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Knowledge Graphs (KGs) integrate heterogeneous data, but one challenge is the development of efficient tools for
allowing end users to extract useful insights from these sources of knowledge. In such a context, reducing the size
of a Resource Description Framework (RDF) graph while preserving all information can speed up query engines
by limiting data shuffle, especially in a distributed setting. This paper presents two algorithms for RDF graph
summarization: Grouping Based Summarization (GBS) and Query Based Summarization (QBS). The latter is an
optimized and lossless approach for the former method. We empirically study the effectiveness of the proposed
lossless RDF graph summarization to retrieve complete data, by rewriting an RDF Query Language called SPARQL
query with fewer triple patterns using a semantic similarity. We conduct our experimental study in instances of
four datasets with different sizes. Compared with the state-of-the-art query engine Sparklify executed over the
original RDF graphs as a baseline, QBS query execution time is reduced by up to 80% and the summarized RDF

graph is decreased by up to 99%.

1. Introduction

During the past decades, the number of linked datasets — known as
knowledge graphs (KGs)- has rapidly increased as evidenced in the cur-
rent state of the Linked Open Data cloud'. These datasets are struc-
tured following the W3C’s standard Resource Description Framework,
RDF (Manola, Miller, McBride et al., 2004), and share knowledge on
various domains, from a more general purpose KGs such as DBpedia
(Lehmann et al., 2015) or WikiData (Vrandecic & Krétzsch, 2014) to
specialized ones, e.g., SemanGit (Kubitza, Bockmann, & Graux, 2019).
Real-world applications over these types of sources demand the de-
velopment of optimized techniques to extract meaningful information.
The Semantic Web community has actively contributed to RDF man-
agement and has proposed formalisms, e.g., SPARQL (Harris, Seaborne,
& Prud’hommeaux, 2013) and SHACL (Spahiu, Maurino, & Palmonari,
2018), to express queries and integrity constraints over RDF graphs.
Moreover, within the years, efficiency has also been addressed, and
various methods have been proposed; they include methods to store
RDF graphs, e.g., centralized (Faye, Curé, & Blin, 2012) or distributed
(Kaoudi & Manolescu, 2015), as well as to query RDF graphs (Vidal et al.,
2010). Indeed, the task of query processing can become incredibly com-
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plex whenever RDF graphs come along with large ontologies, and there
may be portions of the ontology with no instances in a knowledge
graph. Also, complex queries that include graph pattern expressions
(e.g., multi-union queries) represent challenges for query engines in
processing time (Pérez, Arenas, & Gutiérrez, 2009). Graph summariza-
tion is a technique to solve this issue by providing a compact repre-
sentation of a graph where redundant data is reduced (Shin, Ghoting,
Kim, & Raghavan, 2019). As a result, a summarized graph’s size is de-
creased, and effective techniques can be devised to speed up query pro-
cessing (Kondylakis, Kotzinos, & Manolescu, 2019). RDF summarization
has been used in query answering and optimization. It has been ap-
plied to recognizing the most notable nodes, discovering schema from
the data, and visualizing the RDF graph to quickly understand the data
(Cebiric et al., 2019). We propose graph summarization methods by ap-
plying both word embedding and graph embedding models to find the
most similar predicates by encoding them as vectors. The word embed-
ding models resort to Natural Language Processing (NLP) techniques to
represent words in a numeric vector space (Jurafsky & Martin, 2009).
Word embedding models used to convert textual information and so-
cial media data such as tweet sentences to numeric weightage in vector
format. They are studied in a specific domain to solve real issues, such
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as Neogi, Garg, Mishra, & Dwivedi (2021) and Mishra, Urolagin, Jothi,
Neogi, & Nawaz (2021). There are more use cases which employ word
embedding models for vector representation of textual words. Chauhan
& Palivela (2021) propose a framework which improves the detection of
fake news and real news. This framework makes use of neural networks
and a tokenization method. The tokenization method has been proposed
for feature extraction or vectorization, which assigns tokens to word
embeddings. Word embedding models can be applied to RDF graphs as
well, and RDF2Vec is an exemplary approach presented by Ristoski &
Paulheim (2016).

We aim to provide an algorithm in which a summarized RDF graph
groups RDF triples composed of similar predicates; the similarity met-
rics computed over the embeddings determine this relatedness. SPARQL
queries are rewritten based on the summarized RDF graph. As a result,
query execution time reduced, while answer completeness is maximized.
Our goal is to achieve the following research objectives:

e Role of summarization in the RDF graph size reduction.
¢ Impact of summarization in query processing.

Two approaches are presented: Grouping Based Summarization
(GBS) and Query Based Summarization (QBS). GBS decreases an RDF
graph size and QBS considers criteria of graph summarization to rewrite
SPARQL queries into queries with fewer triple patterns, but with equiv-
alent answers. Our query rewriting techniques resort to semantic sim-
ilarity metrics to identify related predicates in the triple patterns of a
SPARQL query and replace them with a predicate that represents all of
them. QBS has the following desirable characteristics: a) Compactness:
graph summarization provides fewer nodes and edges compared with
the original RDF graph by considering only a part of the RDF graph
which is related to the given SPARQL query; b) Lossless query processing:
returns the same answers by querying over summarized graph compared
with the original one based on similarity metric by transforming a query
to the simple one; and ¢) Low-cost query processing: speeds up query
processing over the summarized RDF graph. The GBS and QBS perfor-
mance is evaluated; the Sparklify component (Stadler, Sejdiu, Graux, &
Lehmann, 2019) is used as a default query engine from the SANSA Stack
(Lehmann et al., 2017). The Waterloo SPARQL Diversity Test Suite (Wat-
Div) benchmark generator (Aluc, Hartig, Ozsu, & Daudjee, 2014) is uti-
lized to generate two RDF graphs (WatDiv.10M and WatDiv.100M) and
queries; also, the Entity Summarization Benchmark, ESBM (Liu, Cheng,
Gunaratna, & Qu, 2020), and a dump of DBpedia® are included in the
study. We report on twenty queries where the execution time is accel-
erated by up to 80%. The observed results are promising and provide
evidence of our proposed approaches’ compactness power and their im-
pact on query processing.

In particular, the contributions of this work are as follows:

e Graph summaries are able to reduce RDF triples required in query
processing.

e Query rewriting techniques guided by RDF graph summarization.
These techniques ensure answer completeness.

e An empirical study over state-of-the-art benchmarks. Observed re-
sults indicate the positive effects of reducing redundant information
in the portion of an RDF graph required to execute a SPARQL query.

The rest of the paper is organized as follows: In Section 2, we
review the related efforts in the domain of RDF summarization.
Section 3 presents an in-depth example to illustrate our challenges.
Section 4 presents our proposed approaches. The methodology and the
results of our empirical evaluation are reported in Section 5. We have
mentioned our discussions in Section 6. Finally, in Section 7, we con-
clude and draw the next challenges to be addressed.

2 https://wiki.dbpedia.org/.
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2. Related work

Graph summarization techniques reduce the size of graph, speed up
graph query evaluation, as well as facilitate graph visualization and ana-
lytics. In addition, it provides semantic searches with a reduction in com-
putational complexity. We analyze existing approaches for RDF graph
summarization and query processing over summarized RDF graphs.

2.1. Graph summarization in RDF

Graph databases use graph structures for representing entities as
nodes and their relationships as edges of a graph Bourbakis (1998). The
increment of data in graph databases makes the query processing com-
plicated. Summarization technique is a way to overcome the complexity
of search query in graph databases (LeFevre & Terzi, 2010). Graph sum-
marization has been studied for semi-structured graph data models such
as XML (Qun, Lim, & Ong, 2003) and RDF graphs. There are many ex-
isting works in this area to compact RDF graphs whose structure is com-
puted from the original RDF graph, such that all the paths present in the
original graph are also present in the summary graph (Bonifati, Dumb-
rava, & Kondylakis, 2020). These techniques can be classified into four
categories, as the following (Cebiric et al., 2019):

2.1.1. Structural methods

This summarization method considers the structural RDF graphs.
One summarization technique following this method is the adaptive
structural summary for RDF graph (ASSG) presented by Zhang, Duan,
Yuan, & Zhang (2014). It compresses a part of RDF graph which is con-
sidered by a collection of queries. This technique requires some user-
selected queries for building the summary graph. By compressing only
the part which consists of the users’ queries, the number of edges and
nodes is decreased. This technique considers only the structure of the
RDF graph and not from a semantic point of view. The Query Based
Summarization approach presented in this paper is based on a similar
method, but by considering both structure and semantic. Practically, the
nodes with the same labels and ranks are assigned in the same equiva-
lence class. Each equivalence class in graph data has a set of nodes, the
rank of the nodes, and the labels of the nodes. Therefore, the graph data
is divided into some equivalence classes. As a consequence, the com-
pressed graph has fewer nodes and edges compare with the original one.
The approach by Gurajada, Seufert, Miliaraki, & Theobald (2014b) uses
structural methods to summarize the RDF graphs and studies efficient
query processing in the TriAD (Gurajada, Seufert, Miliaraki, & Theobald,
2014a) a distributed RDF data management engine, by relying on a sum-
mary of the RDF graph stored within the system. The other approach
presented by Sydow, Pikula, & Schenkel (2013) shows the problem of
selecting the most important part of an RDF graph based on a chosen
entity by user. This approach lets the system generate a summarization
of facts concerning the selective entity where is close to the Query Based
Summarization approach presented in this paper.

2.1.2. Pattern mining methods

This method discovers patterns to build summary graphs. For exam-
ple, Zneika, Lucchese, Vodislav, & Kotzinos (2016) presents an approach
for summarizing RDF graphs using mining a set of approximate graph
patterns and calculating the number of instances covered by each pat-
tern. Then it transforms the patterns to an RDF schema that describes
the contents of the knowledge graph. In that case, the evaluation of
queries are done over the summarized graph instead of the original
graph. Moreover, the computational methods presented by Karim, Vi-
dal, & Auer (2020) identify frequent star patterns to generate compact
representation of RDF graphs, with a minimized number of frequent star
patterns.

2.1.3. Statistical methods

This summarization method follows a frequency-based perspective
to summarize graphs. The work by Zhu, Ghasemi-Gol, Szekely, Galstyan,
& Knoblock (2016) presents a technique called CoSum where a multi-
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type graph is as an input and the output is a super-graph. CoSum is
assigned to statistical RDF summarization type; it generates summary
graphs frequency-based and in quantitatively way. According to the au-
thors, CoSum technique should be used for summarizing the graph by
clustering the nodes which share the same type. The idea of grouping
subjects with the same predicate and objects in Grouping Based Summa-
rization approach comes from this technique. Then, each cluster refers
to the Super-Node which consists of nodes with the same type. These
Super-Nodes are linked to each other by weighted edges. Therefore,
the main purpose of this approach is to automatically group elements
that correspond to the same entity, which is called Entity Resolution
(Benjelloun et al., 2009). In general, this technique tries to transform a
k-type graph to another k-type summary graph, which consists of Super-
Nodes and Super-Edges linked among each other. CoSum as a summa-
rizing technique provides a solution to deal with the following chal-
lenges: i) An RDF graph is modeled as a multi-type graph and the collec-
tive entity resolution is formulated as a multi-type graph summarization
problem. ii) A multi-type graph co-summarization-based method is pro-
posed in order to identify entities and link connections between them at
the same time. iii) A generic framework is provided to accept different
domains-specific knowledge. In the summary graph, each Super-Node
is a group of some vertices with the same type and each Super-Edge
connects these clusters of nodes to each other.

2.1.4. Hybrid methods

This method combines two or all other categories to generate sum-
mary graphs. As an example, the summarization method presented by
Zheng et al. (2016) is the hybrid RDF summarization method, because
it considers both structure and patterns to construct a summary graph.

2.2. Semantic search and query processing

Motivated by the aim of simplifying queries consisting of the union
of some queries, Zheng et al. (2016) developed a solution based on sim-
ilarity search. This means instead of using multiple union of queries
to get the complete answers, only by using a single or less union of
queries can get the correct and the same results which are given by
multi-union queries. Our work shares the same observation: reducing
SPARQL complexity can be achieved thanks to summarization tech-
niques. This technique includes both structural and semantic similari-
ties. Since queries can be different in terms of structure, but they have
similar semantic meanings, some operations such as semantic path sub-
stitution are introduced. Semantic path substitution operation is used to
replace a path with an edge by mining the structure patterns. A dictio-
nary of semantic instances is provided to mine semantic graph patterns
by keeping instances which are semantically equivalent. Finally, rewrit-
ing a given query graph by semantic path substitution gives a set of
semantically equivalent queries. Also, based on these operations, a sim-
ilarity measure, called Semantic Graph Edit Distance (sged), is defined by
Zheng et al. (2016). Sged measures the cost of transforming one Sub-
Graph to another one. Then Sub-Graphs extracted from the RDF graph
will be chosen to provide the summary graph if they have minimum
sged-based transformation cost.

3. Challenges and motivation

Efficient query processing over large RDF graphs is one of the main
challenges in data management. We motivate this data management
problem with two examples and illustrate — with a real-world use case
— the impact of an RDF graph size on execution time. Fig. 1a depicts
a portion of an RDF graph with entities related by properties. It com-
prises properties that are semantically similar (e.g., country, nationality,
and birthPlace). Let us consider a graph summarization method by
Zhu et al. (2016) that groups similar entities and properties in a graph.
All the elements of a group (i.e., entities or properties) are summarized
into one element (i.e., into an entity or a property) in the summarized
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graph. Some works have been done for grouping the elements with simi-
lar semantic meaning, e.g., Singh, Devi, Devi, & Mahanta (2022) propose
a method to group the terms with similar semantic meaning by evalu-
ating the similarity between words using GloVe (Pennington, Socher, &
Manning, 2014).

The results of applying this method to the RDF graph in Fig. 1a are
illustrated in Fig. 1b. Moreover, Fig. 1c presents the RDF serialization
of the RDF triples in Fig. 1a and b.

A portion of DBpedia that consists of 2047 RDF triples is presented
in Fig. 2a. Nodes and edges are represented as ovals and rectangles, re-
spectively. The dataset has 1000 edges and 510 nodes. This figure also
presents a SPARQL query comprising four triple patterns. The evalua-
tion of this query retrieves five answers that correspond to the names
of people in Germany, or with German nationality, or born or die in
Germany. The Sparklify query engine® produces these answers in 19
seconds. Fig. 2b and c depict the execution time over summarized RDF
graphs computed following the two graph summarization methods pre-
viously described. The results in Fig. 2b suggest that the execution of
the SPARQL query over the summarized graph by naive approach, even
producing all the results, can be costly. This approach grouped source
nodes with similar edges and target nodes in 174 Sub-Graphs. Thus,
query processing over the summarized RDF graph requires 43 secs. to
produce the five answers. Alternatively, graph summarization can be
done during query processing. An optimized query-based graph sum-
marization method can identify the portion of the RDF graph required
to answer the query, and then it summarizes only this portion of the orig-
inal RDF graph. The results in Fig. 2c show the query execution over a
summarized RDF graph by optimized approach with 16 edges and 17
nodes; it retrieves all the five answers in 5 seconds. The RDF graphs in
Fig. 2 are generated by Cytoscape®.

Fig. 3 a presents a compact representation of the portion of DBpedia
in Fig. 2a required to answer the SPARQL query in Fig. 3b. This graph
represents—with one property— the three related properties country, na-
tionality, and birthPlace. The property deathPlace remains in the com-
pact query since it is not semantically similar to other properties. This
compact modeling reduces the RDF graph size and enables rewriting the
query into a query with fewer triples in Fig. 3b. As a result, the rewritten
query execution time is reduced to 5 seconds, while the complete five
answers are produced. These examples illustrate the relevance of effi-
cient summarization techniques in RDF data management. In Section 4,
we address this problem, and describe summarization techniques able
to reduce the size of RDF graphs and speed up execution time during
query processing over summarized graphs.

4. Research problem and proposed approach

In this section, we discuss the problem of query processing over sum-
marized RDF graphs. Also, we introduce important preliminary defini-
tions and provide the solution by proposing two approaches, naive and
optimized, for summarizing RDF graphs without losing necessary infor-
mation.

4.1. Problem statement

Summarization techniques minimize the size of RDF graphs, which
helps optimize query processing. Meanwhile, preserving all needed in-
formation should be considered during summarization process. Summa-
rizing graph based on a semantic similarity measure is a technique to
solve query processing over large RDF graphs. This section presents tech-
niques that exploit knowledge encoded in RDF graphs, similarity mea-
sures, and SPARQL queries; they generate summarized graphs against
which queries can be processed. To illustrate the relevance of determin-
ing relatedness using similarity measures, consider the RDF graph in

3 http://sansa-stack.net/sparklify/.
4 http://www.cytoscape.org/.
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(a) Original RDF Graph
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(b) Summarized RDF Graph

<Stefano_Caruso, country, Germany> .
<Helmut_Lemke, country, Germany> .
<Walter_Wallmann, country, Germany> .
<Walter_Wallmann, nationality, Germany> .
<Walter_Wallmann, birthPlace, Germany> .
<Aram_Bartholl, nationality, Germany> .
<Aram_Bartholl, birthPlace, Germany> .
<Mady_Rahl, birthPlace, Germany> .
<Mady_Rahl, deathPlace, Germany> .

<Stefano_Caruso, country, Germany> .
<Helmut_Lemke, country, Germany> .
<Walter_Wallmann, country, Germany> .
<Aram_Bartholl, country, Germany> .
<Mady_Rahl, country, Germany> .
<Mady_Rahl, deathPlace, Germany> .

(c¢) Triples summarization

Fig. 1. Motivating Example (Compactness). (a) An RDF graph representing entities with similar properties; (b) A lossless summarization of the RDF graph preserving
main information; (c) Triples related to the RDF graph in the green box are summarized to a smaller portion in the yellow box. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 1b; it summarizes the edges of an RDF graph in Fig. 1a that are re-
lated or similar. A similarity measure is a function that given two entities
associates a value in the range [0.1] that indicates a degree of related-
ness of the input entities. Similarity measures rely on various properties
of the input entities to estimate similarity.

4.2. Preliminaries

Given two classes C ={ej,ejs, ..,e;,} and Cy={ey;, e, ...,eon}
where e); and e,; are entities in classes C, and C,, respectively. The se-
mantic similarity between these two classes is defined as sim(C;,C,) =
Avg(sem_sim(ey;, e5y)) for the set of all pairs of (e;, e5) in C; X C, and
ey; !=e,;. Therefore, two classes are similar to each other if and only if
a set of entities in class C, are similar to a set of entities in class C,
(Jatnika, Bijaksana, & Ardiyanti, 2019). Also, these entities should not
be the same. The value of similarity is equal to the average of the se-
mantic similarity value of all entity pairs.

One of the metrics to measure the similarity is cosine similarity; it
calculates the similarity between two n-dimensional vectors by looking
for a cosine value from the angle between two vectors. The entities in
classes are converted to the vectors by a model to calculate the angle
between them. The value of cosine similarity is between 0 and 1. If the
value is closer to 1, it means entities are more similar to each other. And
if the value is closer to 0, it means the similarity between entities is less.
In the following, the formula shows the semantic similarity between sets

of entities (e; and ey)):

€1i-€2j

1

sem_sim(ey;, e5;) = cos(f) = |e1i||€2j|

There are many embedding models can be used to measure semantic
similarity and relatedness by the cosine between the concepts’ embed-
ding vectors. Some of these methods focus on the terms called word em-
bedding, and some focus on the relations known as graph embedding.
Word2Vec presented by Mikolov, Chen, Corrado, & Dean (2013) as a
word embedding model is used in this work to generate concept sentence
embeddings based on the terms. Word2Vec model transforms words into
low-dimensional word embeddings; it resorts to small neural networks
to calculate these word embeddings based on contextual knowledge en-
coded in public background knowledge bases. In addition, to compute
word embeddings, the Word2Vec model calculates the cosine of the an-
gle between these low-dimensional vectors that represent these embed-
dings. Word2Vec model resorts to the cosine similarity as a measure to
find similar words. In order to find similar words, a trained Word2Vec
model based on gensim library® can be used. The main precondition
of word embedding is that words with similar meaning should have a
similar representation. There are many entities and relations that are
semantically similar, but they are represented differently in the knowl-

5 https://radimrehurek.com/gensim/models/word2vec.html.
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Stefano_Caruso)

------ - Execution Time:

PREFIX dbr: <http://dbpedia.org/resource/> 1 9 S
SELECT DISTINCT ?s WHERE {
Answers:

Stefano_Caruso
Helmut_Lemke

{?s m dbr:Germany . } #Count: 3
UNION_

{?s @ dbr:Germany . } #Count: 2

UNIO Aram_Bartholl
{?s dl dbr:Germany . } #Count: 3 Walter_Wallmann
UNION Mady_Rahl

{?s dbo:deathPlace dbr:.Germany .}} #Count: 1

(a) Original RDF Graph and SPARQL query

b B Execution Time:

433@

(b) A Naive Approach for
Summarizing RDF Graphs

s
. N\e
"‘L".

WaltedWalimann

Confederate_States_of_America
7 |

Stetafiouaruso ™ intoragts wih
intoracte with _telnfilbmie
~_ interaets With . /
°y Robert_E._Lee
/ N\ ‘
interagfs with w}e&uas ith
S |
/ \\ \ interagts with
y % \\ |
Mally Rah e
- Ararfi_Batholl
Richard_Myetsteras witkinited_Stales
interacts-with
| Ithaca_College.
interagts with
Um(e’qaum |

@ ‘
untod_ ngaffBprora_siocion

Alabama

Execution Time:
5s

interadts with

(¢c) An Optimized Approach for

Summarizing RDF Graphs

Fig. 2. Motivating Example (Execution Time). (a) A SPARQL query retrieves five answers in 19 seconds from the original RDF graph; (b) Summarized RDF graph
by naive approach retrieves the same answers in 43 seconds; (c) Optimized approach retrieves the same answers in 5 seconds.

edge graph. Thus, considering context by additional training data is an
important task to generate contextualized word embedding.

In the running example, Word2Vec is utilized to determine that the
properties country, nationality, and birthPlace are related and similar.
Similarity values can guide the summary of properties in RDF graphs
and allow for the transformation of SPARQL queries. Fig. 3 illustrates
a transformed SPARQL query. Albeit simpler, the transformed SPARQL
query can retrieve the same results as the original query, but in less
time. Meanwhile, there are a number of applications where data are
represented in the form of graphs, which required graph embedding.

RDF2Vec presented by Ristoski, Rosati, Noia, Leone, & Paulheim
(2019) as a graph embedding model is applied to learn the context of
the relations. In the case of RDF knowledge graphs, entities and rela-
tions between entities are considered instead of word sequences. First,
the graph data is converted into sequences of entities; it can be consid-
ered as sentences using two different approaches, i.e., graph walks and
Weisfeiler-Lehman (WL) subtree RDF graph kernels. Using those sen-

tences, RDF2Vec trains the same neural language models to represent
each entity in the RDF graph as a vector of numerical values in a latent
feature space.

Built on existing results on graph embeddings and summarization,
we propose two approaches for summarizing RDF graphs. The first
called Grouping Based Summarization (GBS) approach; it summarizes
the RDF graph based on grouping subjects with the same predicates and
objects. The second one, optimized for the first one, called Query Based
Summarization (QBS) considers only the part of the RDF graph which
is related to the SPARQL query. In the next, GBS and QBS are defined
in detail.

4.3. A naive approach for summarizing RDF graphs
A Grouping Based Summarization (GBS) approach able to reduce

size of RDF graph represents our naive method. GBS works into phases:
Offline Phase and Online Phase. In Fig. 4 both phases are shown. The
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Stefano_Caruso

(a) Summary RDF graph with fewer properties
and entities

PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX dbr: <http://dbpedia.org/resource/>

SELECT DISTINCT ?s WHERE {

{7s { dbr:Germany .}  #Count: 5 Aram_Bartholl
UNION Walter_Wallmann
Mady_Rahl
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Execution Time:
5s

Answers:
Stefano_Caruso
Helmut_Lemke

{?s dbo:deathPlace dbr:Germany .} #Count: 1

(b) Summarized triple pattern query

Fig. 3. Example of Summarized RDF. (a) An RDF graph by considering only one of the most similar predicates returns five answers in 5 seconds. Simplify returning
the same answers without being aware of schema and all predicates in less time by reducing the number of triples in RDF dataset; (b) Retrieve the same answers in
less time compared with original RDF graph by applying the transformed SPARQL query as a simple one over the summarized RDF graph.

-
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Fig. 4. Proposed Summary Graph Architecture for the Grouping Based Summarization (GBS) approach in two phases (The Naive Approach).

input of the offline phase is an RDF dataset that has been loaded as an
RDF graph, and the output is a semantic summary graph. For the online
phase, the input is a generated summary graph from the offline phase,
a SPARQL query, and a semantic similarity metric and the output is a
transformation of the query to the one with fewer triple patterns with
final answers.

In the offline phase presented in Algorithm 1, data should be prepro-
cessed. All edges and vertices are read from the RDF graph. As discussed
before, the aim is to provide a semantic summary graph without losing
the needed information. After receiving a dataset as an input in (step 1),
the RDF graph is loaded (step 2). Then, the RDF graph is expanded to
find new relations which are already not available in the original RDF
graph, but they have similar semantic meanings. This extension is per-
formed by computing the transitive closure of the properties in the RDF
graph.

Inference layer is used in order to extract new knowledge. For
inferring the new facts from the current knowledge bases, inference
rules are applied. Transitive Closure (TC) is one of the inference rules
which is exerted in this work to infer more facts. It is deployed in
the graph in order to find more facts which not exist in the original
one.

For example, in the given original RDF graph, there is no relation
between entities Germany and Country. As seen in Fig. 5, by applying
TC inference rule, the new triple (Germany, type, Country) has been
inferred out of existing triples (Germany, type, EuropeanCountry) and
(EuropeanCountry, subClassOf, Country). Since the original RDF graph
has expanded by applying inference rules with more triples, queries over
Country and Germany can be equally answered.

The Transitive Closure (TC) inference rule is deployed in the graph
in order to find more facts (step 3) and for expanding the RDF graph.
In (step 4), the inferred RDF graph is generated with the new prop-
erties. Subjects with similar predicates and objects need to be identi-
fied to find Super-Nodes (SN). In order to store the results from mas-
sive data, in-memory Spark Resilient Distributed Dataset (RDD) is used
(step 5).

The Resilient Distributed Dataset (RDD) is the core of Apache Spark.®
As it comes from the name, RDD is a resilient, distributed, and im-
mutable collection of data that are partitioned over a cluster of ma-
chines. In Spark RDD, a cluster of workers is connected to a driver

6 https://spark.apache.org.
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Algorithm 1: The Grouping Based Summarization (GBS) Algorithm, Offline phase-Summarizing Graph.

Input : RDF dataset has been loaded as RDF graph (G)
Output: Semantic Summary Graph (G')

1 G « RDFGraphLoader.loadFromDisk(spark, input, parallelism) ;
2 inferredGraph « TransitiveReasoner.apply(G) ;
3 SN « RDD[(List[Subjects])] from inferredGraph where Subjects have similar Predicates and Objects ;
/*SN is a list of Super-Nodes#/newTriples « Triple.create(SN, Predicate, Object) ;
5 Buffer < new ArrayBuffer(triple.length) ;
6 foreach (SN, Predicate, Object) € inferredGraph do
7 if newTriples not exists in Buffer then
8 ‘ Buffer + = newTriples ;
end
end
9 G' « Buffer;
10 return G’

Transitive Closure Rules

s rdfitype x

— s rdfitype y

{/, rdf:type X rdfs:subClassOf y

X rdfs:subClassOf y
— x rdfs:subClassOf z

y rdfs:subClassOf z

p o

—+sgqo

p rdfs:subPropertyOf q

X rdfs:subPropertyOf y
— x rdfs:subPropertyOf z
y rdfs:subPropertyOf z

Fig. 5. Example of Transitive Closure (TC) rule in Inference Layer.

or master node. A master node will take care of work execution while
worker nodes execute the jobs which are split and then distributed to
them. In Sparklify, RDF graphs are stored and modeled based on Spark
RDD through fast processing for efficient evaluation of SPARQL queries
over distributed RDF datasets.

All subjects which have common predicates and objects are
grouped. RDDs of (key,value) pairs are used like (Predicate, Object,
List(Subjects)); this resembles the technique proposed by Consens,
Fionda, Khatchadourian, & Pirrd (2015); it also finds the same nodes
by clustering entities with the same type. Pair RDDs display operations
such as reduceByKey() and groupByKey() for combining and grouping
values with the same key. Each of these RDDs of pairs can be consid-
ered as a Sub-Graph. Also, subjects in the group list are considered as
Super-Nodes (SN). Fig. 6 shows with a simple example how a summary
RDF graph has been generated by GBS algorithm in offline phase. For
example, all people who were born in Germany can be grouped and
consider as a Super-Node (SN). New triples are created out of these
Super-Nodes with their related edges and added to the buffer(step 6).
So, a summarized RDF graph is generated from the original one. In gen-
eral, the total number of edges and vertices of this summary graph is less
than the original RDF graph. Therefore, the summarized graph is created
(step 7).

After generating a summary RDF graph, the aim is to have a com-
plete set of answers corresponding to a reduced number of triple pat-
terns in the query. In the online phase, a multi triple pattern query is
processed in (step 8) to find a set of edge candidates based on the em-
bedding model such as Word2Vec (step 9). As explained in Section 4,
cosine similarity as a measure is used to find similar predicates by their
distance from each other. Also, a trained model based on gensim li-
brary has been used. In our model, semantically similar predicates tend

to lie close to each other. For example, the cosine similarity value be-
tween a given predicate country and predicates nationality, birthPlace,
and deathPlace is 0.8217, 0.8124, and 0.3672, respectively. In (step 9),
the edges which have a higher similarity value than a given threshold
(> 0.5) are selected. Therefore, predicate deathPlace cannot be consid-
ered as a similar predicate to country. The similar edges are considered
as strong relations between vertices and are called Super-Edges. As seen
in Algorithm 2, the Super-Edges discovered are used in transforming
the query to the simple one to find complete results in (step 10). Word
embedding techniques consider similarity between edges based on their
distance. Thus, in summarized RDF graphs where the size of graph is
smaller and predicates are closer to each other, there is a possibility
that a founded predicate is similar to the others, not only in terms of
distance but also from the semantic point of view. A simple example in
Fig. 7 demonstrates how the algorithm of GBS approach works in online
phase.

In (step 11), final answers are generated by getting help from a
query engine, e.g., Sparklify, over the summary RDF graph. After re-
trieving answers, it is observed that some required information is lost.
In Section 5, the results of evaluation show that querying over sum-
marized RDF graph in GBS approach for large RDF graphs returns
less number of answers compared with querying over original RDF
graph. In order to avoid the problem of losing information during
query processing, we propose the Query Based Summarization (QBS)
approach.

4.4. An optimized approach for summarizing RDF graphs

The optimized approach in order to reduce size of RDF graphs is
Query Based Summarization (QBS) approach. QBS guides the summa-
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(a) Original RDF graph (b) Inferred graph by

finding new facts

SEEK

RDD [(<s", p', 0>, <s", p, 0>, ..., <Sf, p’, 0™>), ...,

(<s™, p", ">, <s"s, p", 0">, ... <s", p", 0">) ]
List Super-Nodes (SN) [s1, sz, ..., si]

(¢) Group subjects with the same
predicate and object using RDD Spark

(d) Summarized RDF graph

Fig. 6. Example of Grouping Based Summarization (GBS) approach (offline phase). (a) A part of original RDF graph; (b) Graph expanded using the Transitive Closure
rule to find new facts which do not exist in the original RDF graph, but they are semantically true; (c) Subjects with the same predicate and object are grouped to find
Super-Nodes (SN) to create new triples using RDD Spark, also the nodes that do not share the same predicate and object will be removed; (d) Generate a summary

RDF graph with fewer nodes and edges.

rization process based on an input query. Thus, instead of considering a
whole RDF graph to summarize, only the part of the original RDF graph
which is related to the user query will be considered. This idea is in-
spired by Zhang et al. (2014). In this way, not only the execution time
is reduced, but also all the necessary information is preserved. The in-
put of this algorithm is an RDF dataset that has been loaded as an RDF
graph, a SPARQL query, and a semantic similarity metric. The output is
a transformation of the query to the simple one with fewer triple pat-
terns and a semantic summary graph with final answers; it is presented
in Algorithm 3. After receiving an RDF graph as input and load it (step
1-2), the query of the user should be collected to extract predicates and
objects related to the query as Super-Predicates and Super-Objects (step
3). In this approach, contrary to GBS, the inferred graph is not gen-
erated due to the time-consuming and considering small part of graph

related to the query. Therefore, the RDF graph is not expanded like in
GBS approach.

After extracting the Super-Predicates and Super-Objects in (step 3),
a Sub-Graph (g) consisting of triples with predicates equal to the Super-
Predicates or with objects equal to the Super-Objects is generated (step
4). The architecture of Query Based Summarization (QBS) is illustrated
in Fig. 8. In the next step, word and graph embedding models are applied
to this Sub-Graph to find edge candidate sets. Unlike the GBS approach,
the embedding models consider the Sub-Graph instead of the whole
graph. By this method, only relevant predicates will be found as sim-
ilar (step 5). Indeed, embedding models help that query is transformed
into a simple SPARQL query. It also helps that Super-Subjects are found
by extracting triples with the predicates equal to the edge candidate sets
(step 6). By having Super-Subjects, Super-Predicates, and Super-Objects
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Fig. 7. Example of Grouping Based Summarization (GBS) approach (online phase). (a) The summary RDF graph generated from offline phase with a multi triple
pattern SPARQL query and a list of vocabulary before training the model; (b) Apply both word embedding model and graph embedding model to find most similar
predicates to transform multi triple pattern queries to simple ones by considering the most similar predicate as a Super-Edge; (c) Transformed query with results.

Algorithm 2: The Grouping Based Summarization (GBS) Algorithm, Online Phase-Query Rewriting.

Input : SPARQL Query (Q); Summary Graph (G’) from Algorithm~1; List of Vocabulary (V); Semantic Similarity Metric

Output: Transformed SPARQL Query (Q"); List of result

1 initialize training model ;
2 V « list_of vocabulary ;
3 foreach vocabulary € V do
4 ‘ model « trained model ;
end
5 Q.Predicates « set of predicates extracted from Q ;
6 forall the p € Q.Predicates do

7 similar_set_of P « predicates q in G’ with cosine-similarity(q,P) >0.5 ;

8 Q.replaceBy(P, representativeOf(synonym_set_of P)) ;
end

90 < Q;

10 result « G’.sparql(Q’) ;

11 return result

from the previous steps, new triples are created in (step 7) and added
to our Sub-Graph (g) to generate the final graph as a summary graph
(step 8). The Super-Edges discovered earlier are used in transforming
the query to the simple one (step 9).

Since QBS relies on the query of users, the generated summary graph
contains all information related to the query. Therefore, querying the
transformed query over the summary graph returns all possible answers.
This is proved by Theorem 4.1. By applying the simple query over this
summary graph, the answers are retrieved (step 10).

Theorem 4.1. If C; and C, are classes in the RDF graph G, and C; is the
domain of p, and C, is the domain of p,. Also, p, is similar to p, according to
a given semantic similarity metric. Let G" be the compact representation
of G by QBS approach, where p is the property used to represent p, and p,
in G". The following properties hold:

1. The cardinality of G" and cardindlity of G are the same.

cardinality(G") = cardinality(G) 2)
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Fig. 8. Summary Graph Architecture for the Query Based Summarization (QBS) approach (The Optimized Approach).

Algorithm 3: The Query Based Summarization (QBS) Algorithm.

Input : RDF dataset loaded as RDF graph (G); SPARQL Query (Q); List of Vocabulary (V); Semantic Similarity Metric

Output: Transformed SPARQL Query (Q"); Summary Graph (G"'); List of result

G < RDFGraphLoader.loadFromDisk(spark, input, parallelism) ;
Super-Predicates « Q.getSetOfPredicates ;

Super-Objects < Q.getSetOfObjects ;

g « triples includes Super-Predicates or Super-Objects ;

/*g is a Sub-Graph3¥/initialize training model ;

V « list_of vocabulary ;

7 foreach vocabulary € V do

‘ model « trained model ;

AW N =

=}

end
Q.Predicates « set of predicates extracted from Q ;
10 forall the p € Q.Predicates do
11 similar_set_of P < predicates q in g with cosine-similarity(q,P) >0.5 ;
12 Q.replaceBy(P, representativeOf(synonym_set_of P)) ;
end
13 Q0" < Q;
14 tsp < G.getSetOfPredicates.getURI.contains(similar_set_of P) ;

o

/*tsp is a set of triples contain similar predicates’/Super-Subjects « tsp.getSetOfSubjects ;

16 newTriples « Triple.create(Super-Subjects, Super-Predicates, Super-Objects) ;
17 Buffer <« new ArrayBuffer(triple.length) ;
18 foreach (Super-Subject, Super-Predicate, Super-Object) € G do
19 if newTriples not exists in Buffer then
20 ‘ Buffer + = newTriples ;
end

end
21 G"" « Buffer.union(g) ;
22 result « G”.sparql(Q") ;
23 return result

10
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Fig. 9. Example of Query Based Summarization (QBS). (a) The original RDF graph portion and a SPARQL query with predicate vocabulary before training the model;
(b) Predicate and object of one triple pattern are considered as Super-Edge and Super-Object, respectively to extract the Sub-Graph (g); (c) The embedding models
encode predicates as vectors to find the most similar predicates to the Super-Edge trained to create new triples; (d) Summary RDF graph with a transformed query

and answers.

2. For SPARQL query Q, where p, or p, are used in the triple patterns of
Q. O can be a conjunctive query or include the UNION or OPTIONAL
operator. If Q" is the transformation of Q where p, and p, are replaced
by p, the evaluation Q' in G’ and the evaluation of Q in G are the
same.

[[ONG = [10"NG” 3)

Proof. Consider the Query Based Summarization approach, which is
dependent on the query of the user to summarize the RDF graph. All
the properties and their relations related to the query appear in G”'; it is
the compact representation of G. Thus, G” consists of all relations and
entities related to the query Q. Therefore, the properties p; and p, in
G which are similar based on the semantic similarity metric, and they
belong to different classes are considered as predicate p in G”. Hence,
the cardinality of G”' is equal to the cardinality of G. Again, the query O

11

with properties of p; and p, is rewritten to query Q" with the property
of p, and duplicated triple patterns are eliminated. So, query Q over G
is the same as query Q" over G”. [J

Fig. 9 illustrates the QBS algorithm with a simple example. A given
query in Fig. 9a can also be considered as a multi triple pattern query
without union operation. The number of answers by querying over the
original RDF graph is equal to the number of answers by querying over
the summarized graph. This has been proved in Theorem 4.1.

5. Empirical evaluation

The effectiveness of the approaches described in Section 4 is ana-
lyzed based on the size of the RDF graph, the number of retrieved data,
scalability, and query processing. We aim to answer the following re-
search questions: RQ1) What is the impact of predicate relatedness by
analyzing similarity measures in different size of datasets using diverse
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embedding models on finding complete answers? RQ2) Are the pro-
posed RDF summary graph techniques able to reduce the size of the
original RDF graph by considering only required triples for querying?
RQ3) How is the effectiveness of the proposed summarized techniques
on answer completeness and cardinality compared with the original RDF
graph? RQ4) How is the impact of the complexity of query on query pro-
cessing and execution time in the proposed RDF summary graph com-
pared with the original RDF graph?

5.1. Data preparation and methods

GBS and QBS have been evaluated in terms of compactness, com-
pleteness, and execution time. The summarization ratio is calculated by
comparing the size of original RDF graphs with the size of summary
graphs generated by two summarization approaches. The number of re-
trieved answers over original graphs is compared with the number of an-
swers by querying over summarized graphs. Finally, the speed of query
processing is computed by total time of returning answers by original
and summary graphs using Sparklify. One of the most important aspects
of our evaluation is to collect and process the dataset to ensure that it
is being worked by our approach. Therefore, the first step is prepar-
ing datasets to meet our conditions as an input. One condition is the
dataset does not contain any literals. Since literal values and properties
coming with literal values cannot be embedded by knowledge graph
embeddings techniques. Then, RDF dataset should be loaded as an RDF
graph. Later, the complex query is evaluated against this graph, and
the answers are returned by Sparklify. The number of results and the
running time are measured. For the proposed approaches, after loading
the RDF dataset as an original RDF graph, the summarization technique
is applied to generate a summary RDF graph. The number of answers
retrieved by querying transformed queries over the summarized graph
and query processing time are compared with the results produced over
the RDF graph.

5.2. Experimental setup

We conduct an experimental study to assess the accuracy of our ap-
proach compared with the baseline. Our experimental configuration in-
volves the datasets and queries used for our evaluation, as well as met-
rics and implementation.

5.2.1. Datasets and queries

Four datasets with different sizes are applied to realize the effec-
tiveness of the mentioned techniques. One is a small part of DBpedia
dataset consists of 2,047 triples wherein a bunch of companies, per-
sons, and places with some of their information are stored. The second
one is an Entity Summarization BenchMark (ESBM) with 6,584 triples
which are sample entities from two datasets, DBpedia and LinkedMDB
(Hassanzadeh & Consens, 2009) a popular movie database. The other
selected datasets are Waterloo SPARQL Diversity Test Suite (WatDiv)
with 10,916,457 triples (WatDiv.10M) and with 108,997,714 triples
(WatDiv.100M) as medium and large datasets, respectively. Our eval-
uation is composed of 15 queries selected from QALD-3’ for DBpedia
dataset, from ESBM Benchmark v1.28 for ESBM, and from Query Gen-
erator (v0.6)° for WatDiv.

5.2.2. Metrics

Three main metrics in the evaluation of summary graphs are consid-
ered to answer the above research questions. a) Compactness: the size of
summary RDF graph should be typically smaller than the size of original
RDF graphs. The Summarization Ratio (SR) is a metric to show the value

7 http://qald.aksw.org/index.php?x=task1&q=3.
8 https://w3id.org/esbm/.
9 https://dsg.uwaterloo.ca/watdiv/#download.
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of compactness; it is calculated by the number of triples in the summary
graph divide into the number of triples in the original RDF graph. b)
Cardinality: the number of answers returned by a query over the orig-
inal RDF graph should be the same as over the summarized graph. c)
Execution Time: the running time for query processing over the summa-
rized RDF graph should be less than over the original RDF graph.

5.2.3. Implementation

The approaches are implemented in Scala 2.11.12 and Spark 2.2.0
over query engine Sparklify from the SANSA Stack framework. Spark-
lify executed over the original RDF graph is used as the baseline of
our work. The proposed algorithms are compared with the original RDF
graph based on Sparklify, i) Sparklify + GBS; and ii) Sparklify + QBS.
We evaluate our experiments on three servers with 256 cores and ex-
ecutor memory of 100 GB.

5.3. Impact of predicate relatedness by analyzing similarity measures

The distribution of similar predicates in each RDF graph using di-
verse embedding models is different. Referring to the research question
RQ1, the predicate relatedness in each dataset has an impact on find-
ing complete answers. For rewriting queries, the embedding techniques
such as Word2Vec and RDF2Vec find similar predicates to the given
predicate in the query to transform it. If the most similar and semanti-
cally relevant predicates are found, the transformation of a query would
be more efficient in terms of finding the complete answers. Since finding
the most similar predicates can affect verifying the cardinality property;
it becomes an important issue on rewriting queries. During experiments,
it is discovered that not only different datasets with various sizes have
a different distribution of similarity values, but also the different dis-
tribution can be seen in diverse embedding models. It means not only
the number of triples in RDF datasets can change the result of predicate
relatedness, but also the techniques used for embedding have an im-
pact. Figs. 10 and 11 show the distribution of cosine similarity to find
the most similar predicates between the original RDF graph and sum-
marized RDF graphs provided by Grouping Based Summarization(GBS)
approach and Query Based Summarization (QBS) approach using word
embedding model and graph embedding model, respectively.

The results suggest that the way to find similar predicates depends
on the size of the RDF graph and the technique for embedding. As seen,
the probability of cosine similarity close to 1 in QBS approach is higher
than the probability in the original graph and summary graph by GBS
approach. The reason is, summary graphs in QBS have much fewer and
more similar triples compared with the original ones. In QBS approach,
only a part of the RDF graph related to the query has been considered,
not the whole graph. Hence, by considering the small part of RDF graph
includes triples with the same objects, similar and relevant predicates
are close to each other and the distance between them is less. Therefore,
by decreasing the number of triples in the dataset and keeping relevant
triples to the query, the probability of finding the most similar predi-
cates to a given one in its neighborhood is higher. In GBS approach, the
probability of having a cosine similarity close to 0.5 using word embed-
ding and close to 0.7 using graph embedding is higher. The reason is,
after summarizing RDF graphs based on an explanation in Section 4.3,
many relevant triples are lost. So, the embedding model finds the prop-
erties which are not completely relevant and similar. If less relevant
similar predicates are found for rewriting the query, then query over
the summarized RDF graph will return incomplete answers. Hence, in
GBS approach, applying a query over the summarized graph does not
return the complete answers. Moreover, these observations are more ob-
vious in Fig. 11 where RDF2Vec model used as graph embedding model
to find similar properties. RDF2Vec employs different walking strate-
gies such as Random Walk, NGram Walk, HALK Walk, Walklet Walk,
and Anonymous Walk (Vandewiele et al., 2020). In this work, Random
Walk is applied to extract the walks over the knowledge graphs. Af-
ter finding the proper threshold, only predicates with cosine similarity
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Fig. 10. Compare the distribution of cosine similarity for predicate relatedness in the original and the summarized RDF graph based on GBS and QBS approaches

using word embedding model.

Table 1
RDF Graphs Summarization Ratio (SR) and Summarization Time (ST).
#Triples of GBS Approach QBS Approach

Dataset original RDF graph SR ST SR ST
DBpedia 2,047 322 % 36.8s 99% 2.8s
ESBM 6,584 33% 34.2s 98.8% 2.2s
WatDiv.10M 10,916,457 41.8% 100 s 96.6% 14.2s
WatDiv.100M 108,997,714 57% 787.6 s 97.4% 53.6s

greater than the threshold are considered as synonyms to rewrite the
queries. The predicate relatedness by analyzing similarity measures in
RDF graphs plays an important role in transforming the query to retrieve
complete answers. In QBS approach, by finding similar predicates using
different embedding models, the transformation of the query has been
done efficiently and leads to retrieving complete results.

5.4. Effectiveness of proposed summarized graph

To evaluate the effectiveness of proposed approaches and answer re-
search questions RQ2 and RQ3, the results of experiments are reported
based on reducing the size of the RDF graph and returning the complete
answers. As seen in Table 1, the Summarization Ratio (SR) for QBS ap-
proach is higher than GBS approach. It means the number of triples in
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the summarized graph provided by QBS approach is less than the num-
ber of triples in the summarized graph provided by GBS approach. In
QBS approach by considering a query of the user and the part of the
original RDF graph which is related to this query, the Summarization
Ratio (SR) has significantly increased compared with GBS approach. The
compactness property has been verified in both approaches, but it has
a better result in QBS approach. For example, the QBS approach makes
the dump of DBpedia dataset 99% smaller than the original dataset,
while by GBS approach it gets only 32.2% smaller than the original one.
Therefore, the compactness based on QBS approach is more than GBS
approach. Also, Table 1 provides the Summarization Time (ST) which
is the time required to generate the summary graph in both approaches
based on the given datasets. Here, it should be mentioned that summa-
rizing the RDF graph in QBS approach is not only related to the size of
dataset but also is based on the query of the user. Therefore, the size
and time provided here for generating the summarization graph is the
average of the size and time among different queries. Moreover, Table 2
shows the result of applying the SPARQL queries with multi triple pat-
terns over the original RDF graph and compares them with the result of
applying the transformation of these queries over summarized graphs
provided by both approaches. Based on the results provided here the
cardinality in GBS approach has been verified only for small datasets
and not for medium and large datasets, while based on Theorem 4.1 in
QBS approach all information related to the query will be found in the
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Fig. 11. Compare the distribution of cosine similarity for predicate relatedness in the original and the summarized RDF graph based on GBS and QBS approaches

using graph embedding model.

Table 2

Compare the number of answers by querying multi triple patterns query over
the original graph and transformed query as simple query over the summarized
graph provided by Grouping Based Summarization (GBS) approach and Query
Based Summarization (QBS) approach using the query engine Sparklify.

# of answers

— Sparklify Sparklify+GBS Sparklify+QBS
DBpedia 01 5 5 5
Q2 5 5 5
03 9 9 9
04 6 6 6
o5 8 8 8
ESBM 06 3 3 3
o7 2 2 2
08 5 5 5
9 8 8 8
010 6 6 6
WatDiv.10M 011 86 54 86
012 56 30 56
013 99 64 99
ol4 3,834 2,043 3,834
Q15 59 26 59
WatDiv.100M 016 59 31 59
017 554 206 554
018 983 489 983
019 38,895 21,089 38,895
020 146 85 146
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summarized graph. Therefore, in QBS approach, the cardinality for all
size of datasets has been verified. In order to return the answers for
SPARQL queries, Sparklify, the scalable component which is the default
query engine in the SANSA Stack, has been used during all the experi-
ments. First, the query is applied over the original RDF graph. Later, the
transformation of this query which is a simple query with fewer triple
patterns is applied to the summary graph. As seen in Table 2, the num-
ber of answers retrieved in GBS is less than the number of answers from
the original RDF graph which means during summarizing some infor-
mation is lost while in QBS the number of answers retrieved from the
summarized graph is equal to the number of answers from the original
RDF graph. Thus, in QBS, the cardinality property has been verified.

5.5. Efficiency of transforming queries

To answer the research question RQ4, we evaluate the execution
time of query processing in the original RDF graph and the proposed
summarized graphs provided by both approaches, GBS and QBS. The
query processing has been done by the query engine, Sparklify. We re-
port on the average query processing time after three times running the
algorithms.

Table 3 shows the comparison of executing time over baseline and
combing it with proposed approaches. Also, to verify that the query
engine Sparklify combined with QBS approach to query over the sum-
marized RDF graph achieve a greater reduction in execution time than
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Table 3
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Compare the execution time in the original and the summarized RDF graph provided by Grouping Based Summarization (GBS) and Query Based Summarization
(QBS) approaches. Q is the query over the original RDF graph and Q’ is the query over the summarized RDF graph. S represents as baseline Sparklify executed over

the original RDF graph.

Execution Time (seconds)

— S(Total) S+GBS(SUM) S+GBS(QA) S+QBS(SUM) S+QBS(QA)
DBpedia 01/0'1 19 37 6 2 3
02/0'2 18 39 6 3 5
03/0’'3 29 45 9 3 6
04/0'4 18 30 5 3 5
05/0'5 17 33 6 3 4
ESBM 06/0'6 32 45 9 3 5
Q7/0'1 19 36 7 2 4
08/0'8 20 31 5 2 6
09/0'9 20 30 6 2 5
010/0'10 19 29 5 2 4
WatDiv.10M 011/0'11 85 102 56 14 32
012/0'12 79 92 47 11 28
013/0'13 80 89 78 15 26
Q14/0'14 82 123 158 13 24
Q15/0'15 98 94 38 18 28
WatDiv.100M 016/0'16 321 802 274 88 109
Q17/0'17 147 541 349 42 56
018/0'18 192 627 482 41 86
019/0'19 401 1,190 850 63 168
020/0'20 182 778 321 34 105
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Fig. 12. Comparing execution time in original RDF graph and summary RDF graph provided by Grouping Based Summary Graph (GBS) approach over four different
datasets with different sizes. Q and Q’ are executed over the original and summarized RDF graphs, respectively. Red dots show the execution time (in seconds) to
answer a query over the original RDF graph. Blue and green dots show the time for summarizing RDF graph (SUM) and the time for query answering (QA) over
summary graph, respectively. As seen, by increasing the size of datasets, execution time in the summarized graph is much higher than the original graph. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 13. Execution time in original and summary RDF graphs using Query Based Summary Graph (QBS) on four datasets. Q and Q’ are queries over original and
summarized RDF graphs, respectively. As seen, by increasing the size of datasets, execution time (in secs.) in the summarized graph is much less than in the original
RDF graph. Thus, the execution time decreases when the dataset size on QBS increases.

using the Sparklify over the original RDF graph, a Wilcoxon signed rank
test is run with the result of p-value < 6.103e — 05. As a result, the ob-
served outcomes indicate a reduction in execution time of query pro-
cessing over summarized RDF graphs generated by QBS. The execution
time of Sparklify against the original RDF graph is the baseline. More-
over, both query processing time distributions differ significantly.

Fig. 12 illustrates the execution time of 20 SPARQL queries over the
original RDF graph compared with the summarized graph generated by
Grouping Based Summary Graph (GBS) approach. The execution time is
the summation of time for summarizing the RDF graph (SUM) and time
for query answering (QA). As seen, execution time in summarized graph
provided by GBS specially in larger datasets (Fig. 12¢ and d) is much
higher than the execution time in original RDF graph. Fig. 13 shows the
same experiments but over summarized RDF graph generated based on
Query Based Summary Graph (QBS) approach in four different size of
datasets. As seen in Fig. 13, the execution time in summarized graph
provided by QBS specially in larger datasets (Fig. 13c and d) is much
less than the execution time in original RDF graph. The approach of
QBS speeds up the execution time by up to 80% by summarizing the
RDF graph. Therefore, the execution time of query processing in the
summarized graph of QBS approach is much less than in the summa-
rized graph of GBS approach. Also, by comparing the summarizing time
(SUM) and querying answering (QA) in both approaches it is observed
that the time for summarizing in QBS approach is less than the time for
querying, while in GBS approach the summarizing time (SUM) is higher
than query answering (QA) time. In general, all the observations show
the optimization of the grouped based approach, GBS, to the query based
approach, QBS, in terms of compactness, completeness, and execution
time.

16

6. Discussion

The presented experimental results confirm that the proposed RDF
graph summarization technique is able to reduce the size of RDF graph
by preserving necessary information. Moreover, the significant decrease
in execution time is observed during query processing.

6.1. Contribution to literature

The results of our summarization approaches are compared with the
SPARQL query engine, Sparklify, as a baseline over the original RDF
graph. The number of retrieved answers and the execution time over the
summarized graph compared with the original RDF graph are shown in
Tables 2 and 3, respectively. The results describe that the query process-
ing over proposed summarized RDF graph is superior to querying over
original RDF graph. Table 4 provides an overview of existing summa-
rization methods mentioned in Section 2, and compared with our ap-
proach. As seen, summarization methods in a large variety of concepts
are different. However, QBS is able to not only reduce the size of the
graph, but also speed up execution time. Thus, we define data manage-
ment methods that can be used to enrich the portfolio of frameworks for
managing and querying larger RDF graphs. Given the rapid increase of
large RDF datasets, these methods will play a relevant role in scalability,
providing thus the basis for the development of real-world applications.

6.2. Practical implication

The proposed approach is aimed to ensure the compactness, com-
pleteness, and improve execution time. It focuses on reducing the size
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Table 4

Comparison of some graph summarization techniques.
Research Summary type Input Technique Output Graph Purpose
ASSG by Zhang et al. (2014) Structural RDF Instance Compression Compressed Graph Query Answering
Gurajada et al. (2014b) Structural RDF Instance Partitioning RDF Graph Query Answering
Sydow et al. (2013) Structural RDF Instance Selecting Sub-Graph RDF Graph Visualization
Zneika et al. (2016) Pattern Mining Instance Approximate Graph Patterns RDF Graph Query Answering
Karim et al. (2020) Pattern Mining RDF Graph Factorization Factorized RDF Graph Query Processing
CoSum by Zhu et al. (2016) Statistical RDF k-type Grouping Super Entity Resolution

SPARQL Similarity Search Hybrid RDF Instance and Schema
by Zheng et al. (2016)

GBS Hybrid RDF RDF Graph
(Proposed Naive Approach)

QBS Hybrid RDF RDF Graph

(Proposed Smart Approach)

Structural and Pattern Mining Multi-layer Graph Query Optimization

Group based Summarization Multi Sub-Graphs Query Processing

Query based Summarization Selective RDF Triples Query Processing

of RDF graph by providing the lossless and low-cost query processing.
Although our approach performed better than the baseline, there are still
some issues to discuss. For example, the assumption in our work is the
original knowledge graphs consist of synonyms properties. In case the
knowledge graph has few or no synonyms for properties, the summa-
rization cannot be done properly. In the naive summarizing approach
(GBS), the size of the RDF graph has vital impact on rate of summa-
rization and time of execution. On the other hand, in the optimized
QBS approach, the summarization ratio and execution time has direct
relationship to the complexity of queries. Transformation of these com-
plex queries to the simple ones based on similarity measures needs to
be done efficiently. Defining the proper candidate sets helps queries
be transformed in a way to retrieve the complete answers in less ex-
ecution time. The techniques and methods to select and prune candi-
date sets still is an issue to discuss. However, our optimized summa-
rization approach can be applied to any RDF knowledge graphs with
synonymous properties. Each embedding technique has its own advan-
tages and disadvantages on a variety of knowledge graphs. Except em-
bedding techniques used in this paper, other techniques can be stud-
ied and compared. Moreover, other state-of-the-art summarization tech-
niques with more evaluation criteria such as recall and precision to as-
sess the accuracy of our approach can be added to the empirical eval-
uation. These limitations of our work needs to be addressed in future
work.

7. Conclusions and future work

In this paper, we tackled the challenge of RDF graph summariza-
tion to optimize query processing. The proposed techniques contribute
to the portfolio of tools to efficiently manage knowledge graphs, which
is of significant relevance given the role of knowledge graphs in knowl-
edge representation. We presented the Grouping Based Summarization
(GBS) and the Query Based Summarization (QBS) approaches. QBS op-
timizes GBS and ensures query completeness. Technically, we imple-
mented our solutions on top of the state-of-the-art SANSA Stack, allow-
ing our methods to run on large-scale RDF graphs using Apache Spark
as a process engine. From the evaluation results, QBS provides a good
Summarizing Ratio (SR) from 96% to 99% in terms of the number of
triples that are needed for evaluation. From the query time point of
view, there is a notable reduction in query execution, up to 80% in
the proposed Query Based Summarization (QBS) approach compared
with the original RDF graph queried by Sparklify. This less complexity
in QBS has led to a significant improvement compared with the origi-
nal RDF graph. With due attention to the investigations and results ob-
tained from the experiments in this work, the importance of summariz-
ing large-scale RDF graphs using the SANSA framework becomes more
distinct.

In the future, we will focus on extending the proposed summarization
RDF graph with different types of data from structured to unstructured

to retrieve complete results with a reduction in execution time. Also, we
intend to evaluate the proposed method in other knowledge bases such
as WikiData.
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