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Abstract. The growing web of data warrants better data management
strategies. Data silos are single points of failure and they face avail-

ability problems which lead to broken links. Furthermore the dynamic
nature of some datasets increases the need for a versioning scheme. In

this work, we propose a novel architecture for a linked open data in-

frastructure, built on open decentralized technologies. IPFS is used for
storage and retrieval of data, and the public Ethereum blockchain is

used for naming, versioning and storing metadata of datasets. We fur-

thermore exploit two mechanisms for maintaining a collection of rel-
evant, high-quality datasets in a distributed manner in which partici-

pants are incentivized. The platform is shown to have a low barrier to

entry and censorship-resistance. It benefits from the fault-tolerance of
its underlying technologies. Furthermore, we validate the approach by

implementing our solution.

Keywords. RDF store, Decentralized solution, Versioning management,

Smart contracts

1. Introduction

Over the last decade, as more and more linked data in the form of RDF [7]
triples were published, a set of data management practices [18] were proposed and
adopted which aimed to improve integration and reuse among datasets, forming
the web of data, which can be seen as a global namespace connecting individual
graphs and statements. From a logical point of view, linked data is inherently
decentralized. However, from a practical point of view, the actual data reside on
data silos which suffer from low availability [10], leading to broken links. Further-
more, when considering dynamic datasets [19], a lack of robust versioning scheme
can lead to inconsistencies when an external linked dataset is modified. But ver-
sioning datasets using HTTP has so far proven difficult [27]. Another implication
of the unprecedented volume of data being published in web of data is the varying
quality of datasets. Expert quality assessment [33] and curation produces the best
result, but in large scale incurs high costs in terms of expert time and labor.

The contributions of this work include a novel architecture for a decentral-
ized linked open data infrastructure, based on IPFS [4] and the public Ethereum
blockchain [32]. The design includes an indexing scheme suitable for linked data,
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and a mechanism for retrieval of data by performing triple pattern or SPARQL
queries. It further outlines how smart contracts can be employed to provide a per-
sistent identifier for data objects stored on IPFS, to describe and version datasets,
to control write access and to ensure source of provenance. A prototype of the
aforementioned architecture has been implemented, and is available under an open
license1. Moreover, on this foundation, and to further explore crowdsourcing data
curation in scale, we exploit two mechanisms, first proposed by Ethereum commu-
nity members [5,14], which facilitate distributed, truthful, incentivized consensus
on a curated list of datasets. The mechanisms are agnostic to the domain and the
actual quality metrics.

The rest of this article is divided as follows. First we provide some necessary
presentation about the considered technologies in Section 2. In Section 3, we
present the decentralized architecture we propose to store data; and the Ethereum
smart contract solutions we set up to manage the knowledge graphs (KG) in
Section 4; before presenting data curation strategies in Section 5. Then we show
how data can be retrieved and report on experimental validations in Section 6.
Finally we review related work and conclude in Sections 7 and 8.

2. Background

IPFS [4] is a peer-to-peer protocol for content-addressable storage and retrieval
of data. It is a peer-to-peer network, with no difference between the participating
nodes. It utilizes routing mechanisms to keep track of data storage, and block
exchange mechanisms to facilitate the transfer of data. Every node stores IPFS
objects in their local storage. These objects could be published by the node, or
retrieved from other nodes and replicated locally. Objects in IPFS are comprised
of immutable content-addressed data structures (such as files), that are connected
with links, forming a Merkle DAG (directed acyclic graph). Addressing is done
using cryptographic hashes. Content can be identified uniquely by its hash, and
after retrieval, the integrity of it can be verified against the hash that was used
to address it. IPFS, however, does not guarantee persistence, only permanence.
A piece of content can always be referred by its hash, but it doesn’t necessarily
exist in the nodes of the network at all times.
IPLD2 is a data model that aims to provide a unified address space for hash-
linked data structures, such as IPFS objects, git objects, Ethereum transaction
data, etc., which would allow traversing data regardless of the exact underlying
protocol. The benefits of such a data model include protocol-independent reso-
lution and cross-protocol integration, upgradability, self-descriptive data models
that map to a deterministic wire encoding, backward-compatibility and format-
independence. A key aspect of IPLD, is a self-describing content-addressed iden-
tifier format, called CID3 which describes an address along with its base, version
of the CID format, format of the data being addressed, hash function, hash size
and finally the hash (address). This allows CID to address objects from various

1Our implementation is provided on Github: https://github.com/dgraux/open-knowledge
2https://github.com/ipld/specs
3https://github.com/ipld/cid
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protocols. IPLD, inter alia, defines merkle-dag, merkle-links and merkle-paths.
Merkle-dag is a graph, the edges of which are merkle-links. A merkle-path, is a
unix-like path, that traverses within objects, and across objects by dereferencing
merkle-links.
Ethereum [32] For the purposes of this study, Ethereum smart contracts can
be seen as state machines, that are deployed to the network along with an initial
state, and the code necessary for future state transitions, by way of invoking public
functions. Upon deployment, they will be assigned an address, which can hence be
used to interact with them. This interaction takes place, by crafting a transaction
containing the target address, the sender, value of ether to be transferred, and if
target is a contract, the input data passed to the contract.

Transactions are broadcast to the network, and so-called miners propose
blocks which contain a list of the previously broadcast transactions. Every other
node, upon receiving a block, runs all transactions inside, and validates the com-
puted state, against the state put forth by the miner. Miners receive a reward in
ether, the native currency of the network, for helping secure the network, and to
protect against Sybil attacks [8], miners compete for proposing blocks by solving
a Proof of Work [22].

As mentioned, every node in the network verifies every block, which imposes a
limit on the size and frequency of blocks, which results in a limited number of slots
for transactions. Users, compete for the limited slots, by sending gas (in ether)
along with their transactions, which the miner earns for including the transaction
in a block. Gas also acts as a deterrent for spamming the network. Miners, often
employ the simple strategy of including transactions which have the most payoff.

3. A fully decentralized storage system

Our proposed architecture relies on two open technologies. First, IPFS for the
actual storage and retrieval of raw data (see Section 6), and Ethereum, for tracking
ownership, versioning and other metadata belonging to the KG (more details in
Section 4), and later on, as will be discussed, for decentralized curation of datasets
(cf. Section 5).

Permissioned, centralized triplestores often store all inserted triples in a single
index. However, this is not desirable in a permissionless setting where any entity
has write access to the same store, meaning, entities can even publish triples that
are in conflict with others already in the triplestore. Hence, in our effort, KGs
are not only conceptual, but they are actually stored in separate indices, that are
managed by their corresponding publishing entity. The KGs are still connected
by the URI scheme, and it is possible to do federated queries across multiple KGs.
One can imagine KGs to be the counterpart of servers which contain a single
dataset as opposed to multi-dataset repositories. The access control mechanism
is controlled on the blockchain level (Section 4), and the P2P storage layer is
agnostic to access. Due to the immutable nature of IPFS, this introduces no
conflict, as each modification to an existing object results in a totally new object
with a new address, regardless of who has published the modified dataset.

Each KG is indexed as a Hexastore [31] on IPFS. However, the Hexastore is
not stored as a single data object, but is rather broken into smaller data nodes,
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Figure 1. Example Hexastore Merkle-DAG for graph G.

which are connected via links, forming an IPLD merkle-dag. Practically, each
KG has a root object, with 6 keys, namely spo, sop, pso, pos, osp, ops
where the value of each key is a link to another object containing the triples for
that subindex. Each subindex is itself a merkle-dag of depth 3. It contains the
first part of the triple, with links to objects containing the second part, which
in turn have links to objects containing the third part. The leaves are a simple
boolean, indicating that the triple with part 1, 2 and 3 exists in the index.

As an example, consider graph G, as shown in Figure 1. The figure only dis-
plays the merkle-path to the triple <S1 P1 O1>, via the subindex pso. P is
the set of all predicates in G. If <P1> is one of those predicates, by traversing
the link for <P1>, we arrive at the object SP 1, which is the set of all subjects
in G for which at least one triple exists with predicate <P1>. In a similar man-
ner, if <S1> is a subject in SP 1, by traversing the link, we arrive at the object
OP 1S1, which is the set of all objects in G for which triples exist with the triple
pattern <S1 P1 ?O>. Traversing the link for <O1> we arrive at the leaf object
{ "exists": true }. In Figure 1, only the path for subindex pso is shown.
However, the same triple is indexed under the other subindices. Therefore, if G
has the root hash QmAA...AA, the merkle-paths QmAA...AA/pso/P1/S1/O1,
QmAA...AA/sop/S1/O1/P1, etc. would all be true.

4. A smart-contract based management system

So far we’ve seen the structure of indices, how KGs are stored. Each graph G is
identified by the multihash of the root of its index, and updating the graph results
in a completely new and unpredictable root hash. As a result, data consumers
need a means for tracking the history of changes to G and consequently its root
hashes, in order to be able to perform queries. In this section, two smart con-
tracts, namely Graph and SimpleRegistry, will be introduced, which facili-
tate tracking the history of graphs and their metadata, and improving findability
by naming them.

4.0.1. Graph

The Graph smart contract is meant to represent a single dataset, maintained by
a single entity. It tracks the history of the graph, stores relevant information such
as version, and points to additional metadata that the author wishes to attach to
their dataset.
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When creating a new KG, the publisher must publish the RDF triples on
IPFS, as outlined in the previous section, and deploy an instance of the Graph
contract, providing the root hash of the index as input. The deployed instance
has a permanent address, which they can distribute to data consumers. Con-
sumers can then query the Ethereum blockchain to fetch the state of the afore-
mentioned contract instance, find the current root hash which they can use to
perform queries. To update the KG, they update the index on IPFS, and make
a transaction to the contract, providing the new hash as input. Consumers who
are subscribing to events emitted by Ethereum, will be informed of the new root
hash. The smart contract holds the following state fields:

Listing 1: State of the Graph contract in Solidity. For brevity, the rest of the
contract has been omitted.

1 contract Graph { address public owner; uint public version;
2 bytes32 public id; bytes32 public root;
3 bytes32 public metadata; bytes32 public license; }

Ownership – In listing 1, owner refers to the Ethereum account who deployed the
smart contract. From then on, only owner is able to modify the state of c, but
ownership can easily be transferred to other accounts by submitting a transaction,
invoking the specific setOwner method.
History – The field root is an IPFS hash which points to the root of the knowl-
edge graph’s hexastore index in IPFS. When G is updated, owner sends a trans-
action to c, updating root. This removes the need for a side-channel to an-
nounce new versions of g, and the need for maintaining a list of previous roots,
as Ethereum full-archive nodes store all of the previous states by default. Fur-
thermore, versions of G are automatically tagged by an auto-increment version
field, which can be used to query specific versions of G without referring to the
full IPFS hash in SPARQL, as will be discussed in the next section.
Metadata & Attribution – The smart contract also keeps an optional metadata
field, which is an IPFS hash. The IPFS object identified by metadata could
contain additional information about the knowledge graph such as details about
the authors, citations to other graphs or a website link.

4.0.2. Simple Registry

The SimpleRegistry contract (R) acts as a KG name registry, and a list for
data consumers to find KGs. Without it, data consumers would have to know the
address for every KG, and would have to specify that address in their queries. R
allows registering graphs under a unique name, and later on request the contract
address for a certain graph with its name. It’s important to note that, this contract
is also openly available, and an instance of it can be deployed by any party. Data
producers can decide which registry they want to be a part of. SimpleRegistry
also allows a convenience method newGraph(bytes32 name) for deploying
an empty Graph contract and thus registering a name for it in one transaction.
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Figure 2. General Architecture.

4.0.3. The General Architecture

As presented in Figure 2, the general architecture of our solution is twofold.
The bottom layer is made of the IPFS and the upper one is in the Ethereum
blockchain. The various structural levels of the managing issues represented in
the Ethereum are displayed in Figure 2: inside a specific block, the registry points
of the associated graphs it includes and thereby could provide us with the version
number and all the necessary piece of information. For example, when users want
to update data, they have to publish a new version in IPFS and then update the
Ethereum via the smart contracts accordingly.

5. Scalable Curation

With a growing number of datasets, it becomes increasingly costlier for consumers
to find knowledge graphs suitable for their purposes, and upon finding graphs,
for them to gauge their quality. This highlights the need for scalable curation
mechanisms, which we will try to address in the following chapter. Free partic-
ipation and censorship-resistance in our architecture has two sides. On the one
hand, these characteristics ease the publication of useful and high-quality data
for everyone. On the other hand, they make the infrastructure prone to being
flooded with low-quality and less relevant data.

Any entity can easily create as many KGs as desired. The gas costs act as a
deterrent for spamming the network. Even so, the number of legitimate graphs
could potentially increase to be high enough, as to make the cost of finding suit-
able graphs among them non-trivial, assuming there exists a channel from which
consumers can find the address of all graphs. Moreover, because Graph contracts
have a unique and persistent identifier, namely the address of the contract, it’s
possible to create public lists (or collections) of graphs that are relevant for a
given purpose or satisfying certain quality requirements, which consumers can
refer to.
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The goal is therefore to consider curation mechanisms, the output of which
is a list of valid and relevant KGs for data consumers. In the following, two
mechanisms will be discussed.

5.1. Adjudication via Prediction Markets

As seen previously, our architecture only stores the root hash of the index stored
on IPFS, and not the index itself in the Ethereum smart contract. The main
reason behind that, is transaction costs that are incurred due to storage.

As a consequence, the smart contract has no way of verifying whether the
hash h actually points to a valid knowledge graph stored on IPFS. However, using
Merkle proofs, or a zk-SNARK[25] proof, it is possible to prove to the smart
contract, that a valid graph index would result in h as root of the index. Although
verifying this proof is much cheaper than sending or storing the whole graph
index, the transaction cost is still high enough to make it infeasible to do for every
graph update. Novertheless, if we have the expensive method M for verifying the
validity of a graph on-chain (e.g. a zk-SNARK verifier), by utilizing prediction
markets, we can still check a larger number of graphs for validity, with only a
smaller subset of them needing to revert to M for verification [5].

Any entity e1 could claim that a given graph g is invalid by creating a bet of
size x in the prediction market. If e2 doesn’t agree with g being invalid, they would
put a bet of size y on the opposite side. If, after a pre-specified period has passed,
no other entity has challenged the bet, g would hence be considered as invalid.
Otherwise, verifying via M the winning side is determined. Each entity in the
winning side is rewarded proportional to their bet, a part of the bets of the losing
side. The process can be further optimized to deter incorrect betting and volume
manipulation, by having the amount won to be only 75% of the amount lost. The
other 25%, could for example be distributed to producers of valid graphs.

The rationale here is that, verifying the validity of a graph is much cheaper
done off-chain, than on-chain. Therefore, users would be incentivized to “fish”
invalid graphs. They are disincentivized to bet against a valid graph, because
others can challenge the bet in the market, and an on-chain verification would
result in the loss of their bet.

5.2. Token-Curated Registry

Token-curated registry (TCR) [14] is a mechanism, in which rational actors are
incentivized to maintain a decentrally-curated list. As the name suggests, TCRs
rely on a native token, which has a value relative to another base currency (fiat
currencies, such as EUR). Apart from consumers of the curated list, which desire
a high-quality list of KGs, other actors require tokens to interact with the TCR.
Actors – Actors of a TCR include candidates, voters and challengers. A can-
didate, is an actor, who wishes to add a graph to the list, and stakes N tokens
along with the application. A challenger, is an actor, who believes the item that a
candidate proposed, does not belong in the list, and is willing to stake N tokens to
challenge the application. When a challenge occurs, a voting period starts, during
which, token holders can cast a vote, either for or against the item in question.
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Votes are weighted proportional to the number of tokens the token holder speci-
fies. The tokens would not be spent during a vote. After the voting period comes
to an end, the side with most token-weighted votes wins, and depending on the
outcome, either the candidate or the challenger loses a portion of their stake, and
this portion is split among the winners, in proportion to the number of tokens
they participated with.
Rewarding honest behaviour – The rationale behind TCRs is that, rational
voters seeking to increase their long-term profit, would vote to accept items that
have a higher quality, which increases usefulness among consumers, resulting in
more demand among candidates to be listed, increasing the value of the native to-
ken with respect to the base currency. This complements their short-term benefit
of being rewarded with more tokens, if they vote for high-quality items.
Disincentives – The risk associated with losing the stake disincentivizes candi-
dates to apply for a graph, they consider either of low quality or invalid. At the
same time, challenging a high quality graph also comes with the risk of losing
a portion of challenger’s stake. If this was not the case, participants would have
been incentivized to challenge every application, effectively requiring a vote on
every application, and thereby reducing the efficiency of the mechanism.
Vote-splitting – The aforementioned specification failed to address the “nothing
at-stake” problem for voters, or in particular, the “vote-splitting” issue, in which,
a rational strategy for voters could be to split their tokens in half, and vote for
both side, thereby earning revenue regardless of the outcome of the vote, and
without putting in any effort. TCR v1.14 addresses this issue, by slashing a portion
of the minority bloc’s tokens, and adding it to the rewards of the majority’s bloc.
Commit-reveal voting – Due to Ethereum transactions being public, during
a voting period, voters can see the current tally, and vote with the majority,
without inspecting the item in question. This can be prevented, by splitting the
voting period into two phases: first, all voters make a cryptographic commitment
to a vote, after the commit period has come to an end, everyone must reveal their
vote, by submitting the secret used to make the commitment. Consequentially,
the tally of the votes is unknown by everyone other than the voter until the end
of the commit period. This effectively prevents voters from basing their decisions
on how others are voting.
Listing item status – Graphs are added to the list, either if they face no chal-
lenge after application, or if they are challenged, and voters vote for inclusion of
the graph. The stake, which is a requirement of applying to the TCR, remains
locked while the item is in the list. The candidate, can, at any moment withdraw
the stake, and thereby removing the item from the list. Furthermore, even after
a graph has been listed, it can be challenged and therefore removed from the list.
This is inevitable, because an append-only list, could grow large enough to lose
its usefulness, and as such, when higher quality graphs are added to the list, lower
quality graphs can be challenged and removed, in order to maintain a limited
number of slots in the list.

4https://medium.com/@ilovebagels/token-curated-registries-1-1-2-0-tcrs-
new-theory-and-dev-updates-34c9f079f33d

https://medium.com/@ilovebagels/token-curated-registries-1-1-2-0-tcrs-new-theory-and-dev-updates-34c9f079f33d
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6. Retrieval

As seen in the previous sections, triples of a knowledge graph are stored in the
form of a merkle-dag on IPFS. Merkle-paths allow querying triple patterns, but
not other features of an advanced query language such as SPARQL [16]. It is
however possible to perform a subset of all SPARQL constructs, by combining
the results of several triple pattern searches. First, we will demonstrate how a
simple triple pattern search can be performed, and then discuss how full SPARQL
queries, either on single graphs or a federation thereof, can be executed by using
triple patterns as building blocks.

6.1. Triple Patterns

A triple pattern, is a triple where any of the parts can be a variable instead of
a concrete value. In the simplest case, it is possible to query the existence of a
triple, that has no variable, in the KG. In this case, the merkle-path for the triple
<a b c> would look like QmAA...AA/spo/a/b/c which returns true if the
triple exists, and throws an error otherwise.

Given a graph G which has root hash Gh and a triple pattern T , the algorithm
for constructing the corresponding merkle-path P and retrieving the values at
this path is given below:

1. Initialize P to Gh

2. Parse T to get list of fixed and variable parts

3. Compute best subindex: bring fixed parts first, then append variable ones

4. Add subindex to P

5. Append values for fixed parts to merkle-path, separated by a “/”

6. Fetch result (R) of P from IPFS

7. If result is nonempty, construct triples by adding the values for fixed parts
to the results which were returned for the variable parts, and return them.

As an example, running the algorithm over a KG which contains [<a b c>, <f
b c>], with T = <?s b c>, implies to use a pos index and will result in P =
QmAA...AA/pos/b/c and R = [a,f], and the algorithm will return [<a b
c>, <f b c>].

6.2. SPARQL Queries

Although querying triple patterns and compositions thereof would suffice for some
applications, it falls short for others. In order to allow SPARQL queries, we build
on the Linked Data Fragments framework[29] by implementing the Triple Patterns
Fragments interface. By doing so, the TPF client decomposes a SPARQL query
into triple patterns, retrieves the corresponding responses, and computes the final
SPARQL response therefrom.

In implementing the TPF interface, some specific points had to be taken into
account. TPF has been design with REST APIs in mind. In our architecture, the
client and the implementation of the TPF interface reside on the same node, and
they communicate via faster intra-process means. In addition, the original TPF
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interface implementation runs on a server and fetches data from a local database,
whereas with our solution, triples are stored across peers, and in case the re-
quired triples are not replicated locally, each triple pattern query is automatically
translated into requests to fetch triples from other peers. Finally, pagination and
control functions such as nextPage, are a requirement of the TPF interface;
currently pagination is done after fetching all of the triples matching a pattern.

Federated SPARQL queries –i.e. queries requesting several graphs at once–
are performed in a similar manner, by utilizing the TPF interface. In a nutshell,
the query is first split according to the various implied graphs to obtain distinct
Linked Data Fragments; then we process as described above; before joining to-
gether the results. However, whereas TPF originally requests the result of triple
patterns from servers via HTTP, in our architecture, all triple pattern queries
are done simply over different graphs which exist on the same P2P filesystem
following the concerned hash addresses.

6.3. Complete Evaluation Process

More generally, as already presented in Figure 2, the solution has two layers: one
on top based in Ethereum which offers managing features and the bottom one on
IPFS where data is actually stored.

Figure 3.: Evaluation Process.

As a consequence, during the
query phase, the system takes
into account this specificity. We
present in Figure 3 the details
of the query process around the
information retrieval. Indeed, the
first step requires to look for
graph addresses in the Registry,
then to obtain the correct root
hashes from each Graph (taking
e.g. into account the version num-
ber). Once these information are
obtained, we are done with the
Ethereum side and can decompose the query in order to get the triple pattern
from the IPFS. Once they are retrieved, the answer can be constructed and the
complete process to evaluate a SPARQL query is done.

6.4. Experimental Validation

In this section, the results of a benchmark performed on the prototype implemen-
tation is presented. To verify the correct functionality of the architecture and its
implementation, the source code also includes a test suite. Moreover, we gener-
ated a WatDiv [2] dataset with scale 1 which contains 107 665 triples, stored the
dataset on our system and performed the 20 queries provided in the WatDiv (v0.6)
packaging, comprising of linear queries (L), star queries (S), snowflake-shaped
queries (F) and complex queries (C). The benchmark was executed on a computer
with Intel(R) Core(TM) i7-2640M CPU @ 2.80GHz, SSDSA2BW16 disk and 8
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Figure 4. Query execution times.

GB of memory, running a Linux kernel (v4.19.1). We set up virtual nodes for

IPFS to test our architecture. The goal was more to validate the feasability of the

approach rather than benchmarking it. By default the SDK maintains a cache

of results fetched from IPFS. To measure query execution times, each query has

been executed 5 times with a warm cache, and 5 times with a cold cache. Results

of the queries have been compared for correctness against the ARQ engine5.

Loading Phase – Storing the dataset comprises of two main phases, construct-

ing the index tree locally and storing the tree on IPFS from leaves to the root.

Constructing the tree locally took 1 503 ms, and storing it on IPFS took 18.52

minutes and translated into 318 972 IPFS PUT requests.

Query Execution – Figure 4 displays execution times measured for the afore-

mentioned queries using a logarithmic scale. The difference between default and

w/o cache traces is in caching the results of IPFS get requests in the engine.

Table 1 outlines measurements of metrics during each query, providing additional

insight into factors potentially influencing the execution times. Triple patterns

denotes the number of triple patterns each SPARQL query is decomposed into

by Triple Pattern Fragments client, IPFS gets is the number of GET requests to

IPFS, Repeated paths is the number of paths that had been requested from IPFS

during the same query and returned triples denotes the total number of triples

that have been returned from IPFS to construct the final SPARQL result.

Our implementation can be seen as a global linked open data repository

which facilitates storing KGs and retrieving triples from either single graphs or

a multitude of them. In particular, the metrics shown in Table 1 point to the

number of decomposed triple patterns and IPFS requests as a potential factor

that correlates with execution time. The repeated paths metric reemphasizes the

benefits of a cache for intermediate results retrieved from IPFS.

5https://jena.apache.org/documentation/query/index.html

https://jena.apache.org/documentation/query/index.html
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Query Triple patterns IPFS gets Repeated paths Returned triples

L1 131 403 79 1897

L2 26 225 3 387

L3 27 253 1 1107

L4 11 34 1 39

L5 13 296 45 297

S1 375 6849 152 8357

S2 13 990 1 1205

S3 14 305 10 664

S4 9 725 1 752

S5 16 220 1 242

S6 6 1405 3 1510

S7 3 1424 13 1499

F1 11 1743 10 2201

F2 27 2135 104 2235

F3 9 2212 1 3552

F4 271 5269 3748 6565

F5 363 68196 62629 72297

C1 51 8343 6057 10120

C2 183 17895 14906 36216

C3 3672 6851 3148 53821

Table 1. Performance metrics for WatDiv queries.

7. Related Work

There has been extensive research on centralized RDF data storage and retrieval.
A survey of such storage and query processing schemes has been done by Faye et
al. [11], in which triplestores are categorized based on multiple factors. These fac-
tors include native vs non-native and in-memory vs disk-based storage solutions.
Non-native solutions for example are triplestores that use an existing data store,
such as relational databases. Hexastore [31] stores six indices, enabling efficient
lookup of triple patterns for each parts of the triple, including subject, predi-
cate and object. This gain in performance comes at a cost in storage. When it
comes to querying data from remote servers, Verborgh et al. argue that there’s a
spectrum between data dumps and SPARQL endpoints, and that there’s a trade-
off along the spectrum between factors including performance, cost, cache reuse,
bandwidth, etc. for servers and clients. They propose Linked Data Fragments [29]
which lies somewhere in the middle of the spectrum. In this design, clients turn
a SPARQL query into a series of triple pattern requests that servers respond to,
lowering load servers, decreasing bandwidth,. . . Centralized data repositories can
process queries efficiently, but they are single points of failure and they have lim-
ited scalability and availability. In this study we adopt core ideas from Hexastore
and LDF and apply them to the P2P network setting.

Content distribution over P2P networks has been an area of active research
during the last two decades. Motivations over the client-server architecture in-
clude scalability, fault-tolerance, availability, self-organization and symmetry of
nodes [17]. Androutsellis-Theotokis et al. classify P2P technologies [3] in the con-
text of content distribution into applications and infrastructure. P2P applications
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themselves are classified into file exchange applications, such as Napster [23],
which facilitate one-off file exchange between peers, and content publishing and
storage applications, such as Publius [30], which are distributed storage schemes
in which users can store, publish and distribute content securely and persistently.
Technologies targeted for routing between peers and locating content have been
classified under P2P infrastructure, and include inter alia Chord [28] or CAN [24].
P2P networks also differ in their degree of centralization. Some, like Napster, rely
on a central server which holds metadata crucial for routing and locating content,
limiting scalability, fault-tolerance and censorship-resistance, but offering efficient
lookups. Lua et al. review overlay network structures, comparing structured and
unstructured networks [21].

Unstructured P2P networks have been employed in protocols such as Bibster
[15] and [34] to store RDF data and process queries. They use semantic similarity
measures to form semi-localized clusters and to propagate queries to peers who
are most likely to contain relevant data for. These protocols offer higher fault
tolerance, but limited guarantees for retrieving query results even the underlying
data exists in the network due to their propagation mechanisms.

Filiali et al. has performed a comprehensive survey [12] of RDF storage and re-
trieval over structured P2P networks. To index the triples, most protocols rely on
variants of hash-indexing, e.g. RDFPeers [6], or semantic indexing, e.g. GridVine
[1]. Two general strategies have been observed by Filiali et al., either retrieving all
relevant triples from other peers and evaluating the result of the query locally, or
propagating the query and partial results through the network, as in QC and SBV
[20]. Unlike the aforementioned protocols, in this study we don’t design a custom
P2P network specifically built for RDF data storage, but use the live global IPFS
filesystem [4], which is simultaneously being used for other purposes. Triples are
indexed as a Hexastore. To process queries, all relevant triples are fetched, and
result is evaluated using the Triple Pattern Fragments [29] framework.

Sicilia et al. [26] explore publishing datasets on IPFS, either by storing the
whole graph as a single object or by storing each dereferenceable entity as an
object. Furthermore they propose using IPNS to refer to the most recent dataset
version. In this study, versioning is handled by a smart contract on Ethereum.

English et al. [9] explore both utilizing public blockchains for the semantic
web, improving on the current URI schemes, storing values on the Bitcoin net-
work, and creating ontologies for representing blockchain concepts. We share the
idea that blockchains and web of data are complementary, and use the Ethereum
blockchain to store metadata, and perform curation for KGs.

8. Conclusion & Future Work

In this article, we proposed a novel architecture for a fully decentralized linked
data infrastructure, which has a very low barrier to entry, is censorship-resistant
and benefits from fault-tolerance properties of its underlying open technologies.
Due to immutability of each version of a dataset, consumers can cache the data
objects they interact with, and perform queries even while offline. By replicating
these data objects, they are at the same time contributing to the availability of
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those datasets. In addition, we explored two mechanisms which allow a community
to come to consensus over a collection of datasets which they find relevant or high-
quality in a distributed manner, by utilizing smart contracts to align the incentives
of participants. IPFS replicates a document on every node that interacts with
it. Therefore, more popular KGs are expected to be highly replicated. However,
IPFS doesn’t guarantee persistence. If the node that published a document goes
offline, and there’s no other replica, that document won’t be accessible until the
node comes back online. This might lower accessibility for KGs that have less
demand. Future works can improve on this by incentivizing nodes to replicate
pieces of data and asking them to provide proof-of-replication [13].
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