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ABSTRACT
Squerall est un outil permettant l’interrogation de sources de
données hétérogènes à large échelle en utilisant à bon escient des
moteurs de traitement dédiés aux larges volumes de données issus
de la littérature: Spark et Presto. Les requêtes à destination des lacs
de données sont évaluées à la volée, i.e., directement sur les sources
originelles sans procéder à de quelconques transformations préal-
ables des données. Nous démontrons la capacité qu’a Squerall à
interagir avec cinq sources différentes parmi lesquelles Cassandra
et MongoDB. En particulier, nous mettons en évidence que notre
outil peut joindre ensemble plusieurs sources en même temps, tout
en montrant qu’étendre la couverture à d’autres sources poten-
tielles reste simple. Des interfaces graphiques sont aussi mises à
disposition pour (1) construire les requêtes SPARQL et (2) mettre
en place les fichiers de configuration nécessaires.

CCS CONCEPTS
• Information systems → Database query processing; Paral-
lel and distributed DBMSs; Mediators and data integration;
• Applied computing → Information integration and inter-
operability; • Computing methodologies → Knowledge repre-
sentation and reasoning.

1 INTRODUCTION
During the last four decades, a variety of data storage and manage-
ment techniques have been developed in both research and industry.
Today, we benefit from a multitude of storage solutions, varying
in their data model (e.g. tabular, document, graph) or their ability
to scale storage and querying. There are dozens of continuously
evolving storage and data management solutions. As a result, users
can choose a system that suits their individual application needs.
However, those systems do not inter-operate, every stored datum
is locked in the respective system it is stored in. For example, an e-
commerce companymight store product information in a Cassandra
database, offers in MongoDB to benefit from its capability to store
hierarchical multi-level values, and information about Producers
obtained from an external source in a relational format. Without
transforming and moving the data into a unified (scalable) data
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Figure 1: Squerall High-level Architecture.

management solution, the data can hardly be explored and business
insights be extracted using ad hoc uniform querying. We have taken
on the mission of bridging this gap and developed Squerall1 [9]: a
software that gives access to heterogeneous data kept in their orig-
inal forms and sources using Semantic Web techniques to enable
uniform querying with SPARQL2.

Similar efforts to integrate and query large data sources exist
in the literature. For instance, [3] defines a mapping language to
express access links to NoSQL databases. [11] allows to run CRUD
operations over NoSQL databases. [1] proposes a unifying program-
ming model to directly access databases using get, put and delete
primitives. [7] proposes a SQL-like language containing invocations
to the native query interface of relational and NoSQL databases.
[6] is a hybrid platform with consideration for both heterogeneous
and dynamic data sources (streams). However, Squerall offers the
highest number of supported data sources (namely: CSV, Parquet,
Cassandra, MongoDB and MySQL) while providing the richest
query capability, including joining, aggregation and ordering.

2 SQUERALL: CONCEPTS & ARCHITECTURE
Squerall [9] implements the so-called Ontology-Based Data Ac-
cess (OBDA) [10] paradigm. In OBDA, data schemata are mapped
to higher-level ontologies, forming a middleware against which
queries are posed. These SPARQL queries are then executed in a
separate distributed environment, which is, in particular, resilient
to faults (node failure does not halt the entire query execution),
and elastic and horizontally-scalable (more nodes can be added to
accommodate more expensive computations). In addition, as data
from different sources is generated by different applications, they
1Associated website: <https://eis-bonn.github.io/Squerall/>
2<http://www.w3.org/TR/sparql11-overview/>
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SPARQL SELECT Queries adapted from BSBM
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q10

– Scale 1: scale factor of 0.5 millions products –
Presto 55.34 28.89 15.84 53.63 49.24 43.38 18.63 14.38 89.08
Spark 98.78 189.57 59.96 277.30 222.76 191.26 159.51 91.38 300.38
Diff. % 178.48 656.17 378.57 517.06 452.40 440.88 856.31 635.33 337.21

– Scale 2: scale factor of 1.5 millions products –
Presto 139.15 48.59 16.30 133.45 115.35 116.08 42.16 14.37 405.84
Spark 102.86 584.67 70.76 673.12 637.18 611.65 447.27 75.19 888.98
Diff. % 73.92 1203.36 434.05 504.41 552.40 526.93 1060.83 523.31 219.05

– Scale 3: scale factor of 5 millions products –
Presto 276.91 131.87 30.58 340.61 350.04 334.29 98.11 18.96 784.01
Spark 132.37 1813.69 93.19 2131.10 1846.59 1833.47 1390.99 79.33 2703.43
Diff. % 47.80 1375.40 304.71 625.67 527.54 548.46 1417.80 418.47 344.82

Table 1: Query execution times (seconds) using Presto and
Spark and the difference percentage between them (%).

may not be able to be readily cross-joined. Thus, modifications
on the possible join values ought to be incorporated. Squerall is
comprised of five components (see Figure 1):
• Query Decomposer: Validates and analyzes SPARQL queries
provided by a user. Particularly, the Query Decomposer extracts
the Basic Graph Pattern fragment of the query and decomposes
it into star-shaped sub-graph patterns having the same subject,
stars for short. This component also detects links between stars.

• Relevant Entity Extractor: Each star is analyzed separately;
this component searches in the mappings for entities that are
mapped to every predicate of the star.

• Data Connector: Once relevant data entities are detected, they
are connected to the distributed execution environment. Every
detected entity is loaded into a ParSet (Parallel dataSet): a data
structure that can be distributed and operated on concurrently.
The Data Connector expects users to input connection metadata.

• Distributed Query Processor: Following the principles intro-
duced earlier, queries are executed in parallel. Query execution
occurs on and across the ParSets. Links between stars retrieved
by the Query Decomposer are transformed into joins between
the relevant detected data entities and all stars are incrementally
joined. When disjoinability points are known, join values are
altered to enable joinability.

• Query Designer: We see the necessity of supporting users in
their SPARQL query creation.

3 TECHNICAL DETAILS
Core technologies. RML [5] and FNO [4] are used to express map-
pings and to declare query-independent transformations. Apache
Spark and Presto are used to implement both the Data Connector
and Distributed Query Processor. Spark is a general-purpose pro-
cessing engine, and Presto is a distributed SQL query engine. Both
provide dozens of wrappers3 to connect to a data source. They load
the data (fully, or partially) to their in-memory data structures.

Achieved Performance.We evaluate the performance query-
ing five different data sources: Cassandra, MySQL, MongoDB, Par-
quet, and CSV. As evaluation data we choose the BSBM [2] bench-
mark. We pick five relational tables (Product, Producer, Offer, Review,
and Person) and load them into the five data sources. For perfor-
mance and scalability we evaluate the execution time of BSBM
queries against three increasing data sizes: 0.5m, 1,5m and 5m scale
factors (number of products). We experiment with all BSBM SELECT
queries with some adaptation (queries are altered to involve the five
3<https://spark-packages.org> and <https://prestodb.io/docs/current/connector.html>

tables we populated). The evaluation was carried out in a cluster
of three nodes, each having a 16-core DELL PowerEdge processor,
256GB RAM, and 3TB SATA disk. Presto-based Squerall exhibits
better performance to the Spark-based alternative in the majority
of the cases. To measure this difference, we calculate the difference,
in percentage, between Presto and Spark execution times (third
row under each scale result in Table 1), e.g., for Q2 in the first scale
Presto-based Squerall is 656% faster.

User Interfaces. We provide 3 GUIs to help users produce
Squerall’s inputs: Config, Mappings files and SPARQL query. They
have built-in search functionalities that send requests to the LOV
catalog4 to search for adequate terms from existing ontologies.

4 CONCLUSION
Squerall addresses the Variety challenge of Big Data by making
use of SemanticWeb standards and best practices. It can be extended
to embrace new data sources, by making use of the query engines’
own wrappers. Additionally, Squerall has been integrated5 into
SANSA [8], a framework for scalable processing and analysis of
large-scale RDF data, widening its scope to also access non-RDF data
sources. Squerall source code is available under an Apache-2.0
license on GitHub6. In addition, a screencast presenting the various
interfaces and the query execution is available7. The deployment
is further facilitated with a Dockerfile to quickly run the BSBM
use-case described here.
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