
Multi Platform-based Hate Speech Detection

Shane Cooke1, Damien Graux2 a and Soumyabrata Dev1 b

1ADAPT SFI Research Centre, School of Computer Science, University College Dublin, Ireland
2ADAPT SFI Research Centre, Trinity College Dublin, Ireland

shane.cooke@ucdconnect.ie, damien.graux@adaptcentre.ie, soumyabrata.dev@ucd.ie

Keywords: Hate Speech Detection, Multi-Platform, Combining Embeddings and Classifiers.

Abstract: A major issue faced by social media platforms today is the detection, and handling of hateful speech. The
intricacies and imperfections of online communication make this a difficult task, and the rapidly changing use
of both non-hateful, and hateful language in the online sphere means that researchers must constantly update
and modify their hate speech detection methodologies. In this study, we propose an accurate and versatile
multi-platform model for the detection of hate speech, using first-hand data scraped from some of the most
popular social media platforms, that we share to the community. We explore and optimise 50 different model
approaches, and evaluate their performances using several evaluation metrics. Overall, we successfully build
a hate speech detection model, pairing the USE word embeddings with the SVC machine learning classifier,
to obtain an average accuracy of 95.65% and achieved a maximum accuracy of 96.89%. We also develop
and share an application allowing users to test sentences against a collection of the most accurate hate speech
detection models. Our application then returns a aggregated hate speech classification, together with a confi-
dence level, and a breakdown of the methodologies used to produce the final classification for explainability.

1 Introduction

The definition of hate speech is a topic of great discus-
sion within society today. Philosophers, researchers
and law-makers all have their own variations of the
definition, however there are a set of facts upon which
most parties agree on, the first being that the message
is directed at an individual or group, and the second
that based on that message the group is viewed as neg-
ative, unwelcome or undesirable which warrants hos-
tility towards them (Rudnicki and Steiger, 2020). In
EU law, hate speech is defined as “the public incite-
ment to violence or hatred on the basis of certain char-
acteristics, including race, colour, religion, descent
and national or ethnic origin” (Jourová, 2016).

Online hate speech however is a special case of
hate speech that occurs in the online environment,
making the perpetrators more anonymous, which in
turn may make them feel less accountable, and as a re-
sult potentially more ruthless. To effectively fight on-
line hate speech, non-government organisations aim
to be more flexible than the justice system allow, in
particular it is increasingly common to define hate
speech much more broadly and include messages that

a https://orcid.org/0000-0003-3392-3162
b https://orcid.org/0000-0002-0153-1095

do not explicitly incite violence only, but instead
spread prejudice, stereotypes, biases and a general
sense of ostracism. Hate speech online has been a
major problem since the spread of the Web, how-
ever in light of the rapid rise in popularity of social
media sites, this problem has since increased in size
exponentially. For instance, (Hawdon et al., 2015)
found that approximately 53% of American, 48% of
Finnish, 39% of British and 31% of German survey-
respondents had been exposed to online hate mate-
rial. A study conducted by an AI-technology com-
pany, found that Twitter hate speech against China
and the Chinese had increased 900% in early 2020,
and found that a 70% increase in hate between kids
and teens in online chatrooms had occurred in the
same timeframe (L1GHT, 2020). TikTok removed
380 000 videos in August 2020 alone (Han, 2020) and
Facebook reported a record 25 million instances of
hate speech in Q1 of 2021.

In this study, we propose an accurate and versa-
tile multi-platform model for the detection of hate
speech, using first-hand data scraped from some of
the most popular social media platforms. Our contri-
butions are threefold: First, we annotated manually
a corpus of 3 000 comments from three social media



platforms and share it to the community1. Second, we
explore and optimise 50 different model approaches,
and evaluate their performances using several evalua-
tion metrics. Third, in addition, we also develop and
share2 an application allowing users to test sentences
against a collection of the most accurate hate speech
detection models to give the possibility to have finer
results made from a combination of several models.

The rest of the article is structure as follows: in
Section 2, we briefly remind the state-of-the-art in
hate-speech detection. Then, we describe the data ac-
quisition process in Section 3. Section 4 gives the
details of the approach followed and Section 5 dis-
cusses the obtained results and performances. Sec-
tion 6 presents the final application we developed.
And finally, Sections 7 & 8 respectively mark the lim-
itations of our method and draw our conclusions.

2 Related Work

Detecting hate speech online amongst millions of
posts every day is a hard task and carries many as-
sociated challenges with it. (Kovács et al., 2020)
outlined some of these challenges and reviewed over
fifty works on hate detection online such as (David-
son et al., 2017) or (Bhattacharya and Weber, 2019).
Some of the main challenges identified in the form
of key-word based search approaches. Another huge
challenge in hate speech detection which spans all
forms of search is the detection of context and nuance.
(Röttger et al., 2021), found that many hate speech de-
tection models struggled with “reclaimed slurs” and
often mislabelled them as hateful. In parallel, (Sap
et al., 2019) outlines bias consideration challenges.

(Salminen et al., 2020) presents a multi-platform
machine learning approach to online hate detec-
tion is proposed. They observed that most stud-
ies (e.g. (Kansara and Shekokar, 2015; Ramampiaro,
2018; Lee and Lee, 2018)) tend to focus on one plat-
form, which they saw as problematic because there
are no guarantees it generalizes well across platforms.

There are many ways to evaluate the performance
of hate speech detection models. (Mozafari, 2020) re-
mark that “classifiers with higher precision and recall
scores are preferred in classification tasks. However,
due to the imbalanced classes in the hate speech de-
tection datasets, we tend to make a trade-off between
these two measures”. For this reason they decided
to use macro averaged F1-measures to summarize the
performance of their models. On the other hand, (Al-
shalan and Al-Khalifa, 2020) decided to evaluate their

1Annotated corpus
2Github repository

models using precision, recall, F1-score, accuracy,
hate class recall, and AUROC. (Vigna et al., 2017)
proposed that the best evaluation metrics to use are
accuracy, precision, recall and F-score.

3 Data Acquisition

In order to create a versatile and well-rounded hate
speech detection system, we decided to collect com-
ment and post data from three different sources: Red-
dit, Twitter and 4Chan. The use of language, both
hateful and non-hateful, can vary extremely between
platforms, for this reason we believe the use of a
multi-platform approach should help hate speech de-
tection. Each of the three platforms boast varying lev-
els and methods of moderation: with Reddit having
community-based moderation, Twitter having auto-
matic or employee-based moderation, and 4Chan hav-
ing virtually zero moderation. Due to these highly
differing methods of platform moderation, it is easy
to pinpoint the subtleties of the hateful language used
on each platform. Due to Reddit’s community-based
moderation, the hateful speech exhibited is often very
subtle and very few slurs are used, while the auto-
matic and employee-driven moderation used by Twit-
ter promotes “leetspeak” and disguised slurs. These
are both in sharp contrast to the language used in the
unmoderated 4Chan forums, where extreme slurs are
used regularly, and hateful speech is not only toler-
ated, but encouraged by some. The choice of three
data sources was ultimately made to ensure that the
hate speech dataset curated for this project would be
heterogenous, and would feature a wide array of dif-
ferent forms of both non-hateful and hateful language.

Overall, we decided that a procured dataset of
3 000 posts and comments would be the best solu-
tion. The dataset exhibits an equal split of 1 000
posts from each of the three social media platforms,
and each post is classified and labelled as either non-
hateful (‘0’) or hateful (‘1’). The posts and comments
are split into classifications of 2 400 non-hateful posts
(80%), and 600 hateful posts (20%).

4 General Approach

4.1 Word Embeddings

Word Embeddings are a class of techniques in which
individual strings are mapped to vector or numeri-
cal representations. The chosen form of represen-
tation varies widely depending on the word embed-
ding method being employed, however every method

https://figshare.com/articles/dataset/Labelled_Hate_Speech_Detection_Dataset_/19686954
https://github.com/Soumyabrata/detecting-hate-speech


follows the same core principle of mapping a single
string to a single defined value. In order to efficiently
and accurately analyse and model the posts contained
in our database, we used a variety of five different
word embedding methods which all employ very dif-
ferent embedding methodologies.

First, we used TFIDF (“Term Frequency-Inverse
Document Frequency”). It is a machine learning algo-
rithm based on a statistical measure of finding the rel-
evance of words in a text. The “TF”, is calculated by
dividing the number of occurrences of words by the
total number of words in the text base. The “IDF” is
calculated by dividing the total number of comments
by the number of comments containing the word. The
overall embedding is equal to (TF)× (IDF). Second,
we consider Doc2Vec (Le and Mikolov, 2014) which
is an NLP tool for representing documents as a vec-
tor, and is a generalisation of the “Word2Vec” model.
Doc2Vec vectorises words to their representative for-
mat, and includes a paragraph numerical representa-
tion tied to these word vectors. Third, we used a
Hashing Vectorizer algorithm which converts a text
into a matrix of token occurrences, where each token
directly maps to a column position in a matrix where
its size is predefined. The hash function used is Mur-
murhash3. Fourth, we exploited Google’s Universal
Sentence Encoder (Cer et al., 2018). It captures the
most informative features of a given sentence and dis-
card noise. Finally, we included also BERT (Devlin
et al., 2018) which uses a Transformer learning the
contextual relations between words in a text.

4.2 Classifiers

We trial a diverse collection of ten machine learn-
ing classifiers. We ensure that within this group of
classifiers there are both classical machine learning
algorithms such as the Decision Tree classifier, and
more modern, task-specific algorithms such as the
XGBoost classifier. The selected classifiers are:

1. Random Forest Classifier (Pal, 2005);
2. Decision Tree(Safavian and Landgrebe, 1991);
3. Naive Bayes (Rish et al., 2001);
4. SVC (Vapnik, 1998);
5. AdaBoost (Freund and Schapire, 1997);
6. Gaussian Process (Gibbs, 1998);
7. K-Neighbours (Guo et al., 2003);
8. Multi-layer Perceptron (Hornik et al., 1989);
9. XGBoost (Chen and Guestrin, 2016);

10. Linear Discrimination (Izenman, 2013).

Once the word embedding methods are chosen and
implemented, we test all possible combinations of

word embedding, machine learning classifier pairs.
First, the classifiers are trained using the training data
vectors produced by the word embedding process.
Each one of these vectors has a corresponding “Hate-
ful” value of either ‘0’ or ‘1’, which is the ‘target’
variable. We run each classifier twenty times with a
new train and test data split for each iteration, and take
an average of each of the evaluation metrics across the
twenty iterations and achieved a set of final results.

4.3 Optimisation Strategies...

4.3.1 ...for Classifiers

In order to optimise these results, the parameters or
configuration variables of each classifier had to be
tested and refined in pursuit of the highest possible
results. While some classifiers do not take parame-
ters such as the ‘GaussianNB’, ‘GaussianProcess’ and
‘XGBoost’ classifiers, the other classifiers can take
upwards of eight parameters3. We thus implement
exhaustive searches over specified parameter values,
and implements fitting and scoring methods to evalu-
ate each combination of parameters, see Figure 1.

Results The parameter optimisation of the machine
learning classifiers had a majorly positive effect on
the results produced by the classifiers across all eval-
uation metrics. While some algorithms do not take
parameters such as ‘GaussianNB’, ‘GaussianProcess’
and ‘XGBoost’, the majority of algorithms do take
parameter variables, and the overall optimisation pro-
cess was extremely effective. For instance, Figure 2
shows an example of the results produced by the pa-
rameter optimisation for the SVC classifier. The high-
est performing kernel parameter (‘rbf’) has more than
1% higher accuracy than the lowest one (‘poly’).

4.3.2 ...for Word Embeddings

Similarly, we optimise the parameters of the word em-
bedding methods. While some of the word embed-
ding methods such as USE and BERT do not take pa-
rameters due to the fact that they are pre-trained algo-
rithms, the TFIDF, Doc2Vec and Hashing Vectorizer
methods take parameters. In pursuit of the most ef-
ficient word embedding parameter optimisation pro-
cess possible, we created multiple different word em-
bedding instances from the same word embedding
method, each initialised with different parameters.

Results The parameter optimisation of the word
embedding methods was also successful, and had a

3We used GridSearchCV from the sci-kit learn library.



Figure 1: Parameter dictionaries for the GridSearchCV algorithm.

Figure 2: Parameter Optim. of the SVC classifier.

Figure 3: Parameter Optim. of the HV embeddings.

much more pronounced and noticeable effect on the
results produced by the models, across all evaluation
metrics. While the pre-trained word embedding al-
gorithms such as ‘USE’ and ‘BERT’ do not take pa-
rameters, the other ones do, and the overall optimi-
sation process was extremely effective. For example,
Figure 3 shows some examples of the results achieved
by the parameter optimisation for the Hashing Vector-
izer. When 500 ‘n features’ are selected as opposed to
20, there is more than a 10% increase in the accuracy
produced by the word embedding method.

Unlike the parameter optimisation of the machine
learning classifiers where changes in accuracy were
often subtle, the word embedding parameter optimi-
sation exhibited major improvements to the accuracy
of the models. Increases in accuracy due to word em-
bedding parameter optimisations were non-uniform
and varied widely, however an increase in the range
of +0.25% (TFIDF) and +10.5% (Hashing Vectorizer)
was exhibited across all embeddings.

5 Experimental Validation

To evaluate and analyse the performance of the hate
detection models, we relied on four main evaluation
metrics: accuracy, precision, recall and F1-Score.

The proportion of positive identifications that where
actually correct (Precision) and the proportion of ac-
tual positives that where identified correctly (Recall)
are major factors in determining the overall perfor-
mance of a hate speech detection system, and F1-
Score (a harmonic mean of both precision and recall)
is also an extremely valuable metric when judging
overall performance. Accuracy is used to determine
the ability of the model to accurately identify patterns
or relationships between the data in a dataset based on
the training data that it has received.

5.1 Single Platform

The overall goal is to produce an efficient and ef-
fective multi-platform hate speech detection model,
however it is important to analyse and evaluate the
performance of each of the three individual single-
platform models. To carry out this evaluation, we
first split the full 3 000 comment dataset into three
datasets of 1 000 comments, with each dataset only
containing data from one specific platform. This re-
sulted in each platform having its own dataset with
800 (80%) of comments being non-hateful, and 200
(20%) of those being hateful. Each dataset was then
initialised used the same training to testing data split
ratio of 0.3, and tested using the exact same method-
ology, classifiers and word embeddings. Each plat-
forms data was then used to create and test fifty mod-
els (number of word embeddings times the number
of classifiers). Once this testing had been completed
and all evaluation metrics had been noted, we singled
outthe top performing machine learning classifiers for
each of the five word embedding methods, for each of
the three platform datasets. The results of this pro-
cess are shown in Figures 4, 5 & 6. We notice that
there is a wide variety in the highest achieving ma-
chine learning classifier and word embedding pairs
depending on what data the model had been trained
and tested on. The Reddit datasets highest perform-
ing model was the USE word embeddings paired with
the Naı̈ve Bayes classifier, for the Twitter datasets it
was the TFIDF paired with the Decision Tree classi-
fier, and with 4Chan datasets it was the USE paired
with the Multi-Layer Perceptron. There is also diver-
sity in the highest average accuracy achieved by each
dataset, with Reddit achieving maximum of 94.73%,
Twitter 98.78% and 4Chan 96.02%.



Figure 4: Top classifiers for each embedding with Reddit.

Figure 5: Top classifier for each embedding with Twitter.

Figure 6: Top classifier for each embedding with 4Chan.

Due to the fact that the exact same methodologies,
embeddings and classifiers where employed on each
of the three datasets, this diversity in embedding and
classifier pairs, and in the results achieved by these
pairs can be explained by the differences in the col-
lected data. As stated before, each of the three so-
cial media platforms has specific moderation meth-
ods. We believe that the diversity in results achieved
by each single-platform model is largely due to the
relative difficulty to detect the specific forms of hate-
ful speech exhibited on that platform. Reddit’s com-
munity based and strong moderation leads to “slur-
less” and subtle hateful language (e.g. “Get them all
out of our country”) which is difficult to detect and
classify, where-as the automated and somewhat in-

adequate moderation on Twitter promotes the com-
mon use of typical hateful slurs (e.g. n*gger, f*ggot)
which is much easier to detect and classify. 4Chan’s
no moderation policy leads to a diverse array of hate-
ful speech, language and slurs (e.g. k*ke, n*gger,
f*ggot, towelhead, mudskin), which ultimately makes
it easier to detect and classify than the subtle Reddit
hate speech, but harder to detect and classify than the
repetitive Twitter hate speech.

For this reason it is extremely important in this
day and age to produce multi-platform, versatile hate
speech detection models that don’t rely on the specific
language used on a single social media platform.

5.2 Multi Platform

The goal of our study is to produce a high-achieving
hate speech detection model that could span multi-
ple social media platforms and produce reliable and
replicable results. To carry out a multi platform anal-
ysis, we use the full 3 000 comment dataset of com-
bined platform data. The dataset was split into train-
ing and testing data in a 0.3 ratio, and tested against
the fifty word embedding and machine learning clas-
sifier pairs. The results of this process are in Figure 7.

The highest performing multi-platform hate
speech detection model produced in this project was a
combination of the Universal Sentence Encoder word
embeddings paired with the Support Vector Machine
(SVC) machine learning classifier, which achieved a
peak average accuracy of 95.85%. The USE word em-
beddings achieving the highest accuracy result is rel-
atively unsurprising due to the analysis carried out on
the single-platform models, in which USE was iden-
tified as an extremely consistent and versatile word
embedding method, regardless of the platform data.
The box plot shown in Figure 8 shows that the pair
(USE,SVC) exhibits the highest upper bound accu-
racy of all combinations at a value of 96.89%, and
also exhibits a lower variation in accuracy results
when compared to all other embedding methods.

The USE embedding combined with SVC exhib-
ited a maximum average precision of 0.96, recall of
0.82 and F1 of 0.88 when classifying a comment as
hateful. Each one of these individual values where
the highest evaluation metric results achieved by any
model trained using the multi-platform dataset (Fig-
ure 9). It also exhibited a maximum average precision
of 0.96, recall of 0.99 and F1 of 0.97 when classify-
ing comments as non-hateful, which apart from recall
where some models equalled the highest result, were
also the highest evaluation metrics achieved by any
model trained on the multi-platform dataset. Results
for non-hateful are shown in Figure 10.



Figure 7: Best ML classifier for each of the word em-
bedding methods using the multi-platform dataset.

Figure 8: Accuracies achieved by the best machine
learning classifier for each of the word embedding meth-
ods for the multi-platform dataset.

Figure 9: Evaluation metrics achieved by each of the
best word embedding and classifier pairs when classi-
fying data as hateful (X-Axis starts at 0.5).

Figure 10: Evaluation metrics achieved by each of the
best word embedding and classifier pairs when classify-
ing data as non-hateful (X-Axis starts at 0.8).

Figure 11: Comparative average run times of each model
tested on the multi-platform dataset.

5.3 Run Time & Efficiency

In the course of this study we measured both the sin-
gle run time and the twenty run time average of the
word embeddings and machine learning classifiers.
The twenty runtime average for all classifiers and em-
beddings came out to exactly 20x the signle run time,
so we decided to only focus on the single runtime
metric. In order to fairly evaluate this metric, we
calculated both the average runtime of each machine

learning classifier across all word embeddings, and
the average run time of each word embedding method
across all classifiers and noted the results.

The classifier with the highest average run time
by quite a large margin was the Random Forest Clas-
sifier (14.7235s), and the classifier with the low-
est average run time was the Naı̈ve Bayes classifier
(0.1063s). The Gaussian Process and Multi-Layer
Perceptron classifiers also had notably high average
run times (5.6062s and 4.8512s respectively), while
the K-Neighbours and Decision Tree classifiers had
notably low average run times (0.1991s and 0.4270s
respectively). Regarding the word embedding with
the highest average run-time, it was TFIDF (6.2958s),
with BERT having the second highest average run-
time of 4.3350s. Doc2Vec was the fasted performing
word embedding method with an average run-time of
1.3284s and the Hashing word embeddings also per-
formed well with a 1.6762s average run time.

With the run-time of each model calculated and
noted, we determine which models exhibited the
highest levels of efficiency. Efficiency refers to the
ability of a machine learning model to produce ac-
curate results, while also exhibiting a very short rel-
ative run-time. Figure 11 contains all of the run-
times of the machine learning models tested during



Figure 12: Output screenshot of our HateChecker.

this project. We then used this run-time table along
with the accuracies table produced by each model to
come to a conclusion as to the most efficient models.

Ultimately, we determined that the three models
circled in red in the above table exhibited the high-
est levels of efficiency out of all tested models. The
Doc2Vec and Naı̈ve Bayes model, the Doc2Vec and
K-Neighbours model, and the USE and Naı̈ve Bayes
model all exhibited an average run time of less than
one second (0.0101s, 0.0549s and 0.0570s respec-
tively), and also all exhibited a notably high degree
of accuracy when compared to other models. The
Doc2Vec and Naı̈ve Bayes model achieved an overall
accuracy of 83.02%, the Doc2Vec and K-Neighbours
model achieved an overall accuracy of 88.55%, and
the USE and Naı̈ve Bayes model achieved an overall
accuracy of 93.61%. All three of these models exhib-
ited fast run-times in comparison to other models, and
also achieved an high accuracy in comparison to other
models, which makes them the most highly efficient
and economical models.

6 HateChecker Application

HateChecker is the application we developed using
the “streamlit” python library for the purpose of test-
ing some of the most accurate hate speech detection
models against a wide variety of different user in-
putted comments and posts. The HateChecker appli-
cation takes input in the form of a comment or post
like sequence of strings. Each of the twenty individual
models selected will then use its own methodology
to classify the user inputted comment as non-hateful
(‘0’) or hateful (‘1’), and an aggregation of the classi-
fications produced by these twenty models is then cal-
culated and returned as an overall classification with a
confidence level percentage included. Practically, the
models that we selected for use in the HateChecker
application employ each of the ten classifiers paired
with both the USE and BERT word embeddings. We
selected USE and BERT word embeddings for the
HateChecker application over the other word embed-

dings, because the models produced using these word
embeddings exhibited an absolute minimum average
of 81.00%, while other word embedding methods ex-
hibited accuracies as low as 43.78%. To ensure that
the results produced by the HateChecker application
where to a sufficiently high standard, we decided to
rule out the other word embedding methods.

The HateChecker application was ultimately cre-
ated and designed so that individual models could be
tested by carefully designed user inputted data which
may have not occurred in either the training or test-
ing data which the model was built on. An example
of this would be using the HateChecker application
to analyse the models ability to classify sequences of
strings filled with punctuation, numbers and special
characters. By calculating an overall classification,
confidence level percentage, and displaying which in-
dividual models made which classifications, we could
begin to test our models on a wide array of different
sequences of strings allowing us to evaluate and anal-
yse weaknesses and strengths within our models.

7 Limitations

The presented findings of this study rely on the first
(manual-)step of annotating comments, thereby the
consideration of additional platforms and more com-
ments could refine our results, indeed, each time we
added more comments to the database, the results
achieved by the models across the board would in-
crease by 0.5% - 1%. Similarly, considering a larger
set of embeddings techniques and classifiers could
lead to finer results and different explanations at the
end of the process when HateChecker returns its con-
fidence score. Regarding the application, technical
strategies could be deployed to improve the perfor-
mance of HateChecker as many intermediate results
are not yet saved, leading to long loading times when
opening the software. On the hate detection perfor-
mances, advance annotations could be explored to de-
tect subtle hate-sentences. Finally, the quality of the
presented and shared set of annotations is bound in
time as languages and usages evolve across time, with
haters often finding new ways to convey their ideas.

8 Conclusion

In this study, we explore a strategy to detect hate-
speech. We based our approach on considering mes-
sages from several online social-media platforms at
once, betting that their different internal moderation
policies would provide a larger set of haters’ meth-



ods. In additions to sharing our annotated set with
the community, we also develop an application build-
ing up our strategy of combining/comparing multiple
pairs of word embeddings and classifiers. Overall,
we successfully build a hate speech detection model,
pairing USE and SVC, to obtain an average accu-
racy of 95.65% and achieved a maximum accuracy of
96.89%. Moreover, our application allows to define
an aggregating strategy by e.g. choosing which pairs
should be taken more into account. Therefore, we
hope that this two-side strategy of involving several
platforms and combining multiple pairs of embed-
dings and classifiers, will inspire the community to
improve our results and refine our performance score.

Sensitive Content Warning Due to the nature of
this study, there are places in this article where hate-
ful language and terms are used. While we did try and
keep the use of these terms and phrases to a minimum,
and while we obviously do not approve these mes-
sage, it was vital to provide the reader with a proper
understanding of the context and methodologies used
in the process of completing this project.

REFERENCES

Alshalan, R. and Al-Khalifa, H. (2020). A deep learning
approach for automatic hate speech detection in the
saudi twittersphere. MDPI.

Bhattacharya, D. and Weber, I. (2019). Racial bias in hate
speech and abusive language detection datasets. ACL
Anthology.

Cer, D., Yang, Y., Kong, S.-y., Hua, N., Limtiaco, N., John,
R. S., Constant, N., Guajardo-Cespedes, M., Yuan,
S., Tar, C., et al. (2018). Universal sentence encoder.
arXiv preprint arXiv:1803.11175.

Chen, T. and Guestrin, C. (2016). Xgboost: A scalable
tree boosting system. In Proceedings of the 22nd acm
sigkdd international conference on knowledge discov-
ery and data mining, pages 785–794.

Davidson, T., Warmsley, D., Macy, M., and Weber, I.
(2017). Automated hate speech detection and the
problem of offensive language.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova,
K. (2018). Bert: Pre-training of deep bidi-
rectional transformers for language understanding.
arXiv:1810.04805.

Freund, Y. and Schapire, R. E. (1997). A decision-theoretic
generalization of on-line learning and an application
to boosting. Journal of computer and system sciences,
55(1):119–139.

Gibbs, M. N. (1998). Bayesian Gaussian processes for re-
gression and classification. PhD thesis, Citeseer.

Guo, G., Wang, H., Bell, D., Bi, Y., and Greer, K. (2003).
Knn model-based approach in classification. In OTM
Confederated Int. Conf., pages 986–996. Springer.

Han, E. (2020). Countering hate on tiktok.
Hawdon, J., Oksanen, A., and Räsänen, P. (2015). Online

extremism and online hate exposure among adoles-
cents and young adults in four nations.

Hornik, K., Stinchcombe, M., and White, H. (1989). Multi-
layer feedforward networks are universal approxima-
tors. Neural networks, 2(5):359–366.

Izenman, A. J. (2013). Linear discriminant analysis.
In Modern multivariate statistical techniques, pages
237–280. Springer.

Jourová, V. (2016). Code of conduct - illegal online hate
speech questions and answers.

Kansara, K. and Shekokar, N. (2015). A framework for
cyberbullying detection in social network. Semantic
Scholar.

Kovács, G., Alonso, P., and Saini, R. (2020). Challenges of
hate speech detection in social media. Springer Na-
ture.

L1GHT (2020). Rising levels of hate speech & online toxi-
city during this time of crisis.

Le, Q. and Mikolov, T. (2014). Distributed representations
of sentences and documents. In International confer-
ence on machine learning, pages 1188–1196. PMLR.

Lee, H. S. and Lee, H. R. (2018). An abusive text detection
system based on enhanced abusive and non-abusive
word lists. Yonsei University.

Mozafari, M. (2020). Hate speech detection and racial bias
mitigation in social media based on bert model. PLOS
ONE.

Pal, M. (2005). Random forest classifier for remote sensing
classification. International journal of remote sensing,
26(1):217–222.

Ramampiaro, H. (2018). Detecting offensive language in
tweets using deep learning. Cornell University.

Rish, I. et al. (2001). An empirical study of the naive bayes
classifier. In IJCAI 2001 workshop on empirical meth-
ods in artificial intelligence.

Rudnicki, K. and Steiger, S. (2020). Online hate speech.
Röttger, P., Vidgen, B., Nguyen, D., Waseem, Z., Margetts,

H., and Pierrehumbert, J. (2021). Hatecheck: Func-
tional tests for hate speech detection models.

Safavian, S. R. and Landgrebe, D. (1991). A survey of de-
cision tree classifier methodology. IEEE transactions
on systems, man, and cybernetics, 21(3):660–674.

Salminen, J., Hopf, M., Chowdhury, S., gyo Jung, S.,
Almerekhi, H., and Jansen, B. (2020). Developing an
online hate classifier for multiple social media plat-
forms. Human-centric Computing and Info. Sciences.

Sap, M., Card, D., Gabriel, S., Choi, Y., and Smith, N.
(2019). The risk of racial bias in hate speech detec-
tion.

Vapnik, V. (1998). Statistical learning theory new york. NY:
Wiley, 1(2):3.

Vigna, F. D., Cimino, A., and Petrocchi, M. (2017). Hate
me, hate me not: Hate speech detection on facebook.
First Italian Conference on Cybersecurity.


	Introduction
	Related Work
	Data Acquisition
	General Approach
	Word Embeddings
	Classifiers
	Optimisation Strategies...
	...for Classifiers
	...for Word Embeddings


	Experimental Validation
	Single Platform
	Multi Platform
	Run Time & Efficiency

	HateChecker Application
	Limitations
	Conclusion

