
HAP: Building Pipelines with Heterogeneous Data

Damien Graux
Inria

damien.graux@inria.fr

Pierre Genevès
Cnrs

pierre.geneves@cnrs.fr

Nabil Layaı̈da
Inria

nabil.layaida@inria.fr

ABSTRACT
The increasing number of available datasets gives opportu-
nities to build large and complex applications which aggre-
gate results coming from several sources. These emerging
usecases require new systems where combinations of hetero-
geneous sources are both allowed and efficient.
We propose a set of high-level primitives – called Hap – to
facilitate the description of processing chains. Hap descrip-
tions are formed from the combination of several queries
written in popular query languages such as sparql and
XPath. From any Hap description we generate a single
sql query. This makes it possible to apply automatic opti-
mizations on the whole pipeline description at compile-time.
For the need of this demonstration, we generate queries in
HiveQL form that we execute with Hive.

1. INTRODUCTION
The increasing availability of data under free licenses (open

data) allows to develop innovative applications that combine
and enrich data. These applications often have to deal with
heterogeneous data – i.e. representing various kinds of infor-
mation and structured using various standards – of diverse
size – e.g. datasets size are spread over several orders of
magnitude – and of various natures since some datasets are
more dynamic than others.

The possible combinations of these three degrees of free-
dom conducted to designs of specific applications dedicated
to each single case, for instance efficient evaluators of a cho-
sen query language (e.g. sql, sparql. . .) in a distributed
context. However, in some usecases, existing delineations
of field have to be over crossed; indeed, aggregating results
extracted from several datasets might be required to build
more complex answers. Such a need implies to be able to
efficiently query several kinds of data structures while being
able to merge the obtained sub-results also efficiently.

For the need of this demonstration, we generate queries
in the HiveQL form that is executed with Hive. Apache
Hive [12] is an open-source data warehousing solution built

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 8
Copyright 2017 VLDB Endowment 2150-8097/17/04.

EVAL id ((columns)) [[query]]
CONNECT id id id ((columns)) [[c ond i t i on s]]
FILTER id id ((columns)) [[f i l t e r s]]
RETURN id

Figure 1: Hap Syntax.

on-top of Apache Hadoop [3]. As a consequence, it takes
as file system the hdfs [11] and converts sql (technically
Hive-QL – but the fragment we consider allow us to use
the exact sql syntax –) queries in sequences of MapReduce
jobs executed directly on Hadoop. Therefore, Apache Hive
allows to query large datasets distributed across cluster of
nodes using a relational language while providing resiliency
thanks to Hadoop.

Contribution. In this demonstration, we present a set of
high-level primitives called Hap for the description of pro-
cessing chains. A Hap description is compiled into a single
sql query. The advantages of using Hap are twofold. First,
it allows to design pipelines dealing with heterogenous data
(e.g. rdf, xml, csv) queried with their respective stan-
dard languages. Second, Hap makes it possible to generate
a single optimized query for the whole pipeline, by applying
automatic optimizations with rewriting rules and statistics
on data.

2. HAP SYNTAX

Syntax. We propose four primitives, see Figure 1 for their
syntax. Each primitive deals with a set of columns and
defines also a unique identifier.

First, the initial instruction named EVAL allows to evaluate
an existing query (see Section 3 for a description of accepted
languages). Its syntax implies to give an ID to the task and
to named the returned columns. Second, CONNECT gives the
opportunity of combining sets of columns – results of queries
by extension – according to keys. Third, FILTER allows to
give conditions to refine a set of columns. Finally, RETURN is
used to have a starting point in the compilation process and
designates the set of columns (thanks to an identifier) that
should be returned. The combination of these four primi-
tives gives users the possibility of combining – in few lines –
subresults of already existing queries they have without the
need of rewriting them.

Technically, only one RETURN is tolerated per program. In
addition, there must obviously be unicity of output identi-

EVAL 1 ((dep , a r r , depHour , arrHour , s top)) [[Q−p l ane]]
EVAL 2 ((p lace , r e s t a u)) [[Q−d i n e r]]
EVAL 3 ((l o c a t i o n , po i)) [[Q−t ou r i sm]]
CONNECT 1 2 x ((dep , a r r , depHour , arrHour , stop , r e s t a u)) [[p l a c e=stop]]
FILTER x y ((dep , a r r , depHour , arrHour , stop , r e s t a u)) [[ar rHour−depHour > k]]
CONNECT 3 y f ((dep , a r r , po i , depHour , arrHour , stop , r e s t a u)) [[l o c a t i o n=stop]]
RETURN f

(a) Hap primitives of the Demonstration Example.

EVAL k ((name)) [[select x ...]] RETURN i

(select x as name

from (select * from i

select x ...
) as inik) as k

CONNECT i j k ((name)) [[key]] FILTER a b ((name)) [[condition]]

(select name (select name

from i from a

join j where condition) as b

on (key)) as k

(b) Partial Translations for each Primitive.

select *
from (select dep arr poi depHour arrHour stop restau

from (select location poi
from (Q-tourism) as ini_3

) as 3
join (select dep arr depHour arrHour stop restau

from (select dep arr depHour arrHour stop restau
from (select dep arr depHour arrHour stop

from (Q-plane) as ini_1
) as 1

join (select place restau
from (Q-diner) as ini_2

) as 2
on (place=stop)

) as x
where arrHour-depHour > k

) as y
on (location=stop)

) as f

(c) “Naive” Translation using Figure 2b.

Figure 2: Demonstration Example.

fiers whereas it is not the case as input identifiers; indeed, a
same result can be used at several places in the process, in
other words a “split” of a branch can be done. Because of
the restriction on the RETURN number, we are sure that the
process can be translated into on single Hive query, which
possibly contains nested sub-queries. Thereby, the trans-
lation algorithm is the following: starting from RETURN, it
constructs the tree of sub-queries using the paths of identi-
fiers defined by the CONNECT and FILTER primitives until it
reaches a stop condition with an EVAL.

Demonstration Example. For instance, we consider the
following process. Suppose one has a tourism agency with
several already stored datasets in a Hive warehouse such
as transportation timesheets (e.g. planes and/or trains),
restaurant list, description of points of interest (pois). . . and
several already existing services to query each single dataset
for example “give me the next plane leaving London for
NYC” or “list the 1-star restaurants in Paris”. One possible
new usecase could be: “I want to travel from one place to an
other one as a tourist and if it exits a long enough connexion
(more than k hours) I’d like to go to the restaurant.” This
application needs to combine results extracted from various
datasets. Considering that Q-plane, Q-diner and Q-tourism
respectively extract relevant information from the plane, the
restaurant and the pois databases, the final results might be
obtained using our primitives as shown in Figure 2a.

These primitives make it possible to generate a single
query directly executable by Hive. For example, the Hap
demonstration example (Figure 2a) can be translated into
the query of Figure 2c using the translation rules of Fig-
ure 2b. Their advantage is that they allow to apply a range

of analysis and optimizations in the query generation process
(see Section 4) while dealing with heterogeneous datasources
with their dedicated query languages (see Section 3).

3. HETEROGENEOUS SOURCES
We extend the number of supported query languages which

can be used in pipelines. Indeed, Hap allows to query other
data structures (than relational) using the conventional lan-
guage of each structure. Hap is then able to compiled into
a single query this aggregation of different queries while op-
timizing (1) the translation of each non-sql query and (2)
the final output query (see Section 4).

RDF & SPARQL. The Resource Description Framework
(rdf) is a language standardized by w3c to express struc-
tured information on the Web as graphs [7]. rdf data is
structured in triples written (s p o). sparql is the standard
rdf query language [10].
In this context, we propose and share RDFHive: a dis-
tributed rdf datastore benefiting from Apache Hive. RDFHive
is designed to leverage existing Hadoop infrastructures for
evaluating sparql queries. RDFHive relies on an optimized
translation of sparql queries into sql queries that Hive is
able to evaluate. The sources of RDFHive are openly avail-
able under the cecill1 license from: https://github.com/

tyrex-team/rdfhive.

JSON & JSONPath. Json2 is an open-standard format
that uses human-readable text to transmit data objects con-

1CeCILL v2.1: http://www.cecill.info/index.en.html
2Json website: http://json.org/

https://github.com/tyrex-team/rdfhive
https://github.com/tyrex-team/rdfhive
http://www.cecill.info/index.en.html
http://json.org/

(1) – Joins at the same level
Default =⇒

coli ⊂ colb ∪ cola
Optimized

SELECT colf
FROM (SELECT colc FROM C)
JOIN (

SELECT coli
FROM (SELECT colb FROM B)
JOIN (SELECT cola FROM A)
ON . . .

) ON . . .

SELECT colf
FROM (SELECT colc FROM C)
JOIN (SELECT colb FROM B)

ON . . .
JOIN (SELECT cola FROM A)

ON . . .

A

B

C

A

B

C

(2) – Merging duplicate branches
Default =⇒

coli ⊂ cola ∪ colb
Optimized

SELECT colf
FROM (SELECT cola FROM A)
JOIN (

SELECT coli
FROM (SELECT cola FROM A)
JOIN (SELECT colb FROM B)
ON cond i1

) ON cond i2

SELECT colf
FROM (SELECT cola FROM A)
JOIN (SELECT colb FROM B)
ON (cond i1 AND cond i2)

A

B

A

B

(3) – Pushing down conditions
Default =⇒

filter2 refines cola
Optimized

SELECT colf
FROM (SELECT cola

FROM A
WHERE f i l t e r 1)

WHERE f i l t e r 2

SELECT colf
FROM A
WHERE f i l t e r 1 AND f i l t e r 2

A Filter1 Filter2
A

Filter1

Filter2

Figure 3: Pipeline Rewriting Rules.

sisting of attribute-value pairs. JsonPath [5] is a component
allowing to find and extract relevant portions out of Json
structures. The Hive built-in get json object function sup-
ports a limited fragment of JsonPath. Thereby, Hap can
also aggregate results extracted from Json files.

XML & XPath. The Extensible Markup Language (xml)
is a w3c markup language that defines a set of rules for en-
coding documents in a format that is both human-readable
and machine-readable [1]. XPath [2] is a query language for
selecting nodes from an xml document.
When xml documents are loaded as single string columns,
Hap accepts the Hive built-in set of functions related to
XPath e.g. xpath(xml string,xpath expression string).

4. OPTIMIZATIONS
An advantage of Hap is the possibility of setting up pro-

cesses in few lines of code while allowing a global optimiza-
tion of the whole pipeline. The optimizing compiler of Hap
applies optimizations that cross the barriers of individual
subqueries (it performs intra and inter-subqueries optimiza-
tion). Using Hap makes it possible to further merge and
reorder sub-queries, and to move filters out of the subquery
in which they initially appeared, when appropriate. Obvi-
ously, the final generated query can still further benefit from
optimizations performed by the execution engine.

select dep arr poi depHour arrHour stop restau
from (select dep arr depHour arrHour stop

from (Q-plane) as ini_1
where arrHour-depHour > k

) as 1
join (select place restau

from (Q-diner) as ini_2
) as 2 on (place=stop)

join (select location poi
from (Q-tourism) as ini_3

) as 3 on (location=stop)

Figure 4: Optimized Query of the Example.

4.1 Using Statistics on Data
Hive translates its queries into sequences of MapReduce

stages. As a consequence, it will have to decide for each
MapReduce stage of a join which sequence is streamed through
the reducers. Conventionally, the last specified table is al-
ways chosen to be streamed whereas the others are buffered.
Therefore, it helps to reduce the memory needed in the re-
ducer – for buffering the rows for a particular value of the
join key – by organizing the tables such that the largest
tables appear last in the sequence.

Hap attributes a weight w(id) to each identifier id. These
weights – which refer to the estimated size of the sets – are
computed using statistics on data. To do so, Hap stores
for each table T having a set of fields {fT

1 , . . . , fT
n } the fol-

lowing information: the number of tuples in the table nT ,
the numbers of distinct values in each field v(fT

1),. . . ,v(fT
n).

We assume that each value appears with equal probability
(uniform distribution) in a column. Therefore, considering
a CONNECT to obtain id3 between id1 and id2 according to
[[fT1

i =fT2
j]], we define the obtained weight w(id3) as

follows:

w(id3) = min

(
w(id1).w(id2)

v(fT1
i)

,
w(id1).w(id2)

v(fT2
j)

)
Similarly, the weight of an EVAL identifier is computed going
directly in the query using the same strategy as above.

As a consequence, Hap can reorder the identifiers of a
CONNECT using the respective weights to guarantee that the
estimated largest table is the last of the sequence. Indeed,
“CONNECT i j k . . . ” becomes “CONNECT j i k . . . ” if w(i) >
w(j).

4.2 Pipeline Rewriting Rules
A round of static rewriting is also realized. Actually,

Hap tries to reorder the primitives according to the rules
schematically presented in Figure 3.

Nested Queries. First of all, Hap tries to limitate the num-
ber of nested sub-queries in order to increase the Hive par-
allelism level. As shown in Figure 3, trying to group the
connections and avoiding duplications can be done if the se-
lected columns remain the same between levels i.e. no new
column is created (by aggregation for instance).

Condition push down. In a second time, Hap tries to exe-
cute filters as soon as possible in order to limit (at most) the
size of intermediate results. To do so, Hap pushes down fil-
ters while the columns involved in the conditions are located
on the same branch.

Figure 5: Application Screenshot.

Overall Guarantees. The following guarantees are offered
for a query generated from a Hap description:

1. the final query minimizes the maximum depth of nested
subqueries (Hap attempts to flatten subqueries as much
as possible by joining on the maximum number of
columns at a given level)

2. filters of the final query are as close to the sources as
possible.

Considering the example shown Figure 2a, the previous
optimization strategies lead to the query obtained Figure 4.
Actually, compared to Figure 2c, the FILTER has been pushed
closed to Q-plane, there is one nested query level less and
the Q-tourism query is last since there are more pois than
planes or retaurants.

5. DEMONSTRATION DETAILS
The typical demonstration scenario is based on the touris-

tic example introduced in Section 2 where information about
planes, points of interest and restaurants are aggregated.
This scenario, which widely extends the example previously
presented, highlights several advantages of Hap:

1. Datasources have various structures which implies the
use of various query languages e.g. pois are stored in
rdf – they should be queried with sparql – whereas
restaurants are stored in relational csv files.

2. Datasources have also different size spread over orders
of magnitude e.g. GBs of pois and only some kBs of
planes.

3. The FILTER primitives needed in this usecase are com-
plex e.g in “real” datasets, locations are given trough
their latitude and longitude, thereby computing dis-
tances implies to use the Haversine formula.

4. The range of optimizations allows to avoid several sub-
queries joining at the same level the sub-processes which
are initially written in various query languages.

Actually, attendees will be able to interact directly by
writing Hap programs around this usecase. Moreover, the
whole process will be runnable step-by-step in order to show
the various optimizations realized, see e.g. Figure 5.

6. RELATED WORK & CONCLUSION
Accessing heterogeneous datasources can be done using

multi-database systems [9] or data integration systems [4].
The typical solution is to define a common intermediate data
model and also to provide a query language. The dominant
state-of-the-art architectural model is the mediator/wrap-
per architecture: each datasource has an associated wrapper
which is in charge of the translations between the datasets
and the mediator which centralizes information. However,
this architecture, used e.g. in [8], might suffer from the
centralization of the mediator and the frequent translations
done by the wrappers when datasources have to be dis-
tributed across a cluster. On the other hand, some systems
– such as Hue3 – aggregate only distributed components
in order to have an end-to-end distributed pipeline. Finally,
the Hap generated query can be plugged on tools such as [6]
in order to decide the best execution engine.

Hap tries to benefit from both strategies: (1) the exe-
cutions remain in a distributed context at any time since
pipelines are in fine translated into MapReduce tasks, (2) it
gets rid of wrappers/mediator bottlenecks by storing hetero-
geneous datasets directly in the Hive warehouse, (3) it uses a
higher-level set of primitives to glue together heterogeneous
datasets allowing sub-processes in various query languages
and (4) it applies optimizations on the overall pipeline.

7. REFERENCES
[1] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler,

and F. Yergeau. Extensible markup language. W3C
Rec. REC-xml-19980210, 16:16, 1998.

[2] J. Clark, S. DeRose, et al. Xml path language, 1999.

[3] J. Dean and S. Ghemawat. Mapreduce: simplified
data processing on large clusters. Communications of
the ACM, 51(1):107–113, 2008.

[4] A. Doan, A. Halevy, and Z. Ives. Principles of data
integration. Elsevier, 2012.

[5] S. Goessner. Jsonpath-xpath for json, 2007.

[6] I. Gog, M. Schwarzkopf, N. Crooks, M. P. Grosvenor,
A. Clement, and S. Hand. Musketeer: all for one, one
for all in data processing systems. In European
Conference on Computer Systems, page 2. ACM, 2015.

[7] P. Hayes and B. McBride. RDF semantics. W3C Rec.,
10, 2004.

[8] B. Kolev, P. Valduriez, C. Bondiombouy,
R. Jiménez-Peris, R. Pau, and J. Pereira. Cloudmdsql:
Querying heterogeneous cloud data stores with a
common language. Distributed and Parallel Databases,
pages 1–41, 2015.

[9] M. T. Özsu and P. Valduriez. Principles of distributed
database systems. Springer Science & Business Media,
2011.

[10] E. PrudHommeaux, A. Seaborne, et al. SPARQL
query language for RDF. W3C Rec., 15, 2008.

[11] K. Shvachko, H. Kuang, S. Radia, and R. Chansler.
The hadoop distributed file system. In Mass Storage
Systems and Technologies, pages 1–10. IEEE, 2010.

[12] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
S. Anthony, H. Liu, P. Wyckoff, and R. Murthy. Hive:
a warehousing solution over a map-reduce framework.
VLDB Endowment, 2(2):1626–1629, 2009.

3Hue website: http://gethue.com/

http://gethue.com/

	Introduction
	HAP Syntax
	Heterogeneous Sources
	Optimizations
	Using Statistics on Data
	Pipeline Rewriting Rules

	Demonstration Details
	Related Work & Conclusion
	References

