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Abstract. Digital service users are routinely exposed to Privacy Policy con-
sent forms, through which they enter contractual agreements consenting to the
specifics of how their personal data is managed and used. Nevertheless, despite
renewed importance following legislation such as the European GDPR, a majority
of people still ignore policies due to their length and complexity. To counteract
this potentially dangerous reality, in this paper we present three different models
that are able to assign pre-defined categories to privacy policy paragraphs, using
supervised machine learning. In order to train our neural networks, we exploit
a dataset containing 115 privacy policies defined by US companies. An evalua-
tion shows that our approach outperforms state-of-the-art by 5% over comparable
and previously-reported F1 values. In addition, our method is completely repro-
ducible since we provide open access to all resources. Given these two contri-
butions, our approach can be considered as a strong baseline for privacy policy
classification.

Keywords: Privacy Policy · Multi-label Classification · Deep Learning.

1 Introduction

Various studies indicate that, despite their proliferation, a majority of consumers still
skip privacy policy consent forms due to the difficulty required for lay users to com-
prehend their contents. In fact, a recent study called “The Biggest Lie on the Internet”
reported that only around a fourth of participants read privacy policies, and they only
invest just over a minute to do so [16]. Moreover, these statistics are probably lower
outside of laboratory conditions. Another survey showed that if users were to read the
privacy policies of all services they visit on the Internet, they would need on average
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244 hours each year which is almost more than half of the average time a user spends
on the Internet [13].

To assist end-users with consciously agreeing to the conditions, we consider Natu-
ral Language Processing (NLP) and Machine Learning (ML) methods and apply them
to classify privacy policy paragraphs into pre-defined categories for easier comprehen-
sion. Our efforts seek to build on the results of two earlier dominant studies in the
literature. The first is the OPP-115 dataset, which contains 115 privacy policies at para-
graph level, each of which includes fine-grained annotations from 3 experts [23]; e.g.,
the paragraph in Figure 1 from the Amazon policy1 is annotated with two classes: User
Access, Edit & Deletion and Data Retention. The second study which inspired our re-
search is the effort by Polisis to build a Convolutional Neural Network (CNN) model
exploiting OPP-115 [6]. Despite the valuable contribution of these earlier studies, they
exhibit one major weakness: reproducibility. Due to a lack of information on the exact
ML dataset splits used, and the lack of a common gold standard in the literature, sub-
sequent studies have created their own. This makes it difficult to collectively interpret
and compare the different results. A major contribution of the efforts presented here is
our provision of a strong and completely reproducible baseline for future research.

“ [. . . ] You can add or update certain information on pages such as those ref-
erenced in the Which Information Can I Access? section. When you update in-
formation, we usually keep a copy of the prior version for our records. [. . . ] ”

– User Access, Edit and Deletion
– Data Retention

Fig. 1: Excerpt from Amazon privacy notice

More concretely, our contributions are the following:

– A comprehensive set of experiments based on two different gold standards;
– A presentation of a strong baseline for privacy policy classification using NLP and

ML that successfully reproduces state-of-the-art findings (though with our self-
created data splits and gold standards) and furthermore improves the results by
employing the BERT framework [4] for the two gold standards;

– Ensuring the reproducibility of our results by providing all resources utilised to
generate our conclusions.

Central to our efforts is a multi-label classification problem with 12 classes, which
can be used to predict one or more classes for each paragraph of a given privacy policy,
based on a neural network and the OPP-115 dataset. We first compiled two gold stan-
dards from OPP-115: one based on majority votes (i.e., two or more experts agree on a
label); and the other with the union of all expert annotations. The dataset creators [23]
considered the majority-vote-based standard, whereas Polisis used the union-based,

1 To retrieve the exact source used: <https://www.amazon.com/gp/help/customer/display.html?
nodeId=468496> (Sub-entry What Choices Do I Have?) – last accessed March.2nd.2020
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with the rationale that disagreements are a result of the experts’ high understanding
of legal texts and that therefore, none of their annotations should be deemed incorrect.

In order to establish a strong baseline, we compare three models with both gold
standards. The first model is a CNN, whose generation is directly comparable to the
earlier Polisis efforts. The second and third models are based on the BERT transformer,
a model that has recently gained a lot of attention as a potential superior alternative.
To the best of our knowledge, our efforts are the first attempt to produce a reliable
and completely reproducible result on privacy policy classification. The results attained
demonstrate consistency and significant improvement over the baseline and indicate
good reliability: A 77% micro-average F1 on the union-based gold standard, and a 85%
micro-average F1 on the majority-based gold standard.

The rest of the paper is divided as follows: in section 2 we compare our approach to
the existing studies on privacy policies. Section 3 provides details of the three models.
In sections 4 and 5, an extensive set of experiments is presented and discussed. Finally,
section 6 concludes this study and suggests future directions towards privacy policy
analysis.

2 Related Work

In light of the, now enforced EU-wide, General Data Protection Regulation (GDPR),
there has been an increasing interest toward privacy policy analysis. Some studies in-
vestigated the essential regulatory model, notice and choice [10] in web privacy princi-
ples [11,17]. Libert monitored data flows on websites and identified third parties who
collect and use personal data [11]. Afterward, over 200,000 websites’ privacy policies
are scanned to determine whether the parties identified, are explicitly mentioned in the
page’s privacy policy. Furthermore, privacy policies are additionally analyzed to check
whether they respect the ”Do Not Track” browser setting2. In another study, the authors
applied NLP and supervised ML to automatically extract control choice excerpts and
opt-out hyperlinks from privacy policy documents [17]. In order to evaluate their work,
OPP-115 was used and the results showed that ML is feasible, even with the small
number of samples for ‘User Choice/Control’ category in OPP-115. In contrast to our
problem, these approaches have addressed only a specific feature of privacy policies,
whereas our method processes the whole document for the benefit of regular end-users.

A few approaches developed a model with supervised ML to measure complete-
ness of privacy policies [5,3]. The dataset used in training, contains a set of pre-defined
categories based on privacy regulations and guidelines. Finally the trained model pre-
dicts a category for an unseen paragraph. According to the papers, this structure helps
users to examine privacy policies faster and allows them to focus on those categories in
which they are interested. However, based on our observation, most of online privacy
policies use rich HTML representations and therefore offer a basic level of structural
view to the end-users. Moreover, to the best of our knowledge none of the corpora were
created with the full support of experts, which is an essential prerequisite in legal text
processing.

2 https://en.wikipedia.org/wiki/Do Not Track

https://en.wikipedia.org/wiki/Do_Not_Track
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A prominent group on privacy policy analysis is Usable Privacy Policy Project3,
they provided OPP-115, the first comprehensive dataset with fine-grained annotations
on paragraph level [23]. The project aims to extract important information for the ben-
efit of regular and expert end users. To do so, a corpus containing 115 privacy policies
from 115 US companies was annotated by 3 experts on paragraph level (10 experts in
total and 3 experts per document). The annotations in OPP-115 dataset are in two levels:
10 high level categories and 22 distinct attributes. For instance, the high level category
First Party Collection has 9 low level attributes, some of which are: Collection Mode,
Information Type, Purpose. Along with the creation of dataset, the authors built differ-
ent ML models for prediction of high level categories. The gold standard for evaluating
the methods was compiled based on majority votes: if two or more experts agreed on a
single category, it was considered in the final gold standard. The best reported micro-
average F1 is 66% that was achieved with Support Vector Machine (SVM).

Leveraging OPP-115 and deep learning, Polisis extracts segments from privacy poli-
cies and presents them to users in a visualized format [6]. According to the paper, the
union-based gold standard is used for experiments; 65 privacy policies were considered
for training and 50 policies were kept for the test set. The authors claim that a suc-
cessful multi-label classifier should not only predict the presence of a label, but also
its absence4. They report only macro-averages and further compute the average of F1
and F1-absence and yield 81% average on the test set. Despite the encouraging work
done in Polisis, we believe that the paper lacks two fundamental elements: there is no
validation set involved in training phase; and there is no information on micro-averages.

It is worth to mention that none of the above studies provided their dataset splits
and therefore there is no standardized benchmark for privacy policy classification. As
a result, in the following sections, first we show how we successfully reproduce Polisis
results (though with different data splits) and further present two transformer models
that significantly outperform Polisis.

3 Approach

In order to establish a firm foundation, we attempt to reproduce the work of [6] with
additional improvements. To do that, we conduct experiments using word embeddings
and a Convolutional Neural Network (CNN). Furthermore, we evaluate Bidirectional
Encoder Representations from Transformers (BERT) [4] that has state-of-the-art per-
formance on many other text classification tasks.

3.1 Convolutional Neural Network

Pre-trained Word-Embeddings Traditionally, text classifiers have taken advantage of
vector representations like bag of words or term-frequency inverse-document-frequency
(TF-IDF). However, it is clear that this method has the disadvantage of not retaining the

3 https://usableprivacy.org/
4 They also claim that a model that predicts that all labels are present would have 100% precision

and recall, which is obviously wrong.

https://usableprivacy.org/
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Fig. 2: CNN Architecture

semantic information depicted by the order of words, as well as the meaning of the
single words as independent units and be purely dependent on the context. Thus, we
investigate word embeddings.

Word embeddings were initially proposed by [15,2] and were later popularized
by [14]. The continuous bag of words (cbow) method, which is a variant of word2vec,
creates a numeric representation of words by attempting to predict a given word by
considering its neighbors as seen in text. A huge benefit such an algorithm is that, no
labeled data is necessary, but only great amounts of correct text.

While word2vec is effective at storing some semantic meaning in a vector represen-
tation, it treats words as atomic units and thus, it does not take into consideration the
internal structure of words. Such information can be useful for less frequent words or for
compound words like rainfall or greenhouse. FastText uses a bag of character n-grams
to represent words, where each character n-gram is a vector and all the constituents are
summed up to create a representation for the word [7,1].

The aforementioned properties can be useful for the context of privacy policies.
Since most openly available word embeddings are trained on news or Wikipedia cor-
pora [1], we utilize fastText to create vector representations that are more suitable
for the current task. For that purpose, we used a big corpus of 130k privacy policies
scraped from an application store for smart phones. In app stores, applications are re-
quired to provide privacy policies. After tokenizing the text with NLTK [19], there are
132 595 084 tokens in total and 173 588 unique ones. We compared the vocabulary be-
tween this corpus and two version of OPP-115 that we utilize. We saw that there are
1 072 words which are seen only in OPP-115 majority-vote version, but not in the cor-
pus used for drafting the word vectors. Similarly, for the gold standard containing union
of all classes, there were 1 119 out-of-vocabulary (OOV) words. The difference in the
amount of OOVs is due to the fact that the majority vote dataset has less paragraphs
(when there was no agreement on a single category) and thus, it is less likely that there
are unseen words. More details regarding the size of the dataset versions are provided
in Section 4. After manual inspection, we concluded that most of the out-of-vocabulary
words are names of brands, products, services or their web-addresses. These are com-
pletely omitted, since from an intuitive perspective they should not be decisive for the
correct detection of a policy class. Hence, the vocabulary is sufficient for the task.
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Architecture To tackle the multi-label classification problem, we follow the work
of [6] by using a CNN (displayed in Figure 2). The previously explained word embed-
dings are provided as input to the neural network. A convolutional operation is applied
with a context window of 3 words, whose output then passes through a Rectified Linear
Activation (ReLU) function. Then, from each context output, only the strongest fea-
tures are selected by a max-pooling layer, resulting in a single vector that contains the
most informative properties of each context, thus the neural network is forced to focus
only on certain features that are specific to the current goal. Furthermore, a linear layer
followed by a ReLU are applied to create a higher level representation of the collected
information. Finally, a linear layer with as many nodes as classes is applied to provide
an output in the target dimensions and passed through a sigmoid function to obtain per
label probability scores.

The proposed architecture shares a strong resemblance with the work of [8], where
a CNN is used for multi-class classification of sentences. However, it lacks a random
dropout just before the last linear layer. We conduct experiments with 50% dropout.
Additionally, we used Adam [9] optimization algorithm combined with early stopping.
The convolutional neural network is optimized using binary cross entropy loss:

`(x,y) = L = {l1, . . . , lN}> (1)
ln =−wn [yn · logxn +(1− yn) · log(1− xn)] (2)

where l1, . . . , lN specify the 12 loss values for each of the 12 possible labels that we have
in the dataset. It is being calculated for each, since this is a multi-label classification and
we could have any combinations of those. After we have the 12 losses, we take the mean
of those 12 to get one scalar number. Furthermore, x is the model prediction, y is the
true label, w is the class specific weight which in our case are all 1. For instance, if
we consider that our current model assigns probability p to observation o for the Data
Retention label, the loss function for this specific label will be:

loss(DataRetention) = y · log p+(1− y) · log(1− p) (3)

where y is 1 if observation o is labeled with Data Retention in the gold standard and 0
if not.

3.2 Bidirectional Encoder Representations from Transformers

The BERT framework [4] uses several layers of transformer encoders [21] to create a
bidirectional representation of the tokens in the sequence. The approach operates in two
stages: first, the model is pre-trained on large amounts of unlabelled data; second, it is
fine-tuned on specific labeled data to solve a downstream problem, which in our case is
multi-label classification.

To handle various domains and tasks, BERT is using WordPiece [24] tokenization.
It provides a reasonable balance between character and subword level information. For
example, a model using it, can detect similar suffixes or roots among words. This way,
the vocabulary stays within a reasonable size, without having too many entries. The
chosen vocabulary size is 30 000 [4].
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BERT is pre-trained using two unsupervised tasks. The first one is masked lan-
guage modeling (MLM), i.e., the model is being taught to predict 15% of the randomly
“masked” tokens in a sentence. The masking uses one of three randomly chosen pos-
sible ways: 1) in 80% of the cases, a token is replaced with [MASK]; 2) in 10% with
another random word; and 3) in the remaining 10% no replacement is done [4]. The
other unsupervised language modeling task is next sentence prediction (NSP). Every in-
put sequence to the framework always starts with the classification token [CLS], which
provides a fixed-length representation for the whole input. For NSP, two subsequent
sentences from the corpora are concatenated with another separator token, [SEP], so
that the model is aware of the separation between the two. In 50% of the cases, the
second sentence is replaced by another one. Thus, BERT is trained to recognize when a
pair of sentences appear together in the corpora (or they don’t), using the classification
token [4].

We use a pre-trained version of BERTBASE
5, 6 which has 12 encoder layers, a hidden

state size of 768, and 12 attention heads, totaling in 110M parameters. Additionally, we
also prepare another fine-tuned version of the language model with our 130K privacy
policy corpus7. Ninety percent of those were used for training while the remaining ten
for validation. We fine-tune the model for three epochs and achieved a cross-entropy
loss on the mask languaged model task of 0.1151 and perplexity, 1.1220. Finally, both
versions of the approach are trained on the privacy policy classification task and eval-
uated. For more detail on BERT, we would forward the reader to the relevant refer-
ences [4,21].

4 Evaluation

In pursuance of providing a reliable baseline for privacy policy classification, two gold
standards were compiled out of OPP-115 dataset. OPP-115 high-level annotations are
divided into 10 classes:

1. First Party Collection/Use: how and why the information is collected.
2. Third Party Sharing/Collection: how the information may be used or collected by

third parties.
3. User Choice/Control: choices and controls available to to users.
4. User Access/Edit/Deletion: if users can modify their information and how.
5. Data Retention: how long the information is stored.
6. Data Security: how is users’ data secured.
7. Policy Change: if the service provider will change their policy and how the users are

informed.
8. Do Not Track: if and how Do Not Track signals is honored.
9. International/Specific Audiences: practices that target a specific group of users (e.g.,

children, Europeans, etc.)
10. Other: additional practices not covered by the other categories.

5 https://github.com/huggingface/transformers
6 https://github.com/kaushaltrivedi/fast-bert
7 The BertLMDataBunch class contains from raw corpus method that takes a list of raw

texts and creates DataBunch for the language model learner.

https://github.com/huggingface/transformers
https://github.com/kaushaltrivedi/fast-bert
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Labels Union Majority Votes
Tr V T Tr(%) V(%) T(%) Tr V T Tr(%) V(%) T(%)

First Party Collection & Use 988 243 288 40.8 40.1 38 781 176 250 34.2 30.9 35
Third Party Sharing & Collection 755 204 227 31.1 33.7 30 584 158 203 25.5 27.7 28.4
User Access, Edit and Deletion 155 29 46 6.4 4.8 6.1 101 24 24 4.4 4.2 3.4
Data Retention 111 21 24 4.6 3.5 3.2 50 14 14 2.2 2.4 2
Data Security 251 65 59 10.3 10.7 7.8 139 31 40 6.1 5.4 5.6
International/Specific Audiences 225 67 61 9.3 11.1 8.1 204 41 56 9 7.2 7.8
Do Not Track 22 3 7 1 0.5 0.9 22 6 3 1 1 0.4
Policy Change 118 27 47 4.9 4.4 6.2 73 25 21 3.2 4.4 3
User Choice/Control 405 97 130 16.7 16 17.2 233 48 77 10.2 8.4 10.8
Introductory/Generic 514 137 162 21.2 22.6 21.4 240 72 78 10.5 12.6 11
Practice Not Covered 402 102 138 16.6 16.8 18.2 83 21 25 3.6 3.7 3.5
Privacy Contact Information 207 44 72 8.5 7.3 9.5 129 32 42 5.6 5.6 5.9

Table 1: Label distribution in the two gold standards; Tr:Train; V:Validation; T:Test

Ten experts were hired to create fine-grained annotations and each privacy policy
was randomly assigned to 3 of them. OPP-115 comprises 3 792 paragraphs, 10 high-
level classes and 22 distinct attributes8. Each paragraph was labeled with one or more
classes (out of 10). According to the dataset creators, the best agreement was achieved
on Do Not Track class with Fleiss’ Kappa equal to 91%, whereas the most controver-
sial class was Other, with only 49% of agreement [23]. The latter category was further
decomposed into its attributes: Introductory/Generic, Privacy Contact Information and
Practice Not Covered. Therefore, we face a multi-label classification problem with 12
classes. It should be clarified here that computing Fleiss’ kappa considering all cate-
gories together is not feasible for OPP-115, as annotators differ per policy. Aforemen-
tioned, there were 10 experts and each policy was randomly assigned to 3 of them. If 3
experts were the same experts for the whole dataset, it was rational to compute an over-
all Fleiss’s kappa for all 10 categories and between 3 annotators. For this reason, [23]
reported Fleiss’ kappa per category.

To evaluate our three models, we compiled two gold standards: union-based, which
contains all expert annotations; and the majority-vote-based gold standard, where only
annotations with an agreement between at least 2 experts were retained. Label distri-
butions in both gold standards are shown in table 1. Following conventional ML prac-
tices, dataset splits are randomly partitioned into a ratio of 3:1:1 for training, validation
and testing respectively; while maintaining a stratified set of labels. In total, the union-
based dataset contains 3 788 unique segments and the majority-based one comprises
3 571 unique segments9. The latter has less segments due the 217 paragraphs that were
eliminated because no expert agreement was reached.

In case of multi-label classification, it is not clear which average (macro or mi-
cro) best defines a model’s performance. As Sebastiani argues, there is no agreement
to choose between micro- and macro-averages in literature [18]. Some studies claim
that macro-average is fair in case of class imbalance, since all the categories have the
same weight, whereas micro-average favours methods that just correctly predict the
most frequent categories [22]. However, others (the majority) believe that when the la-
bel distribution is not balanced, computation of micro-average is preferable, because a

8 Here, we only consider high-level categories.
9 All splits are available for further experiments. See footnote 12.
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Labels
Majority-vote gold standard Union-based gold standard

CNN BERT BERT-fine-tuned CNN BERT BERT-fine-tuned
V T V T V T V T V T V T

First Party Collection/Use 83 82 87 88 88 91 83 81 83 84 87 86
Third Party Sharing/Collection 84 82 86 85 87 90 80 79 79 82 83 86
User Access, Edit & Deletion 80 70 82 63 77 73 56 45 54 49 56 65
Data Retention 43 40 42 33 54 56 36 48 36 68 62 71
Data Security 76 75 87 82 87 80 66 72 71 80 73 76
International/Specific Audiences 96 82 94 81 95 83 89 92 87 93 92 92
Do Not Track 91 100 80 100 80 100 80 60 80 60 100 92
Policy Change 80 88 80 88 85 90 69 77 75 78 77 80
User Choice & Control 77 72 75 81 78 81 66 64 64 63 66 65
Introductory/Generic 63 73 75 76 78 79 63 65 74 68 73 67
Practice Not Covered 8 13 18 32 35 35 41 37 44 46 45 48
Privacy Contact Information 86 84 79 80 79 78 79 71 75 71 83 78

Macro Averages 72 71 74 74 77 79 67 65 68 70 75 76
Micro Averages 79 78 81 82 83 85 72 70 73 74 77 77

Table 2: F1 for three models on the two gold standards in (%) with tuned epochs on
validation; V:Validation; T:Test; Threshold=0.5

micro-average aggregates the contributions of all classes to compute the average met-
ric [20,12]. In order to establish a firm foundation, we report both averages.

Table 2 presents F1 scores across all labels with a threshold equal to 0.5 for the
two gold standards. For CNN, we applied Adam with default parameters and with 50%
dropout just before the last linear layer (learning rate = 0.001, decay rates: β1 = 0.9, β2
= 0.999). BERT is optimized with the default configuration and LAMB optimizer [25].

In total, 6 experiments were carried out. The scores obtained (micro-averages rang-
ing from 70-85% and macro-average in range of 65-76% for both gold standards) are
considered very accurate, especially in the context of the Fleiss expert agreements, re-
ported in [23], which showed human agreement between 49-91% for the same classes
here considered. As expected, for all 6 experiments, micro- outperform macro-averages,
because for a few labels, the model is not able to learn the class weights properly due
to sample scarcity. For instance, Data Retention corresponds to only 2-3% of dataset,
and yet this class has 1/12 weight in macro-average calculation; whereas micro-average
considers dataset heterogeneity and decreases the impact of scarce categories on the fi-
nal result. Furthermore, the category Practice Not Covered shows low F1 on both gold
standards. This category refers to all practices that are not covered by other 11 cate-
gories and therefore represents a broad range of topics. Consequently, due to diversity
of vocabulary, it is difficult for the model to learn this specific class.

Table 2 shows that even BERTBASE achieves state-of-the-art and further improves
the results (without domain-specific embeddings). This is due to the facts that 1) trans-
formers scale much better on longer text sequences because they operate in a concurrent
manner; 2) BERT is using WordPiece encoding and therefore it has a dictionary which
is hard to have an OOV case with it; and 3) it has been trained on massive amounts of
data. Moreover, the fine-tuned BERTBASE with 130K corpus privacy policy has signif-
icantly enhanced F1 average on both gold standards10. Interestingly, fine-tuned BERT
has improved macro-average more than micro. It is a proof that exploiting a good lan-

10 Fine-tuning BERT took 33 hours for 3 epochs on a single GPU. Once it is completed, training
the classification model takes only a few hours, depending on the number of epochs.
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guage model enables the classification model to learn the weights more properly, even
with the scarce number of samples.

In order to compare our result to Polisis, we present table 3 which provides macro-
averages on the union-based gold standard. As mentioned in section 2, Polisis used the
union-based dataset to report their results. The average lines in the table represent the
macro-average of the metric (precision, recall or F1) in predicting the presence of each
label and predicting its absence (the 7th line in the table - F1 - is also included in table 2).

As shown in table 3, we successfully reproduce Polisis findings (although with dif-
ferent splits, which remain unavailable) and further improve the result by 5% compared
to the state-of-the-art. However, we believe this type of average is not a fair measure for
multi-label classification. As shown in table 2, the fine-tuned BERT model has never-
theless significantly enhanced macro-averages (from 65% to 76%) which is not visible
in table 3, where the enhancement is limited to 5%.

Measure CNN BERT BERT-fine-tuned
V T V T V T

Precision 81 81 81 84 81 83
Precision-absence 94 94 94 95 95 95
average 86 86 86 89 88 89
Recall 58 57 60 62 70 71
Recall-absence 97 97 97 97 97 97
average 78 77 79 80 84 84
F1 67 65 68 70 75 76
F1-absence 95 95 95 96 96 96
average 81 80 82 83 86 86

Table 3: Macro averages on the union-based gold standard in (%) with tuned epochs on
validation; V:Validation; T:Test; Threshold=0.5

5 Discussion

This paper considers notoriously cumbersome privacy policies and investigates auto-
matic methods to assist end-users in comprehending these contractual agreements. The
conducted experiments confirm the feasibility of our approach in reaching this objec-
tive. Since we are benefiting from supervised ML, the performance of the generated
model highly depends on the training dataset quality. As shown in table 1, there is a
huge difference between the two gold standards for the Practice Not Covered class. In
the union-based dataset 642 segments are categorized as Practice Not Covered, whereas
the majority-based gold standard only records 129 occurrences. Unsurprisingly, for this
specific label, all models trained with the union-based dataset outperform the mod-
els which were trained by the majority-based one. In addition, 513 variation for the
Practice Not Covered category between the two gold standards shows high expert dis-
agreement. This was not evident in the original paper [23], because the authors reported
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Fleiss’ Kappa on the parent category (Other) and there is no information on annotator
agreement for its subcategories.

Figure 3 shows an example of disagreement on Practice Not Covered category in
two gold standards. The shown paragraph explains Amazon’s policy on treating chil-
dren’s data. In the union-based dataset this segment is annotated with International and
Specific Audiences and Practice Not Covered classes, whereas in the majority-based, it
is only labeled with International and Specific Audiences.

“ [. . . ] Amazon.com does not sell products for purchase by children. We sell
children’s products for purchase by adults. If you are under 18, you may use
Amazon.com only with the involvement of a parent or guardian. [. . . ] ”

– International and Specific Audiences
– Practice Not Covered

Fig. 3: Disagreement example for the Amazon privacy notice

Regarding label-specific performance, almost all models perform quite well on Do
Not Track class in spite of the low sample occurrence. This is probably due to a smaller
set of terminology that is often used in such paragraphs, including specifically the word
track. Furthermore, as mentioned earlier, the best human agreement was also achieved
on Do Not Track class with Fleiss’ Kappa equal to 91%, which indicates that our ML
models simulate human thinking fairly.

The BERT model proves that a good language model achieves high performance
even on a domain-specific dataset. It also shows that there is a huge potential to improve
the results by fine-tuning the language model with domain vocabularies.

In summary, OPP-115 has proven to be a small, yet reliable dataset for supervised
privacy policy classification. However, our experiments confirmed legal text subjectiv-
ity for a few classes. One possible solution is decomposing those categories into less
controversial subclasses with higher experts agreement. In the above example (Fig-
ure 3), breaking the Specific Audiences segment into more specific classes will make
annotations less subjective, for human experts and machines alike.

To the extent of our knowledge, this is the first effort to establish a standard bench-
mark on privacy policy classification. In the light of recently enforced data protection
laws in the EU, all parties that use and collect personal information must ensure their
compliance with GDPR. Although OPP-115 consists of policies defined by American
companies, most of the top-level categories can still be largely mapped to GDPR arti-
cles. For instance, the category First Party Collection/Use can reflect many practices
stated in the Article 13, ‘Information to be provided where personal
data are collected’ and User Access, Edit & Deletion can be linked to Arti-
cles 16 & 17 (‘Right to Rectification/Erasure’)11. The OPP-115 dataset
also contains annotations at attribute level. By extracting these values from an arbitrary
privacy policy, it is possible to perform an in-depth analysis and assist experts to check

11 Website privacy policies in European union depend also on Directive 2002/58/CE
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compliance of privacy policies text based on GDPR. Thus, the approach presented in
this paper is a valuable initial step towards compliance checking of privacy policies.

6 Conclusion & Future Work

In this paper we investigate the potential of automatic classification of consent agree-
ments in privacy policy consent forms that are frequently faced by lay users. Our find-
ings are based on the compilation of two gold standards, thus providing a reference
privacy policy classification baseline for the relevant research community. To the best
of our knowledge, this is the first effort towards a standardized benchmark for privacy
policies experiments. The evaluation shows that our best model yields F1 score highs of
77-85% (micro-avg) and 76-79% (macro-avg) for union-based and majority-based gold
standards, respectively. Both metrics outperform the reported state-of-the-art. In light
of human annotator agreement levels achieved for the same data and classes (ranging
from 49%-91%), the results can safely be considered as successful.

The approach and method presented are completely reproducible and all resources
and data splits are openly accessible12. Since the context surrounding our methods (in-
cluding the data splits) are available, they can be used as a benchmark for other ap-
proaches exploring machine-assisted privacy policy classification for improved human
understanding.

In the future, we have identified a number of avenues that can yield further contri-
butions. To further improve the F1 scores achieved, the imbalanced label distribution
of OPP-115 (see table 1) could be addressed. A possible solution is to use a weighted
objective function with respect to the frequency of the labels. Another approach in con-
sideration is to use sampling techniques to improve the balance. Finally, alternative
novel methods can be investigated to take fuller advantage of the three different ex-
pert annotations available. In this regard, we will examine the usage of methods (e.g.
ensemble) that take the varying labels collectively into consideration.

In conclusion, we intend to continue building upon the baseline achieved and the
positive results presented in this paper. As demonstrated by the EU-wide GDPR imple-
mentation, data regulation is increasingly recognized as a critical area at a political and
governance level, whose impact is felt by all digitally-enabled world citizens. There-
fore, although not novel, the application of AI techniques to this area has renewed rele-
vance, and there is great value in exploring automation to support private users entering
contractual agreements to have a clearer and more secure understanding of their rights,
risks and implications.
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