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ABSTRACT
sparql est le langage standard pour interroger des données au for-

mat rdf. Il exite une grande variété d’évaluateurs sparql mettant

en place différentes architectures tant pour la répartition des don-

nées que pour le déroulement des calculs. Ces différences couplées

à des optimisations spécifiques pour chaque évaluateur rendent

la comparaison entre ces systèmes impossible d’un point de vue

théorique. Nous proposons un nouvel angle de comparaison des

évaluateurs sparql répartis basé sur un classement multi-critère.

Nous suggérons d’utiliser un ensemble de cinq fonctionnalités afin

d’obtenir une description plus fine des comportements des évalua-

teurs répartis plutôt que de considérer l’analyse plus traditionnelle

des performances temporelles. Afin d’illustrer cette méthode, nous

avons mené des expérimentations mettant en compétition dix sys-

tèmes existants que nous avons ensuite classés en utilisant une

grille de lecture aidant à la visualisation des avantages et des limi-

tations des techniques dans le domaine de l’évaluation répartie de

requêtes sparql.

1 INTRODUCTION
We provide a new perspective on distributed sparql evaluators,

based on a multi-criteria ranking obtained through extensive ex-

periments. Specifically, we propose a set of five principal features

which we use to rank evaluators. Each system exhibits a particular

combination of these features. Similarly, the various requirements

of practical use cases can also be decomposed in terms of these

features. Our suggested set of features provides a more comprehen-

sive description of the behavior of a distributed evaluator when

compared to traditional performance metrics. We show how it helps

in more accurately evaluating to which extent a given system is

appropriate for a given use case. For this purpose, we systematically

benchmarked a panel of 10 state-of-the-art implementations. We

ranked them using this reading grid to pinpoint the advantages and

limitations of current sparql evaluation systems.

2 DATASTORES & METHODOLOGY
We used several criteria in the selection of the sparql evaluators

tested. First, we choose to focus on distributed evaluators. Further-

more, we retained systems that support at least a minimal fragment

of sparql composed of conjunctive queries and called the bgp frag-

ment. We focused on open-source systems. We wanted to include

some widely used systems to have a well-known basis of compar-

ison, as well as more recent research implementations. We also

wanted our candidates to represent the variery and the richness

of underlying frameworks, storage layouts, and techniques found

– see e.g. taxonomies of [10] and [5] –, so that we can compare them

on a common ground. We finally selected a panel of 10 candidate

implementations:

(1) 4store is a native rdf solution introduced in [9].

(2) CumulusRDF [11] relies on Apache Cassandra.

(3) CouchBaseRDF [3] uses CouchBase.

(4) RYA [13] is a solution leveraging Apache Accumulo.

(5) sparqlgx [7] is based on Apache Spark.

(6) S2RDF [16] uses SparkSQL.

(7) CliqueSquare [6] is a native rdf solution.

(8) PigSPARQL [15] compiles sparql to PigLatin.

(9) RDFHive [7] uses relational tables with Apache Hive.

(10) sde [7] is a modification and extension of sparqlgx.

Also for a fair comparison of the systems, we decided to rely

on third-party benchmarks. The literature about benchmarks is

also abundant (see e.g. [14] for a recent survey). For the purpose
of this study, we selected benchmarks according to two conditions:

(1) queries should focus on testing the bgp fragment and (2) the

benchmark must be popular enough in order to allow for further

comparisons with other related studies and empirical evaluations

(such as [3] for instance). In this spirit, we retained the LUBM [8]

and the WatDiv [1] benchmarks. During our tests we monitored

each task by measuring not only time spent but a broader set of

indicators: Time (Seconds), Disk footprint (Bytes), Disk activity

(Bytes/second), Network traffic (Bytes/second), CPU usage (per-

centage), RAM usage (Bytes), and SWAP usage (Bytes).

3 NEW READING-GRID
We report on the overall behavior of each tested systems for these

datasets: WatDiv1k (15GB), Lubm1k (23GB) and Lubm10k (232GB).

These datasets constitute appropriate yardsticks for studying how

the tested systems behave when the dataset size grows, with the

characteristics of the cluster used. Specifically, theWatDiv1k dataset

can still be held in memory of one single node, while the Lubm1k

dataset becomes too large. Lubm10k is even larger than the whole

available ram of the cluster.

A first lesson learned is that, for the same query on the same

dataset, elapsed times can differ very significantly from one sys-

tem to another. Interestingly, we also observe that, even with large

datasets, most queries are not harmful per se, i.e. queries that in-
curr long running times with some implementations still remain

in the “comfort zone” for other implementations, and sometimes

even representing a case of demonstration of efficiency for others.

For example, the response times for Q12 with Lubm1k span more

than 3 orders of magnitude. Interestingly and more generally, for

each query, there is at least a difference of one order of magnitude

between the times spent by the fastest and the slowest evaluators.

The variety of rdf application workloads makes it hard to cap-

ture how well a particular system is suited compared to the others

in a way based exclusively on time measurements. Thus, we con-

sider five features that have different needs and where the main

emerging requirement is not the same:
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Figure 1: System Ranking (farthest is better).

• Velocity: applications might favour the fastest answers.

• Immediacy: applications might need to evaluate some sparql

queries only once. This is typically the case of some pipeline

extraction applications.

• Dynamicity: applications might need to deal with dynamic

data, requiring to react to frequent data updates.

• Parsimony: applications might need to execute queries while

minimizing some of the resources, even at the cost of slower

answers. This is for example the case of background batch

jobs executed on cloud services where the main factors for

the pricing of the service are network, cpu and ram usage.

• Resiliency: applications that process very large data sets with
complex queries might favour forms of resiliency for trying

to avoid as much as possible to recompute everything when

a machine fails because it is likely to happen.

Figure 1 presents a Kiviat chart in which the tested systems are

ranked, based on Lubm1k and WatDiv1k according to all the fea-

tures already discussed. This representation gives at a glance clues

to select an evaluator. For instance it appears that 4store is espe-

cially relevant when velocity and parsimony are important and less

importance is given to resiliency. sde also appears as a reasonnable

choice when all criteria (including its potential cost on a cloud

platform) but parsimony matter.

4 RELATEDWORK & CONCLUSION
This study benefited from the extensive earlier works on bench-

marks for rdf systems. There are many benchmarks designed for

evaluating rdf systems [1, 2, 4, 8, 12, 14, 17]. Compared to all these

works, we focus on testing distribution techniques by consider-

ing a set of 10 state-of-the-art implementations; see e.g. [5, 10] for
recent surveys about distributed rdf datastores and their storage

approaches. Compared to studies included in the aforementioned

benchmarks, we measure a broader set of indicators encompassing

e.g. network usage. This allows to refine the comparative analysis

according to features and requirements from a slightly higher per-

spective by identifying the bottlenecks of each system when they

are pushed to the limits.

We conducted an empirical evaluation of 10 state-of-the-art dis-

tributed sparql evaluators on a common basis. By considering

a full set of metrics, we improve on traditional empirical studies

which usually focus exclusively on temporal considerations. We

proposed five new dimensions of comparison that help in clarifying

the limitations and advantages of sparql evaluators according to

use cases with different requirements.
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