas Schultz. 2009. The berlin SPARQL benchmark.
International Journal on Semantic Web and Information Systems 5, 2 (2009), 1–24.

[3] Olivier Curé, Robin Hecht, Chan Le Duc, and Myriam Lamolle. 2011. Data
integration over nosql stores using access path based mappings. In International
Conference on Database and Expert Systems Applications. Springer, 481–495.

[4] Ben De Meester, Wouter Maroy, Anastasia Dimou, Ruben Verborgh, and Erik
Mannens. 2017. Declarative data transformations for Linked Data generation:
the case of DBpedia. In European Semantic Web Conference. Springer, 33–48.

[5] Anastasia Dimou, Miel Vander Sande, Pieter Colpaert, Ruben Verborgh, Erik
Mannens, and Rik Van de Walle. 2014. RML: A Generic Language for Integrated
RDF Mappings of Heterogeneous Data.. In LDOW.

[6] Martin Giese, Ahmet Soylu, Guillermo Vega-Gorgojo, Arild Waaler, Peter Haase,
Ernesto Jiménez-Ruiz, Davide Lanti, Martín Rezk, Guohui Xiao, Özgür Özçep,
et al. 2015. Optique: Zooming in on big data. Computer 48, 3 (2015), 60–67.

[7] Boyan Kolev, Patrick Valduriez, Carlyna Bondiombouy, Ricardo Jimenez-Peris,
Raquel Pau, and José Pereira. 2016. CloudMdsQL: querying heterogeneous cloud
data stores with a common language. Distributed and parallel databases 34, 4
(2016), 463–503.

[8] Jens Lehmann, Gezim Sejdiu, Lorenz Bühmann, Patrick Westphal, Claus Stadler,
Ivan Ermilov, Simon Bin, Nilesh Chakraborty, Muhammad Saleem, Axel-Cyrille
Ngonga Ngomo, and Hajira Jabeen. 2017. Distributed Semantic Analytics using
the SANSA Stack. In ISWC Resources Track.

[9] Mohamed Nadjib Mami, Damien Graux, Simon Scerri, Hajira Jabeen, Sören Auer,
and Jens Lehmann. 2019. Squerall: Virtual ontology-based access to heteroge-
neous and large data sources. In International Semantic Web Conference. Springer,
229–245.

[10] Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe De Giacomo,
Maurizio Lenzerini, and Riccardo Rosati. 2008. Linking data to ontologies. In
Journal on Data Semantics X. Springer, 133–173.

[11] Rami Sellami and Bruno Defude. 2018. Complex queries optimization and eval-
uation over relational and NoSQL data stores in cloud environments. IEEE
Transactions on Big Data 4, 2 (2018), 217–230.

4Linked Open Vocabularies: publish and search ontologies <https://lov.linkeddata.es/>
5<https://github.com/SANSA-Stack/SANSA-DataLake>
6<https://github.com/EIS-Bonn/Squerall>
7<https://github.com/EIS-Bonn/Squerall/blob/master/evaluation/screencasts>

https://spark-packages.org
https://prestodb.io/docs/current/connector.html
https://lov.linkeddata.es/
https://github.com/SANSA-Stack/SANSA-DataLake
https://github.com/EIS-Bonn/Squerall
https://github.com/EIS-Bonn/Squerall/blob/master/evaluation/screencasts

	Abstract
	1 Introduction
	2 Squerall: Concepts & Architecture
	3 Technical Details
	4 Conclusion
	References

