
International Journal of Information Management Data Insights 2 (2022) 100082

Contents lists available at ScienceDirect

International Journal of Information Management Data

Insights

journal homepage: www.elsevier.com/locate/jjimei

Efficient semantic summary graphs for querying large knowledge graphs

Emetis Niazmand

a , b , ∗ , Gezim Sejdiu

c , Damien Graux

d , Maria-Esther Vidal a , b

a Leibniz Information Centre for Science and Technology University Library (TIB), Germany
b Leibniz University of Hannover, Welfengarten 1B, Hannover 30167, Germany
c Smart Data Analytics, University of Bonn, Bonn, Germany
d Inria, Université Côte d’Azur, CNRS, I3S Sophia Antipolis, France

a r t i c l e i n f o

Keywords:

Knowledge graph
Summarization graph
SPARQL evaluation
Embedding model
Distributed context

a b s t r a c t

Knowledge Graphs (KGs) integrate heterogeneous data, but one challenge is the development of efficient tools for
allowing end users to extract useful insights from these sources of knowledge. In such a context, reducing the size
of a Resource Description Framework (RDF) graph while preserving all information can speed up query engines
by limiting data shuffle, especially in a distributed setting. This paper presents two algorithms for RDF graph
summarization: Grouping Based Summarization (GBS) and Query Based Summarization (QBS). The latter is an
optimized and lossless approach for the former method. We empirically study the effectiveness of the proposed
lossless RDF graph summarization to retrieve complete data, by rewriting an RDF Query Language called SPARQL
query with fewer triple patterns using a semantic similarity. We conduct our experimental study in instances of
four datasets with different sizes. Compared with the state-of-the-art query engine Sparklify executed over the
original RDF graphs as a baseline, QBS query execution time is reduced by up to 80% and the summarized RDF
graph is decreased by up to 99%.

1

k

r

t

R

v

(

s

R

v

T

a

&

2

M

v

R

(

2

v

p

m

g

(

p

t

s

K

c

c

h

p

t

(

p

m

d

r

W

c

f

h
R
2
(

. Introduction

During the past decades, the number of linked datasets – known as
nowledge graphs (KGs)– has rapidly increased as evidenced in the cur-
ent state of the Linked Open Data cloud 1 . These datasets are struc-
ured following the W3C’s standard Resource Description Framework,
DF (Manola, Miller, McBride et al., 2004), and share knowledge on
arious domains, from a more general purpose KGs such as DBpedia
 Lehmann et al., 2015) or WikiData (Vrandecic & Krötzsch, 2014) to
pecialized ones, e.g., SemanGit (Kubitza, Böckmann, & Graux, 2019).
eal-world applications over these types of sources demand the de-
elopment of optimized techniques to extract meaningful information.
he Semantic Web community has actively contributed to RDF man-
gement and has proposed formalisms, e.g., SPARQL (Harris, Seaborne,
 Prud’hommeaux, 2013) and SHACL (Spahiu, Maurino, & Palmonari,
018), to express queries and integrity constraints over RDF graphs.
oreover, within the years, efficiency has also been addressed, and

arious methods have been proposed; they include methods to store
DF graphs, e.g., centralized (Faye, Curé, & Blin, 2012) or distributed
 Kaoudi & Manolescu, 2015), as well as to query RDF graphs (Vidal et al.,
010). Indeed, the task of query processing can become incredibly com-
∗ Corresponding author.
E-mail addresses: Emetis.Niazmand@tib.eu (E. Niazmand), sejdiu@cs.uni-bo

idal@l3s.de (M.-E. Vidal) .
1 As of August 2021, the LOD-cloud gathers around 1512 datasets sharing 413,734

ttps://doi.org/10.1016/j.jjimei.2022.100082
eceived 25 November 2021; Received in revised form 13 April 2022; Accepted 16 M
667-0968/© 2022 The Authors. Published by Elsevier Ltd. This is an open access ar
 http://creativecommons.org/licenses/by-nc-nd/4.0/)
lex whenever RDF graphs come along with large ontologies, and there
ay be portions of the ontology with no instances in a knowledge

raph. Also, complex queries that include graph pattern expressions
e.g., multi-union queries) represent challenges for query engines in
rocessing time (Pérez, Arenas, & Gutiérrez, 2009). Graph summariza-
ion is a technique to solve this issue by providing a compact repre-
entation of a graph where redundant data is reduced (Shin, Ghoting,
im, & Raghavan, 2019). As a result, a summarized graph’s size is de-
reased, and effective techniques can be devised to speed up query pro-
essing (Kondylakis, Kotzinos, & Manolescu, 2019). RDF summarization
as been used in query answering and optimization. It has been ap-
lied to recognizing the most notable nodes, discovering schema from
he data, and visualizing the RDF graph to quickly understand the data
 Cebiric et al., 2019). We propose graph summarization methods by ap-
lying both word embedding and graph embedding models to find the
ost similar predicates by encoding them as vectors. The word embed-
ing models resort to Natural Language Processing (NLP) techniques to
epresent words in a numeric vector space (Jurafsky & Martin, 2009).
ord embedding models used to convert textual information and so-

ial media data such as tweet sentences to numeric weightage in vector
ormat. They are studied in a specific domain to solve real issues, such
nn.de (G. Sejdiu), damien.graux@inria.fr (D. Graux), Maria.Vidal@tib.eu ,

,019,304 RDF Triples. https://lod-cloud.net/ .

ay 2022
ticle under the CC BY-NC-ND license

https://doi.org/10.1016/j.jjimei.2022.100082
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jjimei
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jjimei.2022.100082&domain=pdf
mailto:Emetis.Niazmand@tib.eu
mailto:sejdiu@cs.uni-bonn.de
mailto:damien.graux@inria.fr
mailto:Maria.Vidal@tib.eu
mailto:vidal@l3s.de
https://lod-cloud.net/
https://doi.org/10.1016/j.jjimei.2022.100082
http://creativecommons.org/licenses/by-nc-nd/4.0/

E. Niazmand, G. Sejdiu, D. Graux et al. International Journal of Information Management Data Insights 2 (2022) 100082

a

N

e

&

f

a

f

e

w

P

g

r

q

q

O

(

g

S

a

i

S

t

g

t

w

r

w

t

p

m

L

(

D

l

q

G

s

e

e

p

r

S

S

r

m

c

2

g

l

p

s

2

n

i

p

o

m

a

i

p

o

r

c

2

O

s

Y

s

s

t

n

R

S

m

n

l

r

i

p

T

s

q

2

m

p

s

e

o

S

2

p

f

p

t

t

q

g

d

r

p

s Neogi, Garg, Mishra, & Dwivedi (2021) and Mishra, Urolagin, Jothi,
eogi, & Nawaz (2021) . There are more use cases which employ word
mbedding models for vector representation of textual words. Chauhan
 Palivela (2021) propose a framework which improves the detection of

ake news and real news. This framework makes use of neural networks
nd a tokenization method. The tokenization method has been proposed
or feature extraction or vectorization, which assigns tokens to word
mbeddings. Word embedding models can be applied to RDF graphs as
ell, and RDF2Vec is an exemplary approach presented by Ristoski &
aulheim (2016) .

We aim to provide an algorithm in which a summarized RDF graph
roups RDF triples composed of similar predicates; the similarity met-
ics computed over the embeddings determine this relatedness. SPARQL
ueries are rewritten based on the summarized RDF graph. As a result,
uery execution time reduced, while answer completeness is maximized.
ur goal is to achieve the following research objectives:

• Role of summarization in the RDF graph size reduction.
• Impact of summarization in query processing.

Two approaches are presented: Grouping Based Summarization
GBS) and Query Based Summarization (QBS). GBS decreases an RDF
raph size and QBS considers criteria of graph summarization to rewrite
PARQL queries into queries with fewer triple patterns, but with equiv-
lent answers. Our query rewriting techniques resort to semantic sim-
larity metrics to identify related predicates in the triple patterns of a
PARQL query and replace them with a predicate that represents all of
hem. QBS has the following desirable characteristics: a) Compactness :
raph summarization provides fewer nodes and edges compared with
he original RDF graph by considering only a part of the RDF graph
hich is related to the given SPARQL query; b) Lossless query processing :

eturns the same answers by querying over summarized graph compared
ith the original one based on similarity metric by transforming a query

o the simple one; and c) Low-cost query processing : speeds up query
rocessing over the summarized RDF graph. The GBS and QBS perfor-
ance is evaluated; the Sparklify component (Stadler, Sejdiu, Graux, &

ehmann, 2019) is used as a default query engine from the SANSA Stack
 Lehmann et al., 2017). The Waterloo SPARQL Diversity Test Suite (Wat-
iv) benchmark generator (Aluç, Hartig, Özsu, & Daudjee, 2014) is uti-

ized to generate two RDF graphs (WatDiv.10M and WatDiv.100M) and
ueries; also, the Entity Summarization Benchmark, ESBM (Liu, Cheng,
unaratna, & Qu, 2020), and a dump of DBpedia 2 are included in the

tudy. We report on twenty queries where the execution time is accel-
rated by up to 80%. The observed results are promising and provide
vidence of our proposed approaches’ compactness power and their im-
act on query processing.

In particular, the contributions of this work are as follows:

• Graph summaries are able to reduce RDF triples required in query
processing.

• Query rewriting techniques guided by RDF graph summarization.
These techniques ensure answer completeness.

• An empirical study over state-of-the-art benchmarks. Observed re-
sults indicate the positive effects of reducing redundant information
in the portion of an RDF graph required to execute a SPARQL query.

The rest of the paper is organized as follows: In Section 2 , we
eview the related efforts in the domain of RDF summarization.
ection 3 presents an in-depth example to illustrate our challenges.
ection 4 presents our proposed approaches. The methodology and the
esults of our empirical evaluation are reported in Section 5 . We have
entioned our discussions in Section 6 . Finally, in Section 7 , we con-

lude and draw the next challenges to be addressed.
2 https://wiki.dbpedia.org/ .

2

t

&

2
. Related work

Graph summarization techniques reduce the size of graph, speed up
raph query evaluation, as well as facilitate graph visualization and ana-
ytics. In addition, it provides semantic searches with a reduction in com-
utational complexity. We analyze existing approaches for RDF graph
ummarization and query processing over summarized RDF graphs.

.1. Graph summarization in RDF

Graph databases use graph structures for representing entities as
odes and their relationships as edges of a graph Bourbakis (1998) . The
ncrement of data in graph databases makes the query processing com-
licated. Summarization technique is a way to overcome the complexity
f search query in graph databases (LeFevre & Terzi, 2010). Graph sum-
arization has been studied for semi-structured graph data models such

s XML (Qun, Lim, & Ong, 2003) and RDF graphs. There are many ex-
sting works in this area to compact RDF graphs whose structure is com-
uted from the original RDF graph, such that all the paths present in the
riginal graph are also present in the summary graph (Bonifati, Dumb-
ava, & Kondylakis, 2020). These techniques can be classified into four
ategories, as the following (Cebiric et al., 2019):

.1.1. Structural methods

This summarization method considers the structural RDF graphs.
ne summarization technique following this method is the adaptive

tructural summary for RDF graph (ASSG) presented by Zhang, Duan,
uan, & Zhang (2014) . It compresses a part of RDF graph which is con-
idered by a collection of queries. This technique requires some user-
elected queries for building the summary graph. By compressing only
he part which consists of the users’ queries, the number of edges and
odes is decreased. This technique considers only the structure of the
DF graph and not from a semantic point of view. The Query Based
ummarization approach presented in this paper is based on a similar
ethod, but by considering both structure and semantic. Practically, the
odes with the same labels and ranks are assigned in the same equiva-
ence class. Each equivalence class in graph data has a set of nodes, the
ank of the nodes, and the labels of the nodes. Therefore, the graph data
s divided into some equivalence classes. As a consequence, the com-
ressed graph has fewer nodes and edges compare with the original one.
he approach by Gurajada, Seufert, Miliaraki, & Theobald (2014b) uses
tructural methods to summarize the RDF graphs and studies efficient
uery processing in the TriAD (Gurajada, Seufert, Miliaraki, & Theobald,
014a) a distributed RDF data management engine, by relying on a sum-
ary of the RDF graph stored within the system. The other approach
resented by Sydow, Pikula, & Schenkel (2013) shows the problem of
electing the most important part of an RDF graph based on a chosen
ntity by user. This approach lets the system generate a summarization
f facts concerning the selective entity where is close to the Query Based
ummarization approach presented in this paper.

.1.2. Pattern mining methods

This method discovers patterns to build summary graphs. For exam-
le, Zneika, Lucchese, Vodislav, & Kotzinos (2016) presents an approach
or summarizing RDF graphs using mining a set of approximate graph
atterns and calculating the number of instances covered by each pat-
ern. Then it transforms the patterns to an RDF schema that describes
he contents of the knowledge graph. In that case, the evaluation of
ueries are done over the summarized graph instead of the original
raph. Moreover, the computational methods presented by Karim, Vi-
al, & Auer (2020) identify frequent star patterns to generate compact
epresentation of RDF graphs, with a minimized number of frequent star
atterns.

.1.3. Statistical methods

This summarization method follows a frequency-based perspective
o summarize graphs. The work by Zhu, Ghasemi-Gol, Szekely, Galstyan,
 Knoblock (2016) presents a technique called CoSum where a multi-

https://wiki.dbpedia.org/

E. Niazmand, G. Sejdiu, D. Graux et al. International Journal of Information Management Data Insights 2 (2022) 100082

t

a

g

t

c

s

r

t

S

t

t

(

k

N

r

l

t

p

p

t

d

i

c

2

m

Z

i

2

o

i

t

q

m

S

n

t

s

s

r

n

b

i

s

i

Z

G

w

s

3

c

p

–

a

p

a

Z

A

i

g

l

a

a

M

i

o

i

s

p

t

o

G

s

g

v

t

p

n

q

p

d

m

t

i

s

n

F

i

r

t

p

c

q

q

a

c

w

t

q

4

m

t

o

m

4

h

f

r

s

n

s

w

i

3 http://sansa-stack.net/sparklify/ .
4 http://www.cytoscape.org/ .
ype graph is as an input and the output is a super-graph. CoSum is
ssigned to statistical RDF summarization type; it generates summary
raphs frequency-based and in quantitatively way. According to the au-
hors, CoSum technique should be used for summarizing the graph by
lustering the nodes which share the same type. The idea of grouping
ubjects with the same predicate and objects in Grouping Based Summa-
ization approach comes from this technique. Then, each cluster refers
o the Super-Node which consists of nodes with the same type. These
uper-Nodes are linked to each other by weighted edges. Therefore,
he main purpose of this approach is to automatically group elements
hat correspond to the same entity, which is called Entity Resolution

 Benjelloun et al., 2009). In general, this technique tries to transform a
-type graph to another k-type summary graph, which consists of Super-
odes and Super-Edges linked among each other. CoSum as a summa-

izing technique provides a solution to deal with the following chal-
enges: i) An RDF graph is modeled as a multi-type graph and the collec-
ive entity resolution is formulated as a multi-type graph summarization
roblem. ii) A multi-type graph co-summarization-based method is pro-
osed in order to identify entities and link connections between them at
he same time. iii) A generic framework is provided to accept different
omains-specific knowledge. In the summary graph, each Super-Node
s a group of some vertices with the same type and each Super-Edge
onnects these clusters of nodes to each other.

.1.4. Hybrid methods

This method combines two or all other categories to generate sum-
ary graphs. As an example, the summarization method presented by
heng et al. (2016) is the hybrid RDF summarization method, because
t considers both structure and patterns to construct a summary graph.

.2. Semantic search and query processing

Motivated by the aim of simplifying queries consisting of the union
f some queries, Zheng et al. (2016) developed a solution based on sim-
larity search. This means instead of using multiple union of queries
o get the complete answers, only by using a single or less union of
ueries can get the correct and the same results which are given by
ulti-union queries. Our work shares the same observation: reducing

PARQL complexity can be achieved thanks to summarization tech-
iques. This technique includes both structural and semantic similari-
ies. Since queries can be different in terms of structure, but they have
imilar semantic meanings, some operations such as semantic path sub-
titution are introduced. Semantic path substitution operation is used to
eplace a path with an edge by mining the structure patterns. A dictio-
ary of semantic instances is provided to mine semantic graph patterns
y keeping instances which are semantically equivalent. Finally, rewrit-
ng a given query graph by semantic path substitution gives a set of
emantically equivalent queries. Also, based on these operations, a sim-
larity measure, called Semantic Graph Edit Distance (sged) , is defined by
heng et al. (2016) . Sged measures the cost of transforming one Sub-
raph to another one. Then Sub-Graphs extracted from the RDF graph
ill be chosen to provide the summary graph if they have minimum

ged-based transformation cost.

. Challenges and motivation

Efficient query processing over large RDF graphs is one of the main
hallenges in data management. We motivate this data management
roblem with two examples and illustrate – with a real-world use case
the impact of an RDF graph size on execution time. Fig. 1 a depicts
 portion of an RDF graph with entities related by properties. It com-
rises properties that are semantically similar (e.g., 𝑐𝑜𝑢𝑛𝑡𝑟𝑦 , 𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦 ,
nd 𝑏𝑖𝑟𝑡ℎ𝑃 𝑙𝑎𝑐𝑒). Let us consider a graph summarization method by
hu et al. (2016) that groups similar entities and properties in a graph.
ll the elements of a group (i.e., entities or properties) are summarized

nto one element (i.e., into an entity or a property) in the summarized
3
raph. Some works have been done for grouping the elements with simi-
ar semantic meaning, e.g., Singh, Devi, Devi, & Mahanta (2022) propose
 method to group the terms with similar semantic meaning by evalu-
ting the similarity between words using GloVe (Pennington, Socher, &
anning, 2014).

The results of applying this method to the RDF graph in Fig. 1 a are
llustrated in Fig. 1 b. Moreover, Fig. 1 c presents the RDF serialization
f the RDF triples in Fig. 1 a and b.

A portion of DBpedia that consists of 2047 RDF triples is presented
n Fig. 2 a. Nodes and edges are represented as ovals and rectangles, re-
pectively. The dataset has 1000 edges and 510 nodes. This figure also
resents a SPARQL query comprising four triple patterns. The evalua-
ion of this query retrieves five answers that correspond to the names
f people in Germany, or with German nationality, or born or die in
ermany. The Sparklify query engine 3 produces these answers in 19

econds. Fig. 2 b and c depict the execution time over summarized RDF
raphs computed following the two graph summarization methods pre-
iously described. The results in Fig. 2 b suggest that the execution of
he SPARQL query over the summarized graph by naive approach, even
roducing all the results, can be costly. This approach grouped source
odes with similar edges and target nodes in 174 Sub-Graphs. Thus,
uery processing over the summarized RDF graph requires 43 secs. to
roduce the five answers. Alternatively, graph summarization can be
one during query processing. An optimized query-based graph sum-
arization method can identify the portion of the RDF graph required

o answer the query, and then it summarizes only this portion of the orig-
nal RDF graph. The results in Fig. 2 c show the query execution over a
ummarized RDF graph by optimized approach with 16 edges and 17
odes; it retrieves all the five answers in 5 seconds. The RDF graphs in
ig. 2 are generated by Cytoscape 4 .

Fig. 3 a presents a compact representation of the portion of DBpedia
n Fig. 2 a required to answer the SPARQL query in Fig. 3 b. This graph
epresents–with one property– the three related properties country, na-

ionality , and birthPlace . The property deathPlace remains in the com-
act query since it is not semantically similar to other properties. This
ompact modeling reduces the RDF graph size and enables rewriting the
uery into a query with fewer triples in Fig. 3 b. As a result, the rewritten
uery execution time is reduced to 5 seconds, while the complete five
nswers are produced. These examples illustrate the relevance of effi-
ient summarization techniques in RDF data management. In Section 4 ,
e address this problem, and describe summarization techniques able

o reduce the size of RDF graphs and speed up execution time during
uery processing over summarized graphs.

. Research problem and proposed approach

In this section, we discuss the problem of query processing over sum-
arized RDF graphs. Also, we introduce important preliminary defini-

ions and provide the solution by proposing two approaches, naive and
ptimized, for summarizing RDF graphs without losing necessary infor-
ation.

.1. Problem statement

Summarization techniques minimize the size of RDF graphs, which
elps optimize query processing. Meanwhile, preserving all needed in-
ormation should be considered during summarization process. Summa-
izing graph based on a semantic similarity measure is a technique to
olve query processing over large RDF graphs. This section presents tech-
iques that exploit knowledge encoded in RDF graphs, similarity mea-
ures, and SPARQL queries; they generate summarized graphs against
hich queries can be processed. To illustrate the relevance of determin-

ng relatedness using similarity measures, consider the RDF graph in

http://sansa-stack.net/sparklify/
http://www.cytoscape.org/

E. Niazmand, G. Sejdiu, D. Graux et al. International Journal of Information Management Data Insights 2 (2022) 100082

Fig. 1. Motivating Example (Compactness). (a) An RDF graph representing entities with similar properties; (b) A lossless summarization of the RDF graph preserving
main information; (c) Triples related to the RDF graph in the green box are summarized to a smaller portion in the yellow box. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

F

l

a

n

o

4

w

m

𝐴

𝑒

a
(

b

m

c

f

c

b

v

i

I

o

𝑠

s

d

b

W

w

e

l

t

c

w

g

d

fi

m

o

s

s

5 https://radimrehurek.com/gensim/models/word2vec.html .
ig. 1 b; it summarizes the edges of an RDF graph in Fig. 1 a that are re-
ated or similar. A similarity measure is a function that given two entities
ssociates a value in the range [0.1] that indicates a degree of related-
ess of the input entities. Similarity measures rely on various properties
f the input entities to estimate similarity.

.2. Preliminaries

Given two classes 𝐶 1 = { 𝑒 11 , 𝑒 12 , ..., 𝑒 1n } and 𝐶 2 = { 𝑒 21 , 𝑒 22 , ..., 𝑒 2m }
here 𝑒 1i and 𝑒 2j are entities in classes 𝐶 1 and 𝐶 2 , respectively. The se-
antic similarity between these two classes is defined as 𝑠𝑖𝑚 (𝐶 1 , 𝐶 2) =
𝑣𝑔(𝑠𝑒𝑚 _ 𝑠𝑖𝑚 (𝑒 1i , 𝑒 2j)) for the set of all pairs of (𝑒 1i , 𝑒 2j) in 𝐶 1 X 𝐶 2 and
 1i ! = 𝑒 2j . Therefore, two classes are similar to each other if and only if
 set of entities in class 𝐶 1 are similar to a set of entities in class 𝐶 2
 Jatnika, Bijaksana, & Ardiyanti, 2019). Also, these entities should not
e the same. The value of similarity is equal to the average of the se-
antic similarity value of all entity pairs.

One of the metrics to measure the similarity is cosine similarity; it
alculates the similarity between two n-dimensional vectors by looking
or a cosine value from the angle between two vectors. The entities in
lasses are converted to the vectors by a model to calculate the angle
etween them. The value of cosine similarity is between 0 and 1. If the
alue is closer to 1, it means entities are more similar to each other. And
f the value is closer to 0, it means the similarity between entities is less.
n the following, the formula shows the semantic similarity between sets
4
f entities (𝑒 1i and 𝑒 2j):

𝑒𝑚 _ 𝑠𝑖𝑚 (𝑒 1i , 𝑒 2j) = cos (𝜃) =

𝑒 1i .𝑒 2j

|𝑒 1i ||𝑒 2j |
(1)

There are many embedding models can be used to measure semantic
imilarity and relatedness by the cosine between the concepts’ embed-
ing vectors. Some of these methods focus on the terms called word em-
edding, and some focus on the relations known as graph embedding.
ord2Vec presented by Mikolov, Chen, Corrado, & Dean (2013) as a
ord embedding model is used in this work to generate concept sentence
mbeddings based on the terms. Word2Vec model transforms words into
ow-dimensional word embeddings; it resorts to small neural networks
o calculate these word embeddings based on contextual knowledge en-
oded in public background knowledge bases. In addition, to compute
ord embeddings, the Word2Vec model calculates the cosine of the an-
le between these low-dimensional vectors that represent these embed-
ings. Word2Vec model resorts to the cosine similarity as a measure to
nd similar words. In order to find similar words, a trained Word2Vec
odel based on gensim library 5 can be used. The main precondition

f word embedding is that words with similar meaning should have a
imilar representation. There are many entities and relations that are
emantically similar, but they are represented differently in the knowl-

https://radimrehurek.com/gensim/models/word2vec.html

E. Niazmand, G. Sejdiu, D. Graux et al. International Journal of Information Management Data Insights 2 (2022) 100082

Fig. 2. Motivating Example (Execution Time). (a) A SPARQL query retrieves five answers in 19 seconds from the original RDF graph; (b) Summarized RDF graph
by naive approach retrieves the same answers in 43 seconds; (c) Optimized approach retrieves the same answers in 5 seconds.

e

i

p

S

a

a

q

t

r

(

t

t

t

e

W

t

e

f

w

c

t

o

S

i

i

4

s

O
dge graph. Thus, considering context by additional training data is an
mportant task to generate contextualized word embedding.

In the running example, Word2Vec is utilized to determine that the
roperties country, nationality , and birthPlace are related and similar.
imilarity values can guide the summary of properties in RDF graphs
nd allow for the transformation of SPARQL queries. Fig. 3 illustrates
 transformed SPARQL query. Albeit simpler, the transformed SPARQL
uery can retrieve the same results as the original query, but in less
ime. Meanwhile, there are a number of applications where data are
epresented in the form of graphs, which required graph embedding.

RDF2Vec presented by Ristoski, Rosati, Noia, Leone, & Paulheim
2019) as a graph embedding model is applied to learn the context of
he relations. In the case of RDF knowledge graphs, entities and rela-
ions between entities are considered instead of word sequences. First,
he graph data is converted into sequences of entities; it can be consid-
red as sentences using two different approaches, i.e., graph walks and
eisfeiler-Lehman (WL) subtree RDF graph kernels. Using those sen-
5
ences, RDF2Vec trains the same neural language models to represent
ach entity in the RDF graph as a vector of numerical values in a latent
eature space.

Built on existing results on graph embeddings and summarization,
e propose two approaches for summarizing RDF graphs. The first

alled Grouping Based Summarization (GBS) approach; it summarizes
he RDF graph based on grouping subjects with the same predicates and
bjects. The second one, optimized for the first one, called Query Based
ummarization (QBS) considers only the part of the RDF graph which
s related to the SPARQL query. In the next, GBS and QBS are defined
n detail.

.3. A naive approach for summarizing RDF graphs

A Grouping Based Summarization (GBS) approach able to reduce
ize of RDF graph represents our naive method. GBS works into phases:
ffline Phase and Online Phase . In Fig. 4 both phases are shown. The

E. Niazmand, G. Sejdiu, D. Graux et al. International Journal of Information Management Data Insights 2 (2022) 100082

Fig. 3. Example of Summarized RDF. (a) An RDF graph by considering only one of the most similar predicates returns five answers in 5 seconds. Simplify returning
the same answers without being aware of schema and all predicates in less time by reducing the number of triples in RDF dataset; (b) Retrieve the same answers in
less time compared with original RDF graph by applying the transformed SPARQL query as a simple one over the summarized RDF graph.

Fig. 4. Proposed Summary Graph Architecture for the Grouping Based Summarization (GBS) approach in two phases (The Naïve Approach).

i

R

p

a

t

fi

c

b

t

t

fi

g

f

g

i

r

w

t

o

b

T

i

⟨

h

C

i

I

e

fi

s

(

A

m

c

6
nput of the offline phase is an RDF dataset that has been loaded as an
DF graph, and the output is a semantic summary graph. For the online
hase, the input is a generated summary graph from the offline phase,
 SPARQL query, and a semantic similarity metric and the output is a
ransformation of the query to the one with fewer triple patterns with
nal answers.

In the offline phase presented in Algorithm 1 , data should be prepro-
essed. All edges and vertices are read from the RDF graph. As discussed
efore, the aim is to provide a semantic summary graph without losing
he needed information. After receiving a dataset as an input in (step 1) ,
he RDF graph is loaded (step 2) . Then, the RDF graph is expanded to
nd new relations which are already not available in the original RDF
raph, but they have similar semantic meanings. This extension is per-
ormed by computing the transitive closure of the properties in the RDF
raph.

Inference layer is used in order to extract new knowledge. For
nferring the new facts from the current knowledge bases, inference
ules are applied. Transitive Closure (TC) is one of the inference rules
hich is exerted in this work to infer more facts. It is deployed in

he graph in order to find more facts which not exist in the original
ne.
6
For example, in the given original RDF graph, there is no relation
etween entities Germany and Country . As seen in Fig. 5 , by applying
C inference rule, the new triple ⟨Germany, type, Country ⟩ has been

nferred out of existing triples ⟨Germany, type, EuropeanCountry ⟩ and
EuropeanCountry, subClassOf, Country ⟩. Since the original RDF graph
as expanded by applying inference rules with more triples, queries over
ountry and Germany can be equally answered.

The Transitive Closure (TC) inference rule is deployed in the graph
n order to find more facts (step 3) and for expanding the RDF graph.
n (step 4) , the inferred RDF graph is generated with the new prop-
rties. Subjects with similar predicates and objects need to be identi-
ed to find Super-Nodes (SN). In order to store the results from mas-
ive data, in-memory Spark Resilient Distributed Dataset (RDD) is used
step 5) .

The Resilient Distributed Dataset (RDD) is the core of Apache Spark. 6

s it comes from the name, RDD is a resilient, distributed, and im-
utable collection of data that are partitioned over a cluster of ma-

hines. In Spark RDD, a cluster of workers is connected to a driver
https://spark.apache.org .

https://spark.apache.org

E. Niazmand, G. Sejdiu, D. Graux et al. International Journal of Information Management Data Insights 2 (2022) 100082

Algorithm 1: The Grouping Based Summarization (GBS) Algorithm, Offline phase-Summarizing Graph .

Input : RDF dataset has been loaded as RDF graph (G)
Output : Semantic Summary Graph (𝐺

′)

1 G ← RDFGraphLoader.loadFromDisk(spark, input, parallelism) ;
2 inferredGraph ← TransitiveReasoner.apply(G) ;
3 SN ← RDD[(List[Subjects])] from inferredGraph where Subjects have similar Predicates and Objects ;

/*SN is a list of Super-Nodes*/ 4 newTriples ← Triple.create(SN, Predicate, Object) ;
5 Buffer ← new ArrayBuffer(triple.length) ;
6 foreach (SN, Predicate, Object) ∈ inferredGraph do

7 if newTriples not exists in Buffer then

8 Buffer += newTriples ;

end

end

9 𝐺

′ ← Buffer ;
10 return 𝐺

′

Fig. 5. Example of Transitive Closure (TC) rule in Inference Layer.

o

w

t

R

o

g

L

F

b

s

v

e

S

R

e

c

S

S

e

t

(

p

t

p

b

c

d

b

t

t

a

t

(

e

a

i

t

e

d

s

t

d

F

p

q

t

I

m

l

g

q

a

4

Q
r master node. A master node will take care of work execution while
orker nodes execute the jobs which are split and then distributed to

hem. In Sparklify, RDF graphs are stored and modeled based on Spark
DD through fast processing for efficient evaluation of SPARQL queries
ver distributed RDF datasets.

All subjects which have common predicates and objects are
rouped. RDDs of (key,value) pairs are used like (Predicate, Object,

ist (Subjects)); this resembles the technique proposed by Consens,
ionda, Khatchadourian, & Pirrò (2015) ; it also finds the same nodes
y clustering entities with the same type. Pair RDDs display operations
uch as 𝑟𝑒𝑑𝑢𝑐𝑒𝐵𝑦𝐾𝑒𝑦 () and 𝑔𝑟𝑜𝑢𝑝𝐵𝑦𝐾𝑒𝑦 () for combining and grouping
alues with the same key. Each of these RDDs of pairs can be consid-
red as a Sub-Graph. Also, subjects in the group list are considered as
uper-Nodes (SN). Fig. 6 shows with a simple example how a summary
DF graph has been generated by GBS algorithm in offline phase. For
xample, all people who were born in Germany can be grouped and
onsider as a Super-Node (SN). New triples are created out of these
uper-Nodes with their related edges and added to the buffer (step 6) .
o, a summarized RDF graph is generated from the original one. In gen-
ral, the total number of edges and vertices of this summary graph is less
han the original RDF graph. Therefore, the summarized graph is created
step 7) .

After generating a summary RDF graph, the aim is to have a com-
lete set of answers corresponding to a reduced number of triple pat-
erns in the query. In the online phase, a multi triple pattern query is
rocessed in (step 8) to find a set of edge candidates based on the em-
edding model such as Word2Vec (step 9) . As explained in Section 4 ,
osine similarity as a measure is used to find similar predicates by their
istance from each other. Also, a trained model based on gensim li-
rary has been used. In our model, semantically similar predicates tend
7
o lie close to each other. For example, the cosine similarity value be-
ween a given predicate 𝑐𝑜𝑢𝑛𝑡𝑟𝑦 and predicates 𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑖𝑡𝑦 , 𝑏𝑖𝑟𝑡ℎ𝑃 𝑙 𝑎𝑐𝑒 ,
nd 𝑑𝑒𝑎𝑡ℎ𝑃 𝑙𝑎𝑐𝑒 is 0.8217, 0.8124, and 0.3672, respectively. In (step 9) ,
he edges which have a higher similarity value than a given threshold
 > 0.5) are selected. Therefore, predicate 𝑑𝑒𝑎𝑡ℎ𝑃 𝑙𝑎𝑐𝑒 cannot be consid-
red as a similar predicate to 𝑐𝑜𝑢𝑛𝑡𝑟𝑦 . The similar edges are considered
s strong relations between vertices and are called Super-Edges. As seen
n Algorithm 2 , the Super-Edges discovered are used in transforming
he query to the simple one to find complete results in (step 10) . Word
mbedding techniques consider similarity between edges based on their
istance. Thus, in summarized RDF graphs where the size of graph is
maller and predicates are closer to each other, there is a possibility
hat a founded predicate is similar to the others, not only in terms of
istance but also from the semantic point of view. A simple example in
ig. 7 demonstrates how the algorithm of GBS approach works in online
hase.

In (step 11) , final answers are generated by getting help from a
uery engine, e.g., Sparklify, over the summary RDF graph. After re-
rieving answers, it is observed that some required information is lost.
n Section 5 , the results of evaluation show that querying over sum-
arized RDF graph in GBS approach for large RDF graphs returns

ess number of answers compared with querying over original RDF
raph. In order to avoid the problem of losing information during
uery processing, we propose the Query Based Summarization (QBS)
pproach.

.4. An optimized approach for summarizing RDF graphs

The optimized approach in order to reduce size of RDF graphs is
uery Based Summarization (QBS) approach. QBS guides the summa-

E. Niazmand, G. Sejdiu, D. Graux et al. International Journal of Information Management Data Insights 2 (2022) 100082

Fig. 6. Example of Grouping Based Summarization (GBS) approach (offline phase). (a) A part of original RDF graph; (b) Graph expanded using the Transitive Closure
rule to find new facts which do not exist in the original RDF graph, but they are semantically true; (c) Subjects with the same predicate and object are grouped to find
Super-Nodes (SN) to create new triples using RDD Spark, also the nodes that do not share the same predicate and object will be removed; (d) Generate a summary
RDF graph with fewer nodes and edges.

r

w

w

s

i

p

g

a

t

i

1

o

3

e

r

G

a

P

4

i

t

t

g

i

i

b

(
ization process based on an input query. Thus, instead of considering a
hole RDF graph to summarize, only the part of the original RDF graph
hich is related to the user query will be considered. This idea is in-

pired by Zhang et al. (2014) . In this way, not only the execution time
s reduced, but also all the necessary information is preserved. The in-
ut of this algorithm is an RDF dataset that has been loaded as an RDF
raph, a SPARQL query, and a semantic similarity metric. The output is
 transformation of the query to the simple one with fewer triple pat-
erns and a semantic summary graph with final answers; it is presented
n Algorithm 3 . After receiving an RDF graph as input and load it (step
–2) , the query of the user should be collected to extract predicates and
bjects related to the query as Super-Predicates and Super-Objects (step
) . In this approach, contrary to GBS, the inferred graph is not gen-
rated due to the time-consuming and considering small part of graph
8
elated to the query. Therefore, the RDF graph is not expanded like in
BS approach.

After extracting the Super-Predicates and Super-Objects in (step 3) ,
 Sub-Graph (𝑔) consisting of triples with predicates equal to the Super-
redicates or with objects equal to the Super-Objects is generated (step
) . The architecture of Query Based Summarization (QBS) is illustrated
n Fig. 8 . In the next step, word and graph embedding models are applied
o this Sub-Graph to find edge candidate sets. Unlike the GBS approach,
he embedding models consider the Sub-Graph instead of the whole
raph. By this method, only relevant predicates will be found as sim-
lar (step 5) . Indeed, embedding models help that query is transformed
nto a simple SPARQL query. It also helps that Super-Subjects are found
y extracting triples with the predicates equal to the edge candidate sets
step 6) . By having Super-Subjects, Super-Predicates, and Super-Objects

E. Niazmand, G. Sejdiu, D. Graux et al. International Journal of Information Management Data Insights 2 (2022) 100082

Fig. 7. Example of Grouping Based Summarization (GBS) approach (online phase). (a) The summary RDF graph generated from offline phase with a multi triple
pattern SPARQL query and a list of vocabulary before training the model; (b) Apply both word embedding model and graph embedding model to find most similar
predicates to transform multi triple pattern queries to simple ones by considering the most similar predicate as a Super-Edge; (c) Transformed query with results.

Algorithm 2: The Grouping Based Summarization (GBS) Algorithm, Online Phase-Query Rewriting .

Input : SPARQL Query (Q); Summary Graph (𝐺

′) from Algorithm~1; List of Vocabulary (V); Semantic Similarity Metric
Output : Transformed SPARQL Query (𝑄

′); List of result

1 initialize training model ;
2 V ← list_of_vocabulary ;
3 foreach vocabulary ∈ V do

4 model ← trained model ;

end

5 Q.Predicates ← set of predicates extracted from Q ;
6 forall the p ∈ Q.Predicates do

7 similar_set_of_P ← predicates q in 𝐺

′ with cosine-similarity(q,P) > 0.5 ;
8 Q.replaceBy(P, representativeOf(synonym_set_of_P)) ;

end

9 𝑄

′ ← Q ;
10 result ← 𝐺

′.sparql(𝑄

′) ;
11 return result

f

t

(

t

c

t

T

s

T

d

a

o

i

rom the previous steps, new triples are created in (step 7) and added
o our Sub-Graph (𝑔) to generate the final graph as a summary graph
step 8) . The Super-Edges discovered earlier are used in transforming
he query to the simple one (step 9) .

Since QBS relies on the query of users, the generated summary graph
ontains all information related to the query. Therefore, querying the
ransformed query over the summary graph returns all possible answers.
his is proved by Theorem 4.1 . By applying the simple query over this
ummary graph, the answers are retrieved (step 10) .

9
heorem 4.1. If 𝐶 1 and 𝐶 2 are classes in the RDF graph 𝐺, and 𝐶 1 is the

omain of 𝑝 1 and 𝐶 2 is the domain of 𝑝 2 . Also, 𝑝 1 is similar to 𝑝 2 according to

 given semantic similarity metric . Let 𝐺

′′ be the compact representation

f 𝐺 by QBS approach, where 𝑝 is the property used to represent 𝑝 1 and 𝑝 2
n 𝐺

′′. The following properties hold:

1. The cardinality of 𝐺

′′ and cardinality of 𝐺 are the same.

𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙 𝑖𝑡𝑦 (𝐺

′′) = 𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙 𝑖𝑡𝑦 (𝐺) (2)

E. Niazmand, G. Sejdiu, D. Graux et al. International Journal of Information Management Data Insights 2 (2022) 100082

Fig. 8. Summary Graph Architecture for the Query Based Summarization (QBS) approach (The Optimized Approach).

Algorithm 3: The Query Based Summarization (QBS) Algorithm.

Input : RDF dataset loaded as RDF graph (G); SPARQL Query (Q); List of Vocabulary (V); Semantic Similarity Metric
Output : Transformed SPARQL Query (𝑄

′′); Summary Graph (𝐺

′′); List of result

1 G ← RDFGraphLoader.loadFromDisk(spark, input, parallelism) ;
2 Super-Predicates ← Q.getSetOfPredicates ;
3 Super-Objects ← Q.getSetOfObjects ;
4 g ← triples includes Super-Predicates or Super-Objects ;

/*g is a Sub-Graph*/ 5 initialize training model ;
6 V ← list_of_vocabulary ;
7 foreach vocabulary ∈ V do

8 model ← trained model ;

end

9 Q.Predicates ← set of predicates extracted from Q ;
10 forall the p ∈ Q.Predicates do

11 similar_set_of_P ← predicates q in g with cosine-similarity(q,P) > 0.5 ;
12 Q.replaceBy(P, representativeOf(synonym_set_of_P)) ;

end

13 𝑄

′′ ← Q ;
14 tsp ← G.getSetOfPredicates.getURI.contains(similar_set_of_P) ;

/*tsp is a set of triples contain similar predicates*/ 15 Super-Subjects ← tsp.getSetOfSubjects ;
16 newTriples ← Triple.create(Super-Subjects, Super-Predicates, Super-Objects) ;
17 Buffer ← new ArrayBuffer(triple.length) ;
18 foreach (Super-Subject, Super-Predicate, Super-Object) ∈ G do

19 if newTriples not exists in Buffer then

20 Buffer += newTriples ;

end

end

21 𝐺

′′ ← Buffer.union(g) ;
22 result ← 𝐺

′′.sparql(𝑄

′′) ;
23 return result

10

E. Niazmand, G. Sejdiu, D. Graux et al. International Journal of Information Management Data Insights 2 (2022) 100082

Fig. 9. Example of Query Based Summarization (QBS). (a) The original RDF graph portion and a SPARQL query with predicate vocabulary before training the model;
(b) Predicate and object of one triple pattern are considered as Super-Edge and Super-Object, respectively to extract the Sub-Graph (𝑔); (c) The embedding models
encode predicates as vectors to find the most similar predicates to the Super-Edge trained to create new triples; (d) Summary RDF graph with a transformed query
and answers.

[

P

d

t

t

e

𝐺

b

t

w

o
i

q

w

o

t

5

l

s

s

a
2. For SPARQL query 𝑄 , where 𝑝 1 or 𝑝 2 are used in the triple patterns of

𝑄 . 𝑄 can be a conjunctive query or include the UNION or OPTIONAL

operator. If 𝑄

′′ is the transformation of 𝑄 where 𝑝 1 and 𝑝 2 are replaced

by 𝑝 , the evaluation 𝑄

′ in 𝐺

′ and the evaluation of 𝑄 in 𝐺 are the

same.

[𝑄]] 𝐺 = [[𝑄

′′]] 𝐺

′′ (3)

roof. Consider the Query Based Summarization approach, which is
ependent on the query of the user to summarize the RDF graph. All
he properties and their relations related to the query appear in 𝐺

′′; it is
he compact representation of 𝐺 . Thus, 𝐺

′′ consists of all relations and
ntities related to the query 𝑄

′′. Therefore, the properties 𝑝 1 and 𝑝 2 in
which are similar based on the semantic similarity metric, and they

elong to different classes are considered as predicate 𝑝 in 𝐺

′′. Hence,
he cardinality of 𝐺

′′ is equal to the cardinality of 𝐺. Again, the query 𝑄
11
ith properties of 𝑝 1 and 𝑝 2 is rewritten to query 𝑄

′′ with the property
f 𝑝 , and duplicated triple patterns are eliminated. So, query 𝑄 over 𝐺
s the same as query 𝑄

′′ over 𝐺

′′. □

Fig. 9 illustrates the QBS algorithm with a simple example. A given
uery in Fig. 9 a can also be considered as a multi triple pattern query
ithout union operation. The number of answers by querying over the
riginal RDF graph is equal to the number of answers by querying over
he summarized graph. This has been proved in Theorem 4.1 .

. Empirical evaluation

The effectiveness of the approaches described in Section 4 is ana-
yzed based on the size of the RDF graph, the number of retrieved data,
calability, and query processing. We aim to answer the following re-
earch questions: RQ1) What is the impact of predicate relatedness by
nalyzing similarity measures in different size of datasets using diverse

E. Niazmand, G. Sejdiu, D. Graux et al. International Journal of Information Management Data Insights 2 (2022) 100082

e

p

o

R

o

g

c

p

5

p

c

g

t

s

p

a

o

i

i

d

c

e

g

t

r

t

i

r

a

t

5

p

v

r

5

t

d

s

o

w

(

s

w

(

u

d

e

5

e

s

R

o

g

C

i

E

r

5

o

l

o

g

W

e

5

v

R

i

s

p

c

b

t

i

i

a

t

t

r

p

t

m

a

e

o

t

t

a

m

o

n

i

a

b

t

c

p

d

a

m

e

s

t

G

r

v
mbedding models on finding complete answers? RQ2) Are the pro-
osed RDF summary graph techniques able to reduce the size of the
riginal RDF graph by considering only required triples for querying?
Q3) How is the effectiveness of the proposed summarized techniques
n answer completeness and cardinality compared with the original RDF
raph? RQ4) How is the impact of the complexity of query on query pro-
essing and execution time in the proposed RDF summary graph com-
ared with the original RDF graph?

.1. Data preparation and methods

GBS and QBS have been evaluated in terms of compactness, com-
leteness, and execution time. The summarization ratio is calculated by
omparing the size of original RDF graphs with the size of summary
raphs generated by two summarization approaches. The number of re-
rieved answers over original graphs is compared with the number of an-
wers by querying over summarized graphs. Finally, the speed of query
rocessing is computed by total time of returning answers by original
nd summary graphs using Sparklify. One of the most important aspects
f our evaluation is to collect and process the dataset to ensure that it
s being worked by our approach. Therefore, the first step is prepar-
ng datasets to meet our conditions as an input. One condition is the
ataset does not contain any literals. Since literal values and properties
oming with literal values cannot be embedded by knowledge graph
mbeddings techniques. Then, RDF dataset should be loaded as an RDF
raph. Later, the complex query is evaluated against this graph, and
he answers are returned by Sparklify. The number of results and the
unning time are measured. For the proposed approaches, after loading
he RDF dataset as an original RDF graph, the summarization technique
s applied to generate a summary RDF graph. The number of answers
etrieved by querying transformed queries over the summarized graph
nd query processing time are compared with the results produced over
he RDF graph.

.2. Experimental setup

We conduct an experimental study to assess the accuracy of our ap-
roach compared with the baseline. Our experimental configuration in-
olves the datasets and queries used for our evaluation, as well as met-
ics and implementation.

.2.1. Datasets and queries

Four datasets with different sizes are applied to realize the effec-
iveness of the mentioned techniques. One is a small part of DBpedia
ataset consists of 2,047 triples wherein a bunch of companies, per-
ons, and places with some of their information are stored. The second
ne is an Entity Summarization BenchMark (ESBM) with 6,584 triples
hich are sample entities from two datasets, DBpedia and LinkedMDB
 Hassanzadeh & Consens, 2009) a popular movie database. The other
elected datasets are Waterloo SPARQL Diversity Test Suite (WatDiv)
ith 10,916,457 triples (WatDiv.10M) and with 108,997,714 triples

WatDiv.100M) as medium and large datasets, respectively. Our eval-
ation is composed of 15 queries selected from QALD-3 7 for DBpedia
ataset, from ESBM Benchmark v1.2 8 for ESBM, and from Query Gen-
rator (v0.6) 9 for WatDiv.

.2.2. Metrics

Three main metrics in the evaluation of summary graphs are consid-
red to answer the above research questions. a) Compactness : the size of
ummary RDF graph should be typically smaller than the size of original
DF graphs. The Summarization Ratio (SR) is a metric to show the value
7 http://qald.aksw.org/index.php?x = task1&q = 3 .
8 https://w3id.org/esbm/ .
9 https://dsg.uwaterloo.ca/watdiv/#download .

t

g

a

W

t

12
f compactness; it is calculated by the number of triples in the summary
raph divide into the number of triples in the original RDF graph. b)

ardinality : the number of answers returned by a query over the orig-
nal RDF graph should be the same as over the summarized graph. c)

xecution Time : the running time for query processing over the summa-
ized RDF graph should be less than over the original RDF graph.

.2.3. Implementation

The approaches are implemented in Scala 2.11.12 and Spark 2.2.0
ver query engine Sparklify from the SANSA Stack framework. Spark-
ify executed over the original RDF graph is used as the baseline of
ur work. The proposed algorithms are compared with the original RDF
raph based on Sparklify, i) Sparklify+GBS ; and ii) Sparklify+QBS .
e evaluate our experiments on three servers with 256 cores and ex-

cutor memory of 100 GB.

.3. Impact of predicate relatedness by analyzing similarity measures

The distribution of similar predicates in each RDF graph using di-
erse embedding models is different. Referring to the research question
Q1 , the predicate relatedness in each dataset has an impact on find-

ng complete answers. For rewriting queries, the embedding techniques
uch as Word2Vec and RDF2Vec find similar predicates to the given
redicate in the query to transform it. If the most similar and semanti-
ally relevant predicates are found, the transformation of a query would
e more efficient in terms of finding the complete answers. Since finding
he most similar predicates can affect verifying the cardinality property;
t becomes an important issue on rewriting queries. During experiments,
t is discovered that not only different datasets with various sizes have
 different distribution of similarity values, but also the different dis-
ribution can be seen in diverse embedding models. It means not only
he number of triples in RDF datasets can change the result of predicate
elatedness, but also the techniques used for embedding have an im-
act. Figs. 10 and 11 show the distribution of cosine similarity to find
he most similar predicates between the original RDF graph and sum-
arized RDF graphs provided by Grouping Based Summarization(GBS)

pproach and Query Based Summarization (QBS) approach using word
mbedding model and graph embedding model, respectively.

The results suggest that the way to find similar predicates depends
n the size of the RDF graph and the technique for embedding. As seen,
he probability of cosine similarity close to 1 in QBS approach is higher
han the probability in the original graph and summary graph by GBS
pproach. The reason is, summary graphs in QBS have much fewer and
ore similar triples compared with the original ones. In QBS approach,

nly a part of the RDF graph related to the query has been considered,
ot the whole graph. Hence, by considering the small part of RDF graph
ncludes triples with the same objects, similar and relevant predicates
re close to each other and the distance between them is less. Therefore,
y decreasing the number of triples in the dataset and keeping relevant
riples to the query, the probability of finding the most similar predi-
ates to a given one in its neighborhood is higher. In GBS approach, the
robability of having a cosine similarity close to 0.5 using word embed-
ing and close to 0.7 using graph embedding is higher. The reason is,
fter summarizing RDF graphs based on an explanation in Section 4.3 ,
any relevant triples are lost. So, the embedding model finds the prop-

rties which are not completely relevant and similar. If less relevant
imilar predicates are found for rewriting the query, then query over
he summarized RDF graph will return incomplete answers. Hence, in
BS approach, applying a query over the summarized graph does not

eturn the complete answers. Moreover, these observations are more ob-
ious in Fig. 11 where RDF2Vec model used as graph embedding model
o find similar properties. RDF2Vec employs different walking strate-
ies such as Random Walk, NGram Walk, HALK Walk, Walklet Walk,
nd Anonymous Walk (Vandewiele et al., 2020). In this work, Random
alk is applied to extract the walks over the knowledge graphs. Af-

er finding the proper threshold, only predicates with cosine similarity

http://qald.aksw.org/index.php?x=task1\04526q=3
https://w3id.org/esbm/
https://dsg.uwaterloo.ca/watdiv/\043download

E. Niazmand, G. Sejdiu, D. Graux et al. International Journal of Information Management Data Insights 2 (2022) 100082

Fig. 10. Compare the distribution of cosine similarity for predicate relatedness in the original and the summarized RDF graph based on GBS and QBS approaches
using word embedding model.

Table 1

RDF Graphs Summarization Ratio (SR) and Summarization Time (ST).

#Triples of GBS Approach QBS Approach

Dataset original RDF graph SR ST SR ST

DBpedia 2,047 32.2 % 36.8 s 99% 2.8 s
ESBM 6,584 33% 34.2 s 98.8% 2.2 s
WatDiv.10M 10,916,457 41.8% 100 s 96.6% 14.2 s
WatDiv.100M 108,997,714 57% 787.6 s 97.4% 53.6 s

g

q

R

c

d

d

5

s

b

a

p

t

b

Q

o

R

c

a

t

w

T

a

i

b

r

d

a

a

s

t

a

p

c

a

Q
reater than the threshold are considered as synonyms to rewrite the
ueries. The predicate relatedness by analyzing similarity measures in
DF graphs plays an important role in transforming the query to retrieve
omplete answers. In QBS approach, by finding similar predicates using
ifferent embedding models, the transformation of the query has been
one efficiently and leads to retrieving complete results.

.4. Effectiveness of proposed summarized graph

To evaluate the effectiveness of proposed approaches and answer re-
earch questions RQ2 and RQ3 , the results of experiments are reported
ased on reducing the size of the RDF graph and returning the complete
nswers. As seen in Table 1 , the Summarization Ratio (SR) for QBS ap-
roach is higher than GBS approach. It means the number of triples in
13
he summarized graph provided by QBS approach is less than the num-
er of triples in the summarized graph provided by GBS approach. In
BS approach by considering a query of the user and the part of the
riginal RDF graph which is related to this query, the Summarization
atio (SR) has significantly increased compared with GBS approach. The
ompactness property has been verified in both approaches, but it has
 better result in QBS approach. For example, the QBS approach makes
he dump of DBpedia dataset 99% smaller than the original dataset,
hile by GBS approach it gets only 32.2% smaller than the original one.
herefore, the compactness based on QBS approach is more than GBS
pproach. Also, Table 1 provides the Summarization Time (ST) which
s the time required to generate the summary graph in both approaches
ased on the given datasets. Here, it should be mentioned that summa-
izing the RDF graph in QBS approach is not only related to the size of
ataset but also is based on the query of the user. Therefore, the size
nd time provided here for generating the summarization graph is the
verage of the size and time among different queries. Moreover, Table 2
hows the result of applying the SPARQL queries with multi triple pat-
erns over the original RDF graph and compares them with the result of
pplying the transformation of these queries over summarized graphs
rovided by both approaches. Based on the results provided here the
ardinality in GBS approach has been verified only for small datasets
nd not for medium and large datasets, while based on Theorem 4.1 in
BS approach all information related to the query will be found in the

E. Niazmand, G. Sejdiu, D. Graux et al. International Journal of Information Management Data Insights 2 (2022) 100082

Fig. 11. Compare the distribution of cosine similarity for predicate relatedness in the original and the summarized RDF graph based on GBS and QBS approaches
using graph embedding model.

Table 2

Compare the number of answers by querying multi triple patterns query over
the original graph and transformed query as simple query over the summarized
graph provided by Grouping Based Summarization (GBS) approach and Query
Based Summarization (QBS) approach using the query engine Sparklify.

of answers

⟶ Sparklify Sparklify + GBS Sparklify + QBS

DBpedia 𝑄 1 5 5 5
𝑄 2 5 5 5
𝑄 3 9 9 9
𝑄 4 6 6 6
𝑄 5 8 8 8

ESBM 𝑄 6 3 3 3
𝑄 7 2 2 2
𝑄 8 5 5 5
𝑄 9 8 8 8
𝑄 10 6 6 6

WatDiv.10M 𝑄 11 86 54 86
𝑄 12 56 30 56
𝑄 13 99 64 99
𝑄 14 3,834 2,043 3,834
𝑄 15 59 26 59

WatDiv.100M 𝑄 16 59 31 59
𝑄 17 554 206 554
𝑄 18 983 489 983
𝑄 19 38,895 21,089 38,895
𝑄 20 146 85 146

s

s

S

q

m

t

p

b

t

m

s

R

5

t

s

q

p

a

c

e

m

14
ummarized graph. Therefore, in QBS approach, the cardinality for all
ize of datasets has been verified. In order to return the answers for
PARQL queries, Sparklify, the scalable component which is the default
uery engine in the SANSA Stack, has been used during all the experi-
ents. First, the query is applied over the original RDF graph. Later, the

ransformation of this query which is a simple query with fewer triple
atterns is applied to the summary graph. As seen in Table 2 , the num-
er of answers retrieved in GBS is less than the number of answers from
he original RDF graph which means during summarizing some infor-
ation is lost while in QBS the number of answers retrieved from the

ummarized graph is equal to the number of answers from the original
DF graph. Thus, in QBS, the cardinality property has been verified.

.5. Efficiency of transforming queries

To answer the research question RQ4 , we evaluate the execution
ime of query processing in the original RDF graph and the proposed
ummarized graphs provided by both approaches, GBS and QBS. The
uery processing has been done by the query engine, Sparklify. We re-
ort on the average query processing time after three times running the
lgorithms.

Table 3 shows the comparison of executing time over baseline and
ombing it with proposed approaches. Also, to verify that the query
ngine Sparklify combined with QBS approach to query over the sum-
arized RDF graph achieve a greater reduction in execution time than

E. Niazmand, G. Sejdiu, D. Graux et al. International Journal of Information Management Data Insights 2 (2022) 100082

Table 3

Compare the execution time in the original and the summarized RDF graph provided by Grouping Based Summarization (GBS) and Query Based Summarization
(QBS) approaches. Q is the query over the original RDF graph and Q’ is the query over the summarized RDF graph. S represents as baseline Sparklify executed over
the original RDF graph.

Execution Time (seconds)

⟶ S(Total) S + GBS(SUM) S + GBS(QA) S + QBS(SUM) S + QBS(QA)

DBpedia 𝑄 1∕ 𝑄 ′1 19 37 6 2 3
𝑄 2∕ 𝑄 ′2 18 39 6 3 5
𝑄 3∕ 𝑄 ′3 29 45 9 3 6
𝑄 4∕ 𝑄 ′4 18 30 5 3 5
𝑄 5∕ 𝑄 ′5 17 33 6 3 4

ESBM 𝑄 6∕ 𝑄 ′6 32 45 9 3 5
𝑄 7∕ 𝑄 ′7 19 36 7 2 4
𝑄 8∕ 𝑄 ′8 20 31 5 2 6
𝑄 9∕ 𝑄 ′9 20 30 6 2 5
𝑄 10∕ 𝑄 ′10 19 29 5 2 4

WatDiv.10M 𝑄 11∕ 𝑄 ′11 85 102 56 14 32
𝑄 12∕ 𝑄 ′12 79 92 47 11 28
𝑄 13∕ 𝑄 ′13 80 89 78 15 26
𝑄 14∕ 𝑄 ′14 82 123 158 13 24
𝑄 15∕ 𝑄 ′15 98 94 38 18 28

WatDiv.100M 𝑄 16∕ 𝑄 ′16 321 802 274 88 109
𝑄 17∕ 𝑄 ′17 147 541 349 42 56
𝑄 18∕ 𝑄 ′18 192 627 482 41 86
𝑄 19∕ 𝑄 ′19 401 1,190 850 63 168
𝑄 20∕ 𝑄 ′20 182 778 321 34 105

Fig. 12. Comparing execution time in original RDF graph and summary RDF graph provided by Grouping Based Summary Graph (GBS) approach over four different
datasets with different sizes. Q and Q’ are executed over the original and summarized RDF graphs, respectively. Red dots show the execution time (in seconds) to
answer a query over the original RDF graph. Blue and green dots show the time for summarizing RDF graph (SUM) and the time for query answering (QA) over
summary graph, respectively. As seen, by increasing the size of datasets, execution time in the summarized graph is much higher than the original graph. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

15

E. Niazmand, G. Sejdiu, D. Graux et al. International Journal of Information Management Data Insights 2 (2022) 100082

Fig. 13. Execution time in original and summary RDF graphs using Query Based Summary Graph (QBS) on four datasets. Q and Q’ are queries over original and
summarized RDF graphs, respectively. As seen, by increasing the size of datasets, execution time (in secs.) in the summarized graph is much less than in the original
RDF graph. Thus, the execution time decreases when the dataset size on QBS increases.

u

t

s

c

t

o

o

G

t

f

p

h

s

Q

d

p

l

Q

R

s

r

(

t

q

t

t

a

t

6

g

b

i

6

S

g

s

T

i

o

r

p

a

g

m

m

l

p

6

sing the Sparklify over the original RDF graph, a Wilcoxon signed rank
est is run with the result of p-value < 6 . 103 𝑒 − 05 . As a result, the ob-
erved outcomes indicate a reduction in execution time of query pro-
essing over summarized RDF graphs generated by QBS. The execution
ime of Sparklify against the original RDF graph is the baseline. More-
ver, both query processing time distributions differ significantly.

Fig. 12 illustrates the execution time of 20 SPARQL queries over the
riginal RDF graph compared with the summarized graph generated by
rouping Based Summary Graph (GBS) approach. The execution time is

he summation of time for summarizing the RDF graph (SUM) and time
or query answering (QA). As seen, execution time in summarized graph
rovided by GBS specially in larger datasets (Fig. 12 c and d) is much
igher than the execution time in original RDF graph. Fig. 13 shows the
ame experiments but over summarized RDF graph generated based on
uery Based Summary Graph (QBS) approach in four different size of
atasets. As seen in Fig. 13 , the execution time in summarized graph
rovided by QBS specially in larger datasets (Fig. 13 c and d) is much
ess than the execution time in original RDF graph. The approach of
BS speeds up the execution time by up to 80% by summarizing the
DF graph. Therefore, the execution time of query processing in the
ummarized graph of QBS approach is much less than in the summa-
ized graph of GBS approach. Also, by comparing the summarizing time
SUM) and querying answering (QA) in both approaches it is observed
hat the time for summarizing in QBS approach is less than the time for
uerying, while in GBS approach the summarizing time (SUM) is higher
han query answering (QA) time. In general, all the observations show
he optimization of the grouped based approach, GBS, to the query based
pproach, QBS, in terms of compactness, completeness, and execution
ime.
p

16
. Discussion

The presented experimental results confirm that the proposed RDF
raph summarization technique is able to reduce the size of RDF graph
y preserving necessary information. Moreover, the significant decrease
n execution time is observed during query processing.

.1. Contribution to literature

The results of our summarization approaches are compared with the
PARQL query engine, Sparklify, as a baseline over the original RDF
raph. The number of retrieved answers and the execution time over the
ummarized graph compared with the original RDF graph are shown in
ables 2 and 3 , respectively. The results describe that the query process-

ng over proposed summarized RDF graph is superior to querying over
riginal RDF graph. Table 4 provides an overview of existing summa-
ization methods mentioned in Section 2 , and compared with our ap-
roach. As seen, summarization methods in a large variety of concepts
re different. However, QBS is able to not only reduce the size of the
raph, but also speed up execution time. Thus, we define data manage-
ent methods that can be used to enrich the portfolio of frameworks for
anaging and querying larger RDF graphs. Given the rapid increase of

arge RDF datasets, these methods will play a relevant role in scalability,
roviding thus the basis for the development of real-world applications.

.2. Practical implication

The proposed approach is aimed to ensure the compactness, com-
leteness, and improve execution time. It focuses on reducing the size

E. Niazmand, G. Sejdiu, D. Graux et al. International Journal of Information Management Data Insights 2 (2022) 100082

Table 4

Comparison of some graph summarization techniques.

Research Summary type Input Technique Output Graph Purpose

ASSG by Zhang et al. (2014) Structural RDF Instance Compression Compressed Graph Query Answering
Gurajada et al. (2014b) Structural RDF Instance Partitioning RDF Graph Query Answering
Sydow et al. (2013) Structural RDF Instance Selecting Sub-Graph RDF Graph Visualization
Zneika et al. (2016) Pattern Mining Instance Approximate Graph Patterns RDF Graph Query Answering
Karim et al. (2020) Pattern Mining RDF Graph Factorization Factorized RDF Graph Query Processing
CoSum by Zhu et al. (2016) Statistical RDF k-type Grouping Super Entity Resolution
SPARQL Similarity Search
by Zheng et al. (2016)

Hybrid RDF Instance and Schema Structural and Pattern Mining Multi-layer Graph Query Optimization

GBS
(Proposed Naïve Approach)

Hybrid RDF RDF Graph Group based Summarization Multi Sub-Graphs Query Processing

QBS
(Proposed Smart Approach)

Hybrid RDF RDF Graph Query based Summarization Selective RDF Triples Query Processing

o

A

s

o

k

r

(

r

Q

r

p

b

b

e

d

r

s

t

b

i

n

s

u

w

7

t

t

i

e

(

t

m

i

a

S

t

v

t

w

i

n

t

i

d

R

t

i

a

A

C

8

R

A

B

B

B

C

C

C

F

G

G

H

H

J

J

f RDF graph by providing the lossless and low-cost query processing.
lthough our approach performed better than the baseline, there are still
ome issues to discuss. For example, the assumption in our work is the
riginal knowledge graphs consist of synonyms properties. In case the
nowledge graph has few or no synonyms for properties, the summa-
ization cannot be done properly. In the naive summarizing approach
GBS), the size of the RDF graph has vital impact on rate of summa-
ization and time of execution. On the other hand, in the optimized
BS approach, the summarization ratio and execution time has direct

elationship to the complexity of queries. Transformation of these com-
lex queries to the simple ones based on similarity measures needs to
e done efficiently. Defining the proper candidate sets helps queries
e transformed in a way to retrieve the complete answers in less ex-
cution time. The techniques and methods to select and prune candi-
ate sets still is an issue to discuss. However, our optimized summa-
ization approach can be applied to any RDF knowledge graphs with
ynonymous properties. Each embedding technique has its own advan-
ages and disadvantages on a variety of knowledge graphs. Except em-
edding techniques used in this paper, other techniques can be stud-
ed and compared. Moreover, other state-of-the-art summarization tech-
iques with more evaluation criteria such as recall and precision to as-
ess the accuracy of our approach can be added to the empirical eval-
ation. These limitations of our work needs to be addressed in future
ork.

. Conclusions and future work

In this paper, we tackled the challenge of RDF graph summariza-
ion to optimize query processing. The proposed techniques contribute
o the portfolio of tools to efficiently manage knowledge graphs, which
s of significant relevance given the role of knowledge graphs in knowl-
dge representation. We presented the Grouping Based Summarization
GBS) and the Query Based Summarization (QBS) approaches. QBS op-
imizes GBS and ensures query completeness. Technically, we imple-
ented our solutions on top of the state-of-the-art SANSA Stack, allow-

ng our methods to run on large-scale RDF graphs using Apache Spark
s a process engine. From the evaluation results, QBS provides a good
ummarizing Ratio (SR) from 96% to 99% in terms of the number of
riples that are needed for evaluation. From the query time point of
iew, there is a notable reduction in query execution, up to 80% in
he proposed Query Based Summarization (QBS) approach compared
ith the original RDF graph queried by Sparklify. This less complexity

n QBS has led to a significant improvement compared with the origi-
al RDF graph. With due attention to the investigations and results ob-
ained from the experiments in this work, the importance of summariz-
ng large-scale RDF graphs using the SANSA framework becomes more
istinct.

In the future, we will focus on extending the proposed summarization
DF graph with different types of data from structured to unstructured
17
o retrieve complete results with a reduction in execution time. Also, we
ntend to evaluate the proposed method in other knowledge bases such
s WikiData.

cknowledgments

This work has been partially supported by the EU H2020 projects
LARIFY [grant number 875160] and PLATOON [grant number
72592]; and the EraMed project P4-LUCAT [grant number 53000015].

eferences

luç, G., Hartig, O., Özsu, M. T., . . . Daudjee, K. (2014). Diversified stress testing of
RDF data management systems. In P. Mika, T. Tudorache, A. Bernstein, C. Welty,
C. A. Knoblock, D. Vrandecic, . . . C. A. Goble (Eds.), The semantic web - ISWC 2014 -

13th international semantic web conference, riva del garda, italy, october 19–23, 2014. pro-

ceedings, part I . In Lecture Notes in Computer Science: vol. 8796 (pp. 197–212). Springer.
10.1007/978-3-319-11964-9_13 .

enjelloun, O., Garcia-Molina, H., Menestrina, D., Su, Q., Whang, S. E., &
Widom, J. (2009). Swoosh: A generic approach to entity resolution. The VLDB Jour-

nal : Very Large Data Bases : A Publication of the VLDB Endowment, 18 (1), 255–276.
10.1007/s00778-008-0098-x .

onifati, A., Dumbrava, S., & Kondylakis, H. (2020). Graph summarization. CoRR,

abs/2004.14794 . https://arxiv.org/abs/2004.14794 .
ourbakis, N. (1998). Artificial intelligence and automation. Advanced Series

on Statistical Science and Applied Probability . World Scientific . https://books.
google.de/books?id = mV3wxKLHlnwC .

ebiric, S., Goasdoué, F., Kondylakis, H., Kotzinos, D., Manolescu, I., Troullinou, G.,
& Zneika, M. (2019). Summarizing semantic graphs: A survey. The VLDB Jour-

nal : Very Large Data Bases : A Publication of the VLDB Endowment, 28 (3), 295–327.
10.1007/s00778-018-0528-3 .

hauhan, T., & Palivela, H. (2021). Optimization and improvement of fake news detection
using deep learning approaches for societal benefit. International Journal of Information

Management Data Insights, 1 (2), 100051. 10.1016/j.jjimei.2021.100051 .
onsens, M. P., Fionda, V., Khatchadourian, S., & Pirrò, G. (2015). S+epps: Construct

and explore bisimulation summaries, plus optimize navigational queries; all on ex-
isting SPARQL systems. Proceedings of the VLDB Endowment, 8 (12), 2028–2031.
10.14778/2824032.2824128 .

aye, D., Curé, O., & Blin, G. (2012). A survey of rdf storage approaches. Revue

Africaine de la Recherche en Informatique et Mathématiques Appliquées, 15 , pp.25.
10.46298/arima.1956 .

urajada, S., Seufert, S., Miliaraki, I., & Theobald, M. (2014a). Triad: a distributed
shared-nothing RDF engine based on asynchronous message passing. In C. E. Dyreson,
F. Li, & M. T. Özsu (Eds.), International conference on management of data, SIGMOD

2014, snowbird, ut, usa, june 22–27, 2014 (pp. 289–300). ACM. 10.1145/2588555.
2610511 .

urajada, S., Seufert, S., Miliaraki, I., & Theobald, M. (2014b). Using graph summarization
for join-ahead pruning in a distributed RDF engine. In Proceedings of the sixth workshop

on semantic web information management, SWIM 2014, snowbird, ut, usa, june 22–27,

2014 (pp. 41:1–41:4). ACM. 10.1145/2630602.2630610 .
arris, S., Seaborne, A., & Prud’hommeaux, E. (2013). Sparql 1.1 query language. W3C

Recommendation, 21 (10), 778 . https://www.w3.org/TR/sparql11-query/ .
assanzadeh, O., & Consens, M. P. (2009). Linked movie data base. In C. Bizer, T. Heath,

T. Berners-Lee, & K. Idehen (Eds.), Proceedings of the WWW2009 workshop on linked

data on the web, LDOW 2009, madrid, spain, april 20, 2009 . In CEUR Workshop Proceed-

ings: vol. 538 . CEUR-WS.org . http://ceur-ws.org/Vol-538/ldow2009_paper12.pdf .
atnika, D., Bijaksana, M., & Ardiyanti, A. (2019). Word2vec model analysis for se-

mantic similarities in english words. Procedia Computer Science, 157 , 160–167.
10.1016/j.procs.2019.08.153 .

urafsky, D., & Martin, J. H. (2009). Speech and language processing: An introduction to
natural language processing, computational linguistics, and speech recognition, 2nd

https://doi.org/10.1007/978-3-319-11964-9_13
https://doi.org/10.1007/s00778-008-0098-x
https://arxiv.org/abs/2004.14794
https://books.google.de/books?id=mV3wxKLHlnwC
https://doi.org/10.1007/s00778-018-0528-3
https://doi.org/10.1016/j.jjimei.2021.100051
https://doi.org/10.14778/2824032.2824128
https://doi.org/10.46298/arima.1956
https://doi.org/10.1145/2588555.\penalty -\@M 2610511
https://doi.org/10.1145/2630602.2630610
https://www.w3.org/TR/sparql11-query/
http://ceur-ws.org/Vol-538/ldow2009_paper12.pdf
https://doi.org/10.1016/j.procs.2019.08.153

E. Niazmand, G. Sejdiu, D. Graux et al. International Journal of Information Management Data Insights 2 (2022) 100082

K

K

K

K

L

L

L

L

M

M

M

N

P

P

Q

R

R

S

S

S

S

S

V

V

V

Z

Z

Z

Z

edition. Prentice Hall series in artificial intelligence . Prentice Hall, Pearson Education
International . https://www.worldcat.org/oclc/315913020 .

aoudi, Z., & Manolescu, I. (2015). RDF In the clouds: A survey. The VLDB Jour-

nal : Very Large Data Bases : A Publication of the VLDB Endowment, 24 (1), 67–91.
10.1007/s00778-014-0364-z .

arim, F., Vidal, M., & Auer, S. (2020). Compacting frequent star patterns in
RDF graphs. Journal of Intelligent Information Systems, 55 (3), 561–585. 10.1007/
s10844-020-00595-9 .

ondylakis, H., Kotzinos, D., & Manolescu, I. (2019). RDF graph summarization: princi-
ples, techniques and applications. In M. Herschel, H. Galhardas, B. Reinwald, I. Fundu-
laki, C. Binnig, & Z. Kaoudi (Eds.), Advances in database technology - 22nd international

conference on extending database technology, EDBT 2019, lisbon, portugal, march 26–29,

2019 (pp. 433–436). OpenProceedings.org. 10.5441/002/edbt.2019.38 .
ubitza, D. O., Böckmann, M., . . . Graux, D. (2019). Semangit: A linked dataset from git.

In C. Ghidini, O. Hartig, M. Maleshkova, V. Svátek, I. F. Cruz, A. Hogan, . . . F. Gandon
(Eds.), The semantic web - ISWC 2019 - 18th international semantic web conference, Auck-

land, New Zealand, October 26–30, 2019, proceedings, part II . In Lecture Notes in Com-

puter Science: vol. 11779 (pp. 215–228). Springer. 10.1007/978-3-030-30796-7_14 .
eFevre, K., & Terzi, E. (2010). Grass: Graph structure summarization. In Proceedings of

the SIAM international conference on data mining, SDM 2010, April 29, - May 1, 2010,

Columbus, ohio, USA (pp. 454–465). SIAM. 10.1137/1.9781611972801.40 .
ehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P. N., . . .

Bizer, C. (2015). Dbpedia - A large-scale, multilingual knowledge base extracted from
wikipedia. Semantic Web, 6 (2), 167–195. 10.3233/SW-140134 .

ehmann, J., Sejdiu, G., Bühmann, L., Westphal, P., Stadler, C., Ermilov, I., . . .
Jabeen, H. (2017). Distributed semantic analytics using the SANSA stack. In
C. d’Amato, M. Fernández, V. A. M. Tamma, F. Lécué, P. Cudré-Mauroux, J. F. Se-
queda, . . . J. Heflin (Eds.), The semantic web - ISWC 2017 - 16th international

semantic web conference, vienna, austria, october 21–25, 2017, proceedings, part

II . In Lecture Notes in Computer Science: vol. 10588 (pp. 147–155). Springer.
10.1007/978-3-319-68204-4_15 .

iu, Q., Cheng, G., Gunaratna, K., . . . Qu, Y. (2020). In A. Harth, S. Kirrane, A. N. Ngomo,
H. Paulheim, A. Rula, A. L. Gentile, . . . M. Cochez (Eds.), ESBM: an entity summarization

benchmark: (vol.12123 (pp. 548–564)). Springer .
anola, F., Miller, E., McBride, B., et al., (2004). RDF Primer. W3C recommendation, 10 (1–

107), 6 . https://www.w3.org/TR/rdf11-primer/ .
ikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation

of word representations in vector space. Proceedings of Workshop at ICLR .
http://arxiv.org/abs/1301.3781 .

ishra, R. K., Urolagin, S., Jothi, J. A. A., Neogi, A. S., & Nawaz, N. (2021). Deep learning-
based sentiment analysis and topic modeling on tourism during covid-19 pandemic.
Frontiers of Computer Science, 3 , 775368. 10.3389/fcomp.2021.775368 .

eogi, A. S., Garg, K. A., Mishra, R. K., & Dwivedi, Y. K. (2021). Sentiment analysis
and classification of indian farmers’ protest using twitter data. International Jour-

nal of Information Management Data Insights, 1 (2), 100019. 10.1016/j.jjimei.2021.
100019 .

ennington, J., Socher, R., & Manning, C. D. (2014). Glove: Global vectors for word rep-
resentation. In A. Moschitti, B. Pang, & W. Daelemans (Eds.), Proceedings of the 2014

conference on empirical methods in natural language processing, EMNLP 2014, October 25–

29, 2014, Doha, qatar, A meeting of sigdat, a special interest group of the ACL (pp. 1532–
1543). ACL. 10.3115/v1/d14-1162 .

érez, J., Arenas, M., & Gutiérrez, C. (2009). Semantics and complexity of SPARQL.
ACM Transactions on Database Systems, 34 (3), 16:1–16:45. 10.1145/1567274.
1567278 .

un, C., Lim, A., & Ong, K. W. (2003). D(k)-index: An adaptive structural summary
for graph-structured data. In A. Y. Halevy, Z. G. Ives, & A. Doan (Eds.), Proceed-

ings of the 2003 ACM SIGMOD international conference on management of data, San

Diego, California, USA, June 9–12, 2003 (pp. 134–144). ACM. 10.1145/872757.
872776 .

istoski, P., . . . Paulheim, H. (2016). Rdf2vec: RDF graph embeddings
for data mining. In P. Groth, E. Simperl, A. J. G. Gray, M. Sabou,
M. Krötzsch, F. Lécué, . . . Y. Gil (Eds.), The semantic web - ISWC 2016 -
18
15th international semantic web conference, Kobe, Japan, October 17–21, 2016,

proceedings, part I . In Lecture Notes in Computer Science: vol. 9981 (pp. 498–514).
10.1007/978-3-319-46523-4_30 .

istoski, P., Rosati, J., Noia, T. D., Leone, R. D., & Paulheim, H. (2019). Rdf2vec:
RDF graph embeddings and their applications. Semantic Web, 10 (4), 721–752.
10.3233/SW-180317 .

hin, K., Ghoting, A., Kim, M., & Raghavan, H. (2019). Sweg: Lossless and lossy
summarization of web-scale graphs. In L. Liu, R. W. White, A. Mantrach, F. Sil-
vestri, J. J. McAuley, R. Baeza-Yates, & L. Zia (Eds.), The world wide web confer-

ence, WWW 2019, san francisco, ca, usa, may 13–17, 2019 (pp. 1679–1690). ACM.
10.1145/3308558.3313402 .

ingh, K., Devi, S., Devi, H., & Mahanta, A. (2022). A novel approach for di-
mension reduction using word embedding: An enhanced text classification ap-
proach. International Journal of Information Management Data Insights, 2 (1), 100061.
10.1016/j.jjimei.2022.100061 .

pahiu, B., Maurino, A., & Palmonari, M. (2018). Towards improving the quality of
knowledge graphs with data-driven ontology patterns and SHACL. In M. G. Skjæve-
land, Y. Hu, K. Hammar, V. Svátek, & A. Lawrynowicz (Eds.), Proceedings of

the 9th workshop on ontology design and patterns (WOP 2018) co-located with

17th international semantic web conference (ISWC 2018), monterey, usa, october

9th, 2018 . In CEUR Workshop Proceedings: vol. 2195 (pp. 52–66). CEUR-WS.org .
http://ceur-ws.org/Vol-2195/research_paper_2.pdf .

tadler, C., Sejdiu, G., Graux, D., . . . Lehmann, J. (2019). Sparklify: A scalable software
component for efficient evaluation of SPARQL queries over distributed RDF datasets.
In C. Ghidini, O. Hartig, M. Maleshkova, V. Svátek, I. F. Cruz, A. Hogan, . . . F. Gan-
don (Eds.), The semantic web - ISWC 2019 - 18th international semantic web confer-

ence, Auckland, New Zealand, October 26–30, 2019, proceedings, part II . In Lecture

Notes in Computer Science: vol. 11779 (pp. 293–308). Springer. 10.1007/978-3-030-
30796-7_19 .

ydow, M., Pikula, M., & Schenkel, R. (2013). The notion of diversity in graphical en-
tity summarisation on semantic knowledge graphs. Journal of Intelligent Information

Systems, 41 (2), 109–149. 10.1007/s10844-013-0239-6 .
andewiele, G., Steenwinckel, B., Bonte, P., Weyns, M., Paulheim, H., Ristoski, P., . . .

Ongenae, F. (2020). Walk extraction strategies for node embeddings with rdf2vec in
knowledge graphs. CoRR, abs/2009.04404 . https://arxiv.org/abs/2009.04404 .

idal, M., Ruckhaus, E., Lampo, T., Martínez, A., Sierra, J., & Polleres, A. (2010). Effi-
ciently joining group patterns in SPARQL queries. In L. Aroyo, G. Antoniou, E. Hyvö-
nen, A. ten Teije, H. Stuckenschmidt, L. Cabral, & T. Tudorache (Eds.), The seman-

tic web: Research and applications, 7th extended semantic web conference, ESWC 2010,

heraklion, crete, greece, may 30, - june 3, 2010, proceedings, part I . In Lecture Notes in

Computer Science: vol. 6088 (pp. 228–242). Springer. 10.1007/978-3-642-13486-9_16 .
randecic, D., & Krötzsch, M. (2014). Wikidata: A free collaborative knowledgebase. Com-

munications of the ACM, 57 (10), 78–85. 10.1145/2629489 .
hang, H., Duan, Y., Yuan, X., & Zhang, Y. (2014). ASSG: Adaptive structural

summary for RDF graph data. CEUR Workshop Proceedings, 1272 , 233–236 .
http://ceur-ws.org/Vol-1272/paper_25.pdf .

heng, W., Zou, L., Peng, W., Yan, X., Song, S., & Zhao, D. (2016). Semantic SPARQL sim-
ilarity search over RDF knowledge graphs. Proceeding of the VLDB Endowment, 9 (11),
840–851. 10.14778/2983200.2983201 .

hu, L., Ghasemi-Gol, M., Szekely, P. A., Galstyan, A., . . . Knoblock, C. A. (2016). Unsu-
pervised entity resolution on multi-type graphs. In P. Groth, E. Simperl, A. J. G. Gray,
M. Sabou, M. Krötzsch, F. Lécué, . . . Y. Gil (Eds.), The semantic web - ISWC 2016

- 15th international semantic web conference, Kobe, Japan, October 17–21, 2016, pro-

ceedings, part I . In Lecture Notes in Computer Science: vol. 9981 (pp. 649–667).
10.1007/978-3-319-46523-4_39 .

neika, M., Lucchese, C., Vodislav, D., & Kotzinos, D. (2016). Summarizing linked data
RDF graphs using approximate graph pattern mining. In E. Pitoura, S. Maabout,
G. Koutrika, A. Marian, L. Tanca, I. Manolescu, & K. Stefanidis (Eds.), Proceedings

of the 19th international conference on extending database technology, EDBT 2016, bor-

deaux, france, march 15–16, 2016, Bordeaux, France, March 15–16, 2016 (pp. 684–
685). OpenProceedings.org. 10.5441/002/edbt.2016.86 .

https://www.worldcat.org/oclc/315913020
https://doi.org/10.1007/s00778-014-0364-z
https://doi.org/10.1007/\penalty -\@M s10844-020-00595-9
https://doi.org/10.5441/002/edbt.2019.38
https://doi.org/10.1007/978-3-030-30796-7_14
https://doi.org/10.1137/1.9781611972801.40
https://doi.org/10.3233/SW-140134
https://doi.org/10.1007/978-3-319-68204-4_15
http://refhub.elsevier.com/S2667-0968(22)00025-8/sbref0022
https://www.w3.org/TR/rdf11-primer/
http://arxiv.org/abs/1301.3781
https://doi.org/10.3389/fcomp.2021.775368
https://doi.org/10.1016/j.jjimei.2021.\penalty -\@M 100019
https://doi.org/10.3115/v1/d14-1162
https://doi.org/10.1145/1567274.\penalty -\@M 1567278
https://doi.org/10.1145/872757.\penalty -\@M 872776
https://doi.org/10.1007/978-3-319-46523-4_30
https://doi.org/10.3233/SW-180317
https://doi.org/10.1145/3308558.3313402
https://doi.org/10.1016/j.jjimei.2022.100061
http://ceur-ws.org/Vol-2195/research_paper_2.pdf
https://doi.org/10.1007/978-3-030-\penalty -\@M 30796-7_19
https://doi.org/10.1007/s10844-013-0239-6
https://arxiv.org/abs/2009.04404
https://doi.org/10.1007/978-3-642-13486-9_16
https://doi.org/10.1145/2629489
http://ceur-ws.org/Vol-1272/paper_25.pdf
https://doi.org/10.14778/2983200.2983201
https://doi.org/10.1007/978-3-319-46523-4_39
https://doi.org/10.5441/002/edbt.2016.86

	Efficient semantic summary graphs for querying large knowledge graphs
	1 Introduction
	2 Related work
	2.1 Graph summarization in RDF
	2.1.1 Structural methods
	2.1.2 Pattern mining methods
	2.1.3 Statistical methods
	2.1.4 Hybrid methods

	2.2 Semantic search and query processing

	3 Challenges and motivation
	4 Research problem and proposed approach
	4.1 Problem statement
	4.2 Preliminaries
	4.3 A naive approach for summarizing RDF graphs
	4.4 An optimized approach for summarizing RDF graphs

	5 Empirical evaluation
	5.1 Data preparation and methods
	5.2 Experimental setup
	5.2.1 Datasets and queries
	5.2.2 Metrics
	5.2.3 Implementation

	5.3 Impact of predicate relatedness by analyzing similarity measures
	5.4 Effectiveness of proposed summarized graph
	5.5 Efficiency of transforming queries

	6 Discussion
	6.1 Contribution to literature
	6.2 Practical implication

	7 Conclusions and future work
	Acknowledgments
	References

