
Meta-Hyperband: Hyperparameter optimization
with meta-learning and Coarse-to-Fine

Samin Payrosangari1 , Afshin Sadeghi1,2(B) ,
Damien Graux3 , and Jens Lehmann1,2

1 Department of Computer Science, University of Bonn, Germany
2 Fraunhofer IAIS, Sankt Augustin, Germany

3 ADAPT SFI Research Centre, Trinity College Dublin, Ireland
saminpayro@gmail.com, sadeghi@cs.uni-bonn.de,

damien.graux@adaptcentre.ie, jens.lehmann@cs.uni-bonn.de

Abstract. Hyperparameter optimization is one of the main pillars of ma-
chine learning algorithms. In this paper, we introduce Meta-Hyperband: a
Hyperband based algorithm that improves the hyperparameter optimiza-
tion by adding levels of exploitation. Unlike Hyperband method, which is
a pure exploration bandit-based approach for hyperparameter optimiza-
tion, our meta approach generates a trade-off between exploration and
exploitation by combining the Hyperband method with meta-learning and
Coarse-to-Fine modules. We analyze the performance of Meta-Hyperband
on various datasets to tune the hyperparameters of CNN and SVM. The
experiments indicate that in many cases Meta-Hyperband can discover
hyperparameter configurations with higher quality than Hyperband, us-
ing similar amounts of resources. In particular, we discovered a CNN
configuration for classifying CIFAR10 dataset which has a 3% higher
performance than the configuration founded by Hyperband, and is also
0.3% more accurate than the best-reported configuration of the Bayesian
optimization approach. Additionally, we release a publicly available pool
of historically well-performed configurations on several datasets for CNN
and SVM to ease the adoption of Meta-Hyperband.

Keywords: Hyperparameter Optim. · Meta-learning · Coarse-to-Fine

1 Introduction

In recent years, machine learning has opened up its way promoting automation in
various domains such as image and face recognition [6], cancer detection [14] or
speech recognition [4]. Each machine learning model has particular parameters,
such as learning rate, learning rate decay or regularization coefficient which
specify its architecture. These parameters are called the “hyperparameters” of
the model which should be initialized by data scientists [1]. Specifying the right
values for hyperparameters is critical and may lead to a model with high accuracy
[17]. Contrariwise, choosing wrong values reduces the performance of the model
significantly. Therefore, several approaches for hyperparameter optimization have

https://orcid.org/0000-0003-4773-0775
https://orcid.org/0000-0001-7185-7210
https://orcid.org/0000-0003-3392-3162
https://orcid.org/0000-0001-9108-4278


2 S. Payrosangari et al.

been proposed. Nevertheless, some of these methods are still immature and
need improvement or modification to enhance the probability of finding a near
optimum model architecture. During hyperparameter optimization, one needs to
evaluate the performance of various sets of values, training the model in individual
rounds. To do so, a naive idea is sampling random hyperparameter configurations
from space [1] and the best discovered values of hyperparameters, leading to
lower generalization error, are chosen. To increase the speed of hyperparameter
optimization, a novel approach called Hyperband has been recently proposed [11]
based on dynamic resource allocation. In a nutshell, many random hyperparameter
configurations are sampled from the initial space, and instead of allocating
the maximum amount of training resources to each of them, they get lower
amount of resources at the beginning and compete with each other for higher
amount of resources. Subsequently, only a portion of configurations with lower
validation loss will proceed to the next training round with more resources
to demonstrate their real performance. Therefore, one could evaluate several
random configurations faster than simple random search by early elimination of
unintelligent configurations. The Hyperband algorithm is practical as it assesses
numerous configurations, efficient in finding a high performance hyperparameter
configuration for a dataset, and 5 to 30 times faster than its competitors such as
different variations of Sequential model-based optimization like Spearmint, TPE
and SMAC [11]. However, as Hyperband only targets random search and pure
exploration, it has a deficiency in leveraging achieved information from previous
evaluations and other machine learning experiments.

To tackle this limitation, we propose Meta-Hyperband to increase the
quality of the discovered hyperparameter configurations. Meta-Hyperband adds
extents of exploitation to Hyperband. Alongside random configurations sampled
from the predefined space in Hyperband, Meta-Hyperband embeds a meta-
learning module to benefit from historical machine learning experiments which
have been performed on different datasets. In addition, a Coarse-to-Fine module
is included in Meta-Hyperband to search the areas around the best configurations
discovered during the ongoing hyperparameter optimization process, as the current
best configuration might be close to the optimum hyperparameter configuration.

The organization of this paper is as follows. Section 2 reminds the background,
Section 3 makes an overview on the related works in hyperparameter optimization.
Section 4 describes Meta-Hyperband in details and Section 5 presents the results
of experiments on CNN and SVM. Finally, in Section 6 concludes the study.

2 Background

Hyperparameter configuration: A “configuration” of a machine learning
model is a unique set of values for different hyperparameters of the model. For
instance, {learning rate = 0.5, regularization rate = 0.5, number of nodes in
second layer = 10} is one configuration and {learning rate = 0.005, regularization
rate = 0.5, number of nodes in second layer = 11} is another. Furthermore, If
the model has t hyperparameters h1, . . . , ht and they vary in ranges r1, . . . , rt



Hyperparameter optimization with meta-learning and Coarse-to-Fine 3

respectively, the “space” is defined as the t dimensional space r1 × · · · × rt, and
each configuration is allowed to be sampled from this space [5].

Meta-learning: Leveraging experiments and meta-data achieved, from pre-
vious learning procedures, in order to improve the quality of learning is known as
meta-learning [18]. In this article, meta-learning corresponds to benefiting from
historically well-performed hyperparameter configurations of a model on various
datasets, to discover an optimum configuration for a new dataset.

Coarse-to-Fine: is a variation of the random search for hyperparameter
optimization, which limits the space of possible hyperparameters configurations
in an organized manner [12]. In pure random search, one picks many random
configurations until reaching a high-quality model. In Coarse-to-Fine after ran-
domly picking several initial configurations, the searching space is shrunk to the
surrounding of the current best configuration [3]. The idea behind Coarse-to-Fine
is to eliminate the impractical parts of the initial space and exploit the fruitful
parts as the optimum hyperparameter configuration might be close to the best
configuration which is discovered after an initial search in the main space.

3 Related Work

Random search is the basic idea for hyperparameter tuning. After random search,
grid search was proposed which suffers from the curse of dimensionality and it
limits the choices for more critical hyperparameters such as learning rate [1].
Although, hyperparameter optimization is time consuming, it influences the per-
formance significantly. Thus, several other approaches have been designed. These
approaches fall into two main categories: 1) Sequential model-based optimization
and 2) Bandit-based optimization.

Sequential model-based optimization. SMBO approaches are methods for optimiz-
ing a black-box function, where calculation of the function for each individual
point is costly, analogically to hyperparameter optimization problem.

From Different variations of SMBO, Bayesian optimization(BO) method
uses “expected improvement (EI)” as the acquisition function to address the
hyperparameter optimization task, since EI has shown exceptional performance
in optimizing several other multidimensional black-box functions [17]. Another
method is Tree-structured parzen estimation (TPE) which uses Tree-structured
parzen estimator to define the surrogate, and an EI acquisition function that is
based on this surrogate function [2]. Sequential model-based algorithm config-
uration (SMAC) is another SMBO that derives the surrogate of the black-box
function using random forests. To optimize hyperparameters, a random forest is
trained on a pool of historically evaluated configurations. Therefore, the forest
predicts the performance of the particular model for new hyperparameter config-
uration [7]. Subsequently, it leverages the EI acquisition function to determine
next point to be evaluated at each iteration of optimization procedure [7]. The
methods in SMBO category struggle with the dimensionality issue [15], and in
this condition, their performance is equivalent to random search. Moreover, these



4 S. Payrosangari et al.

methods can’t deal with non-convex functions [11]. Bandit-based methods, which
are introduced in the next section, target these issues.

Bandit-based optimization In bandit-based hyperparameter optimization environ-
ment, more resources are allocated to promising hyperparameter configurations,
known as adaptive resource allocation, and the unpropitious ones are stopped
early resulting in an order of magnitude faster optimization compared to SMBO
methods [8]. From the perspective of this category of methods, the problem of
hyperparameter optimization is considered as an infinite-armed bandit problem
in a non-stochastic environment. In this scenario, each arm is a hyperparameter
configuration and pulling an arm corresponds to evaluating the performance of
the configuration by training for a specific amount of epochs and returning the
loss. One early bandit-based method is Successive Halving: given a total amount
of budget B, the budget is uniformly divided among a set of n randomly sampled
hyperparameter configurations. Its algorithm for hyperparameter optimization is:

1. Sample n hyperparameter configurations from the space
2. Given the total amount of budget B, Uniformly allocate a small portion of

the budget B to each configuration.
3. Train the model with each of these configurations individually with the

allocated budget
4. Eliminate half of the configurations which have shown lower performance,
5. Keep the other half and allocate a bigger portion of the B to each of them.
6. Repeat from step 3 until one config. remains and report it as the best one.

Using this algorithm more hyperparameter configurations can be assessed using
total amount of budget B, because early termination of unpromising configu-
rations releases resources for evaluating more Hyperparameter configurations,
and only those configurations which have shown promising performance will be
eligible to get more resources out of the total budget. Hyperband algorithm is a
pure exploration infinite-arm bandit method that extends Successive Halving by
repeating it several times, but with a different number of initial configurations n
[11]. This extension of successive halving performs the hyperparameter optimiza-
tion task about 5 to 30 times faster than well-known methods such as SMBO
variations and random search [11].

In Hyperband, each run of Successive Halving is called a “bracket” [11]. This
method reports the best configuration after execution of all individual Brackets.
The reason for implementing multiple brackets with different values of n is
that, it’s indeterminable whether it’s better to keep n small or large. When
n is small, each configuration gets more resources and when a big n is chosen
each configuration gets a lower number of resources but more configurations
could be evaluated. In some problems, individual configurations might have a
slow convergence rate, so they need more resources to reveal their performance
and to compete with other configurations. Keeping the trade-off between the
number of configurations n and the amount of resources which is allocated to each
configuration B/n, is called the n versus B/n trade-off. The inputs of Hyperband



Hyperparameter optimization with meta-learning and Coarse-to-Fine 5

include the maximum number of resources R which could be allocated to each
individual configuration (i.e. determines the budget limit) and η which determines
the portion of configurations that should be discarded at each round inside the
brackets. Respectively, R and η determine the number of brackets and the initial
number of configurations ni in individual brackets. We introduce an algorithm in
Section 4 that applies an improved sampling method for the initial configurations
in each bracket, without touching the other variables such as R and η.

4 Meta-Hyperband

We propose Meta-Hyperband, a meta-learning hyperparameter optimization
algorithm that benefits from a pool of historically well-performed hyperparameter
configurations on various datasets in previous experiments. The idea is that one
of these configurations might perform well on the new dataset directly or by
little manipulation obtained by the Coarse-to-Fine module. Therefore, the Meta-
Hyperband algorithm adds meta-learning as well as Coarse-to-Fine modules to
the Hyperband algorithm. An advantage of Meta-Hyperband (over Hyperband)
is its trade-off between exploration and exploitation as part of the brackets
run a random search: a part of them run a meta-learning and the rest run a
Coarse-to-Fine sampling on the best configurations discovered in the previous
steps. The inputs to our algorithm are:

– R: The maximum amount of resources which should be allocated to each
configuration. Basically, this value changes for different problems. For example,
in Deep Learning, the number of training iterations might be selected as
the resource and the maximum iterations which is required for a successful
training depends on the problem.

– Meta-learning pool: A pool of best hyperparameter configurations discov-
ered in historical experiments of the corresponding machine learning model.
We show (see Section 5) that having a meta-learning pool improves the
results significantly and leads to a faster approach. Therefore, contributing
in building such a pool for different models helps to improve the performance
of the models on new datasets.

– Coarse-to-Fine coefficient: The area around a proper configuration to be
explored. If the initially specified range for a hyperparameter is (a, b) and the
current best value for it is h1, then h1 is considered as the coarse and we try to
fine tune h1 in its surrounding [3]. In this article, considering that the Coarse-
to-Fine coefficient is equal to r, the shrunk range for this hyperparameter is
(h1− rh1, h1 + rh1). Here, the amount of moving around h1 depends on itself
by multiplying the radius by h1, in order to avoid outlying values which are
either far away from h1 or too close to it. By limiting the range of all the
hyperparameters in one configuration using the same coefficient, the space is
restricted using the Coarse-to-Fine module. The value of r defines the extent
of space shrinkage, as smaller values apply more aggressive space restriction
than larger values. The default value we consider for r is 0.2. According to our



6 S. Payrosangari et al.

experiments, lower values of r restrict the space such that the performance
improvement by fine-tuned configurations is not outstanding.

In Meta-Hyperband, 5 brackets (from 0 to 4) are considered. In the initialization
phase, the maximum bracket number called smax equals 4, and η defines the
portion of resources which should be eliminated in each round in brackets. In
Hyperband, η is an input and the smax which is the index of last bracket, is defined
by blogη Rc. Differently, in Meta-Hyperband, the value of smax is predefined,

and using the same rule the equation of η = b 4
√
Rc holds. The reason behind

this setup is that, as a proper arrangements for Hyperband it was proposed to
determine η in a way that according to R, the algorithm runs in 5 brackets, so
that with different values of sampled configurations in different brackets the n
versus B/n trade-off is holds [11]. The Meta-Hyperband algorithm is defined as:

1. Bracket1, meta-learning: Sample n1 hyperparameter configurations from
the pool of meta-learning, and apply the Successive Halving steps 2-6 (see
Section 3) on them. If there is no pool, the Bracket performs a random search.

2. Bracket4, random search: Randomly sample n4 hyperparameter configurations
from space, and apply the Successive Halving steps 2-6 on them.

3. Bracket2, random search: Randomly sample n2 hyperparameter configurations
from space, and apply the Successive Halving steps 2-6 on them.

4. Bracket3, Coarse-to-Fine:

(a) Sample n3/2 fine-grained configurations where coarse is the best of
Bracket1, and apply the Successive Halving steps 2-6 on them.

(b) Sample n3/2 fine-grained configurations where coarse is the best of
brackets 2 and 4, and apply the Successive Halving steps 2-6 on them.

5. Bracket0, Coarse-to-Fine: Sample n0 fine-grained configurations where coarse
is the best of all previous steps, and apply the steps 2-6 on them.

In this algorithm, the number of configurations ni in Bracket i, and the resource
allocation are similar to Hyperband so the inequality n4 > n3 > n2 > n1 > n0

holds. Therefore, in brackets with higher index, more configurations are sampled
and each of them receives a smaller portion of the total budget B of the bracket in
comparison to the brackets with lower index. Therefore, the Bracket with highest
index (Bracket4) samples R configurations initially and Bracket0 samples smax+1
(5 in case of Meta-Hyperband) but allocates maximum amount of resources R to
each of them. Algorithm 1 shows the pseudocode of Meta-Hyperband. Inside each
bracket of Meta-Hyperband, the algorithm performs the sampling task according
to the role of each bracket as discussed. In each bracket, the ni configurations
that are present are trained using the specified amount of resources ri, 1/η of
them with lower validation loss win the competition and proceed to next round,
and the rest of the configurations are discarded. At the end of each bracket,
one configuration is reported as the best configuration of that bracket. After
locating Bracket1, which is the meta-learning sampling bracket, Brackets 4 and 2
are located, where the random search in the main space of configurations takes
place. The Bracket4 samples too many configurations and increases the chance



Hyperparameter optimization with meta-learning and Coarse-to-Fine 7

Algorithm 1 Meta-Hyperband algorithm
Inputs: R, Coarse-to-Fine coefficient, meta-learning pool

Initialize: smax = 4, η = b 4√
Rc, B = (smax + 1)R

for s = {1, 4, 2, 3, 0} do

n = dBR
nS

s+1 e, r = Rη−s, T = []

path = path-to-save-configurations
if s == 1 then

T = get-meta-hyperparameter-configs(n)
else if s == 4 or 2 then

space = get-main-space()
T = get-random-hyperparameter-configs(n, space)

else if s == 3 then
a) space = get-Coarse2Fine-space(best config. from bracket 1)
T = get-fine-parameters(space, n2 )
b) space = get-Coarse2Fine-space(best config. from brackets 2 & 4)
T.append(get-fine-parameters(space, n2 ))

else if s == 0 then
space = get-Coarse2Fine-space(best config. from at all other brackets)
T = get-fine-parameters(space, n)

for i ∈ {0, ..., s} do
ni = bn× η−ic, ri = br × ηic
L = evaluate-the-validation-loss(t) : t ∈ T
T = top(T, L, bniη c)

Result: The best discovered configuration with lowest validation loss.

of exploring the space thoroughly. Moreover, Bracket2 samples lower number
of random configurations but allocates more resources to each of them. After
completion of the 3 previous brackets, the best configuration discovered in the
Bracket1, as well as the best configuration of Brackets 4 and 2, are taken into
Bracket3 which performs Coarse-to-Fine on these two current best configurations.
This avoids trapping in the area around a local optimum because it considers
two of the best configurations instead of considering one global best. Finally,
Bracket0 takes the global best of all previous brackets and applies Coarse-to-Fine
on it. If the meta-learning pool is missing, the Coarse-to-Fine module can still
be leveraged. And if this pool contains many configurations, sampling from
it can be moved to other brackets of the Meta-Hyperband than the proposed
bracket in this paper. Our analysis of Hyperband shows that in most of the
hyperparameter optimization experiments all the Brackets are not used optimally.
Experiments in Section 5 prove the dominance of Meta-Hyperband in discovering
high performance configurations and leveraging all the brackets.

5 Experiments

To compare the performance of Meta-Hyperband and Hyperband, several experi-
ments are performed on CNN and SVM using 5 benchmark datasets: Cifar10 [9],
Cifar100 [9], SVHN [13], MNIST [10] and Fashion-MNIST [19]. To perform the
experiments, firstly Hyperband is used several times to discover the best hyperpa-
rameter configuration of each model for each of the datasets. Subsequently, all the
discovered configurations are gathered to generate the pool of configurations for
each model to feed Meta-Hyperband. These pools of configurations are enriched
every time a new proper configuration for a dataset is discovered1.

1 Our sources → https://github.com/saminpayro/Meta Hyperband implementation

https://github.com/saminpayro/Meta_Hyperband_implementation


8 S. Payrosangari et al.

Hyperparameter Range Scale
Learning rate reduction [0,3] integer

Initial learning rate [5× 10−5, 5] log

Conv1 L2 penalty [5× 10−5, 5] log

Conv2 L2 penalty [5× 10−5, 5] log

Conv3 L2 penalty [5× 10−5, 5] log

Fc10 L2 penalty [5× 10−3, 500] log

Local response normalization scale [5× 10−6, 5] log
Local response normalization power [0.01, 3] linear

Table 1. Hyperparameter configuration space for CNN [11].

Method/Results Discovery bracket Top-one test Top-one test
loss 75 epochs loss 300 epochs

Hyperband Bracket4, random 0.214500 0.195400
Hyperband Bracket4, random 0.219100 0.186600
Hyperband Bracket4, random 0.213800 0.202100
Meta-Hyperband Bracket3a, Coarse-to-Fine 0.173000 0.146800
Meta-Hyperband Bracket4, random 0.177000 0.147600
Meta-Hyperband Bracket3a, Coarse-to-Fine 0.191900 0.150800

Table 2. Hyperband & Meta-Hyperband on CIFAR10 using CNN: R=300 and η=4.

Method/Results Best config discovery bracket Top-one test loss 6 epochs
Hyperband Bracket4, random 0.080042
Hyperband Bracket2, random 0.058208
Hyperband Bracket3, random 0.093667
Meta-Hyperband Bracket0, Coarse-to-Fine 0.066625
Meta-Hyperband Bracket4, random 0.064833
Meta-Hyperband Bracket3a, Coarse-to-Fine 0.062667

Table 3. Hyperband & Meta-Hyperband on SVHN using CNN. R=600 and η=4.

Method/Results Best config discovery Top-one test loss after
bracket 300 epochs

Hyperband Bracket4, random 0.8300
Hyperband Bracket3, random 0.7986
Meta-Hyperband Bracket4, random 0.5893
Meta-Hyperband Bracket3b, Coarse-to-Fine 0.5764

Table 4. Hyperband & Meta-Hyperband on CIFAR100 using CNN. R=300 and η=4.

Fig. 1. Bar chart displaying the role of
different brackets in 13 Hyperband and
13 Meta-Hyperband CNN experiments.

Fig. 2. Performance of the best discov-
ered configuration in function of resource
usage on two CNN with SVHN.



Hyperparameter optimization with meta-learning and Coarse-to-Fine 9

While applying Meta-Hyperband on a dataset, only the configurations corre-
sponding to the rest of the datasets in the pool are involved in the meta-learning
bracket. The value of η is initialized to 4 according to the amount of resources for
our datasets, so Meta-Hyperband consists of 5 brackets. Moreover, the Coarse-to-
Fine radius is initialized to 0.2× h for a hyperparameter h (this radius can also
be treated as a hyperparameter). The resource in CNN is defined as the number
of training iterations, and in SVM as the amount of training data points.

5.1 Experiments on CNN

In this study, the 18% error architecture proposed by Alex Krizhevsky is used for
CNN model2 and implemented by Cuda-convnet2 framework3. This architecture
of CNN is also used in Hyperband [11] and ensures a fair comparison between
the two approaches. Furthermore, the 8 hyperparameters of CNN are tuned (see
Table 1). Table 1 also shows the ranges for them, which are similar to what was
considered in [11] for fair comparison.

Each resource unit in our study is the training for 100 iterations which takes
place on one batch of data of size 10k, and mini-batch size of 100 datapoints.
Each method is repeated 13 times to gain an average performance. The bar chart
(Fig.1) displays the performance of brackets in both approaches, by counting the
number of experiments that their best configuration was discovered in Bracketi.
The diversity of the bars in case of Meta-Hyperband shows that there is a higher
balance in the performance of brackets, and despite Hyperband brackets 0, 1, 3, 4
all have an active contribution in discovering a proper configuration for the CNN.
The plots (Fig.2) display the progress of the two approaches with respect to the
resource usage for 2 experiments on SVHN dataset, in which the Meta-Hyperband
has discovered the best configuration with consumption of less than 3000 units of
resources compared to Hyperband. Table 2 displays the results of experiments on
Cifar10. Among the 6 experiments, Meta-Hyperband has discovered configurations
with around more than 3% lower test error than Hyperband after 75 and 300
epochs. The lowest error discovered by Meta-Hyperband on test set is 14.68%
after 300 epochs training, which is even better than the configuration reported
by Bayesian Optimization method (14.98%) [17].

In another experiment, the SVHN dataset is used as the basis. Table 3
compares the quality of the best configurations according to the test error and
after 6 epochs training. Among the 6 experiments, Meta-Hyperband has discovered
configurations with around 3% lower test error than 2 runs of Hyperband. In
addition, configurations from the meta-learning pool of configurations, which
were corresponding to Fashion-MNIST and CIFAR10, perform well on SVHN
as well. For instance, one historical configuration of Fashion-MNIST produces
8% test loss on SVHN as well, and the best configuration (reported on Table 3
last row) is the result of Coarse-to-Fine on a historical configuration of CIFAR10
from the meta-learning pool. In addition, Table 4 shows that during experiments

2 See “example layers” directory in http://code.google.com/p/cuda-convnet/
3 https://code.google.com/archive/p/cuda-convnet2/

http://code.google.com/p/cuda-convnet/
https://code.google.com/archive/p/cuda-convnet2/


10 S. Payrosangari et al.

Hyperparameter Type Values
preprocessor Categorical min/max, standardize, normalize
Kernel Categorical rbf, polynomial, sigmoid

C Continuous log[10−3, 105]

γ Continuous log[10−5, 10]
degree if kernel=poly integer [2, 5]
coef0 if kernel=poly, sigmoid uniform [-1.0, 1.0]

Table 5. List of 6 hyperparameters for SVM with their sampling ranges here.

Method/Results Discovery bracket Top-one error
Hyperband Bracket4, random 0.4467
Meta-Hyperband Bracket0, Coarse-to-Fine 0.4402
Hyperband Bracket2, random 0.4455
Meta-Hyperband Bracket1, meta-learning 0.4429
Hyperband Bracket4, random 0.4477
Meta-Hyperband Bracket0, Coarse-to-Fine 0.4452

Table 6. Hyperband & Meta-Hyperband on CIFAR10 using SVM: R=400, η = 4.

on CIFAR100 dataset, Meta-hyperband outperformed Hyperband (more than
2% lower test error). Rows 3 and 4 show that, in Meta-Hyperband both random
and non-random brackets are leveraged for discovering a proper configuration.

5.2 Experiments on SVM

The list of 6 hyperparameters tuned for SVM is displayed in Table 5. For SVM,
one unit of resource equals 100 data points, and the maximum number of resources
should be equal to the size of the training set for each dataset. In this project,
we used 60k training set for SVHN, and 40k training sets for CIFAR10 and
CIFAR100 respectively. Fig.3 displays the performance of different brackets
in both approaches, by counting the number of experiments that their best
configuration was discovered in Bracketi. According to this figure, in the SVM
case, Bracket4 of Hyperband is also the most effective bracket.

Fig. 3. Role of different brackets in Hyper-
band vs Meta-Hyperband in SVM.

For SVM experiments, instead
of repeating the execution of Meta-
Hyperband for all the brackets, some
configurations which have been discov-
ered previously during the Hyperband
test, are considered as the best of ran-
dom brackets in Meta-Hyperband as
well to ensure a fair comparison be-
tween the two methods.

Tables 6, 7 and 8 display the results
of experiments on CIFAR10, SVHN,
and CIFAR100 for SVM model. In
these tables, each Meta-Hyperband
row is paired to its above Hyperband row, which means that the best con-
figurations discovered by Hyperband in steps 4 or 2 are considered as the best
configuration of random brackets for the paired Meta-Hyperband experiment.

Analysing the diversity of best configuration discovery among the brackets
of Meta-Hyperband on SVM in the bar chart of Fig.3 shows that Bracket0



Hyperparameter optimization with meta-learning and Coarse-to-Fine 11

Method/Results Discovery bracket Top-one error
Hyperband Bracket4, random 0.232406269207
Meta-Hyperband Bracket4, random 0.232406269207
Hyperband Bracket4, random 0.245789072890
Meta-Hyperband Bracket0, Coarse-to-Fine 0.245678902347
Hyperband Bracket4, random 0.22303318992
Meta-Hyperband Bracket4,random 0.22303318992

Table 7. Hyperband & Meta-Hyperband on SVHN using SVM: R=600, η = 4.

Method/Results Discovery bracket Top-one error
Hyperband Bracket4, random 0.7486
Meta-Hyperband Bracket1, meta-learning 0.7166

of SVHN historical configuration
Hyperband Bracket4, random 0.7486
Meta-Hyperband Bracket0, Coarse-to-Fine of 0.7156

SVHN historical configuration

Table 8. Hyperband & Meta-Hyperband on CIFAR100 using SVM: R=400, η = 4.

was the most effective bracket in discovering high performance configurations,
also Bracket4 still plays an important role by exploring the space. Moreover, 2
configurations were discovered in Bracket1 which speed up the hyperparameter
tuning of Meta-Hyperband.

6 Conclusion and Future Work

In this study, we proposed Meta-Hyperband, our method to discover hyperparam-
eter configurations which outperforms the literature algorithms, by introducing
levels of exploitation using meta-learning as well as Coarse-to-Fine modules.
Our approach provides a trade-off between exploration and exploitation, and
benefits from the information gained from previous experiments. By considering
more than one best configuration during the exploitation, it reduces the proba-
bility of trapping into a local optimum and the application of the historical or
meta-information alongside the random search leads to a proper hyperparameter
configuration faster than traditional methods. Meta-Hyperband has been vali-
dated through several experiments on CNN and SVM to tune hyperparameters
for learning five different datasets. The best configurations discovered for SVM
and CNN generated a pool that is shared and can be used in other experiments.

A recent approach to optimize hyperparameters, proposed by [16] for the
MDEnn version of MDE, integrates the hyperparameters into the primary model’s
optimization. There, after initiating hyperparameters, the model optimizes them
by back-propagation. It is interesting for future work to extend Meta-Hyperband
in this direction and combine the Bandit-based algorithm with the models
optimization, especially for NN-based models.

Acknowledgements

This study is supported by MLwin (Maschinelles Lernen mit Wissensgraphen,
GA 01IS18050F of the German Federal Ministry of Education and Research),
by the EU project Cleopatra (GA 812997) and by the Marie Sk lodowska-Curie
GA 801522 at the ADAPT SFI Research Centre (grant 13/RC/2106).

http://mlwin.de


12 S. Payrosangari et al.

References

1. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. Journal
of Machine Learning Research 13 pp. 281–305 (2012)

2. Bergstra, J., Rémi Bardenet, Bengio, Y., Kégl, B.: Algorithms for hyper-parameter
optimization. Neural Information Processing Systems pp. 2546–2554 (2011)

3. Charniak, E., Johnson, M.: Coarse-to-fine n-best parsing and maxent discriminative
reranking. In: Annual Meeting on Association for Computational Linguistics. pp.
173–180. ACL’05 (2005)

4. Deng, L., Li, X.: Machine learning paradigms for speech recognition: An overview.
Transactions on Audio, Speech, and Language Processing 21(5), 1060–1089 (2013)

5. Feurer, M., Springenberg, J.T., Hutter, F.: Initializing bayesian hyperparameter
optimization via meta-learning. AAAI Conference on Artificial Intelligence (2015)

6. Guodong Guo, Li, S.Z., Kapluk Chan: Face recognition by support vector machines.
In: Int. Conf. on Automatic Face and Gesture Recognition (2000)

7. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization
for general algorithm configuration. Lecture Notes in Computer Science (LNCS),
Vol. 6683 p. 507–523 (2011)

8. Jamieson, P., Talwalkar, A.: Non-stochastic best arm identification and hyperpa-
rameter optimization. AISTATS (2015)

9. Krizhevsky, A.: Learning multiple layers of features from tiny images. Technical
report, Department of Computer Science, University of Toronto (2009)

10. LeCun, Y., Bottou, L., Bengio, Y., , Haffner, P.: Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324 (1998)

11. Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., Talwalkar, A.: Hyperband: A
novel bandit-based approach to hyperparameter optimization. ICLR (2017)

12. Moshkelgosha, V., Behzadi-Khormouji, H., Yazdian-Dehkordi, M.: Coarse-to-fine
parameter tuning for content-based object categorization. In: Int. Conf. on Pattern
Recognition and Image Analysis (IPRIA). pp. 160–165. IEEE (2017)

13. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Y Ng, A.: Reading digits
in natural images with unsupervised feature learning. NIPS (2011)

14. Rejani, Y.I.A., Selvi, S.T.: Early detection of breast cancer using SVM classifier
technique. CoRR abs/0912.2314 (2009)

15. Rolland, P., Scarlett, J., Bogunovic, I., Cevher, V.: High-dimensional bayesian
optimization via additive models with overlapping groups. AISTATS (2018)

16. Sadeghi, A., Graux, D., Yazdi, H.S., Lehmann, J.: MDE: multi distance embeddings
for link prediction in knowledge graphs. In: 24th European Conf. on Artificial
Intelligence (ECAI) (2020)

17. Snoek, J., Larochelle, H., Adams, R.: Practical bayesian optimization of machine
learning algorithms. In Neural Information Processing Systems (NIPS) (2012)

18. Vilalta, R., Drissi, Y.: A perspective view and survey of meta-learning. Artificial
Intelligence Review 18(2), 77–95 (2002)

19. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-mnist: a novel image dataset for bench-
marking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)


	Meta-Hyperband: Hyperparameter optimization with meta-learning and Coarse-to-Fine

