
De-icing Federated SPARQL Pipelines: a method
for Assessing the “Freshness” of Result Sets

Damien Graux1,2(B) , Fabrizio Orlandi2(B) , and Declan O’Sullivan2

1 Inria, Université Côte d’Azur, CNRS, I3S, France
2 ADAPT SFI Centre, Trinity College Dublin, Ireland

{grauxd,orlandif,declan.osullivan}@tcd.ie

Copyright © 2021 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).

Abstract. In recent years, the ever-increasing number of available linked-
data endpoints has allowed the creation of complex data pipelines lever-
aging these massive amounts of information. One crucial challenge for
federated pipeline designers is to know when to query the various sources
they use in order to obtain fresher final results. In other words, they want
to know when a data update on a specific source impacts their own fi-
nal results. Unfortunately, the SPARQL standard does not provide them
with a method to be aware of such updates; and therefore pipelines are
regularly relaunched from scratch, often uselessly.
To help them decide when to get fresher results, we propose a construc-
tive method. Practically, it relies on digitally signing result sets from fed-
erated endpoints in order to create a specific query able to warn when,
and explain why, the pipeline result set is outdated. In addition, as our
solution is exclusively based on SPARQL 1.1 built-in functions, it is
fully-compliant with all the endpoints.

1 Introduction

During the past decades, the number of linked open datasets has rapidly in-
creased1. These datasets are structured following the W3C standard Resource
Description Framework (RDF) [7] and share knowledge on various domains, from
the generalist ones such as DBpedia [1] or WikiData [8] to the most specialised
ones, e.g. SemanGit [6]. This abundance of open datasets and SPARQL [3] end-
points led not only researchers but also businesses to integrate RDF graphs into
their complex data pipelines. In particular, businesses are increasingly leverag-
ing Semantic Web technologies to structure their own data and create value,
sometimes integrating external Linked Data to enrich their analyses [5].

Benefiting from these two decades of developments made by the community,
it is now possible to deploy Semantic Web pipelines and to adapt them to a
wide range of needs and use-cases. Recent developments have been, for example,
focused on distributed systems or on connecting Semantic Web data management

1 From 2010 to 2020, the LOD-cloud has grown from 203 to 1 255 datasets, approxi-
mately: https://lod-cloud.net/

https://orcid.org/0000-0003-3392-3162
https://orcid.org/0000-0001-9561-4635
https://orcid.org/0000-0003-1090-3548
https://lod-cloud.net/


systems together with non-RDF centric systems, paving the road to querying
heterogeneous data. As a consequence of this increasing complexity of the use-
cases, the pipelines themselves are getting more complicated, and often rely on
several distinct data sources using SPARQL federation techniques, in order to
compute their final results.

Hence, as data available may change, these pipelines (or parts of them) are
frequently re-run in order to get fresher results. However, lots of times they are
re-run unnecessarily as datasets have not been updated in the meantime in ways
that impact the result sets of the pipeline. All these operations are leading to a
waste of computation power and loads on the network.

In this article, mainly dedicated to SPARQL practitioners and data pipeline
designers, we present some possibilities provided by SPARQL 1.1 [3] to hash
query result sets with a focus on the case of SPARQL federation of sources
with the SERVICE keyword. In particular, we will discuss how these methods can
be used to optimise data pipelines avoiding expensive re-computation of results
when data triples have not been updated.

2 Hashing features in SPARQL

In this Section, we review several use-cases where the use of SPARQL hashing
features becomes relevant. In particular, we focus on various methods to obtain
a “signature” of a SPARQL result set.

2.1 SPARQL 1.1 capabilities

The SPARQL standard provides a large set of built-in functions, from ones
dedicated to strings to specific ones about dates. These can be used by query
designers to refine their result set. In particular, the standard offers a set of five
hash functions2: MD5, SHA1, SHA256, SHA384 & SHA512.

General signature of the hash functions:

simple literal hash_function (simple literal arg)
simple literal hash_function (xsd:string arg)

Example using MD5:

H = md5("ab") = md5("ab"^^xsd:string)
H = "187ef4436122d1cc2f40dc2b92f0eba0"

These functions accept either RDF literals or strings as argument and return
the hash as a literal. In addition, a xsd:string or its corresponding literal should
return the same result. In the ‘MD5’ example above, the hash value represents
the result of a simple SPARQL query3.

2.2 From hashing an RDF graph . . .

Technically, the standard hash functions provide the query designer with useful
tools to, for instance, check/sign a specific value within a filter field. Never-
theless, they could also be used for more complex tasks that simply checking a

2 https://www.w3.org/TR/sparql11-query/#func-hash
3 select * where{ values ?x {"ab" "ab"^^xsd:string} bind (md5(?x) as ?H)}

https://www.w3.org/TR/sparql11-query/#func-hash


value. For example, in a more extreme case, they could be used over a complete
RDF graph through a SPARQL endpoint: one can extract all the triples avail-
able with select * where {?s ?p ?o}, and then hash all of them, aggregated
with a group concat function. This could look like so:

SELECT (SHA1(GROUP_CONCAT(?tripleStr ; separator=' \n'))) AS ?nTriples

WHERE { ?s ?p ?o

BIND(CONCAT(STR(?s), " ", STR(?p), " ", STR(?o)) AS ?tripleStr) }

In the previous query, the triples ?s ?p ?o are cast by element to a string (STR),
and then concatenated to form a “triple”. The recomposed list of triples is then
grouped into one single string (GROUP CCONCAT) and finally hashed.

Obviously, this “naive” approach has drawbacks. First, the result depends on
the order of the triples returned by the triplestore: a workaround can be achieved
adding e.g. ORDER BY ?s ?p ?o datatype(?o) lcase(lang(?o)). Second, this
method has a scalability issue, as all the graph is loaded in-memory before the
hash call. We therefore recommend this approach to sign small RDF graphs,
e.g. ontologies or small result sets. Finally, this method does not address the
complex case of blank node identification as e.g. { :a p o} and { :b p o} do
not have the same hashes (see e.g. [4] for algorithmic solutions).

2.3 . . . To hashing SPARQL result sets

More pragmatically however, these hash functions can be used in order to sign
SPARQL query result sets [2], typically, they allow users to compare different
query results for the same SPARQL endpoint. As we know, on the same endpoint,
the same query (without calls to functions like RAND or NOW) is supposed to return
the same result set for the same dataset. A hash of the results could be computed
by the endpoint and be compared with a previously obtained one. In case of a
mismatch, the query (and the rest of the pipeline) could be run again. Assuming
Q is the considered SPARQL select query, we propose the following steps to
generate the query which computes the hash of the results of Q:

1. Extract and sort the list of distinguished variables V (if a * is given, the
considered variables are the ones involved in the where);

2. Wrap Q in a select * query ordered by V;
3. Embed the obtained query in a select query computing the hash of the

grouped concatenation of the cast (to string) distinguished variables.

To give an example, if we consider the query4 which extracts from DBpedia the
current members of English-named Punk rock groups, Q=

SELECT ?members ?bandName WHERE {

?band dbo:genre dbr:Punk_rock . ?band dbp:currentMembers ?members .

?band foaf:name ?bandName FILTER(langMatches(lang(?bandName), "en")) }

4 The queries can be tested directly on DBpedia: the query Q and its Q hash . As
of April 12th 2021, Q hash returns ?H = "967d2c8c0a82038d8478d476fa41e14f".

https://dbpedia.org/snorql/?query=SELECT+%3Fmembers+%3FbandName+WHERE+%7B%0D%0A+%3Fband+dbo%3Agenre+dbr%3APunk_rock+.%0D%0A+%3Fband+dbp%3AcurrentMembers+%3Fmembers.%0D%0A+%3Fband+foaf%3Aname+%3FbandName%0D%0A+FILTER%28langMatches%28lang%28%3FbandName%29%2C+%22en%22%29%29%0D%0A%7D
https://dbpedia.org/snorql/?query=SELECT++md5%28group_concat%28concat%28str%28%3FbandName%29%2C+str%28%3Fmembers%29%29+%3B+separator%3D%27+%5Cn%27%29%29+as+%3FH+where+%7B%0D%0Aselect+*+where+%7B%0D%0ASELECT+%3Fmembers+%3FbandName+WHERE+%7B%0D%0A+%3Fband+dbo%3Agenre+dbr%3APunk_rock+.%0D%0A+%3Fband+dbp%3AcurrentMembers+%3Fmembers.%0D%0A+%3Fband+foaf%3Aname+%3FbandName%0D%0A+FILTER%28langMatches%28lang%28%3FbandName%29%2C+%22en%22%29%29%0D%0A%7D+%0D%0A%7D+order+by+%3FbandName+%3Fmembers%0D%0A%7D


Its sorted list of distinguished variables would be ?bandName ?members. And to
obtain a (MD5-)hash of the results of Q, we should run:

SELECT MD5(GROUP_CONCAT(CONCAT(STR(?bandName),STR(?members)); separator=' \n'))

as ?H WHERE {

SELECT * WHERE { # Collecting all the ordered results

SELECT ?members ?bandName WHERE { # The original query

?band dbo:genre dbr:Punk_rock . ?band dbp:currentMembers ?members.

?band foaf:name ?bandName FILTER(langMatches(lang(?bandName), "en")) }

} ORDER BY ?bandName ?members # Ordering by distinguished variables

}

Using this method, a SPARQL pipeline designer can easily obtain a hash
corresponding to a result set, and store it for computing a comparison later.
She would therefore know if RDF data updates have been impacting, in the
meanwhile, her results. On advantage of such a method lays in the place where
the computations happens: the SPARQL endpoint which could thereby be in
charge of having otpimisation techniques (such as result caching or sub-view
updating) to retrieve the result sets faster.

2.4 Gaining in precision with the SERVICE keyword

SPARQL pipelines often rely on several data sources that are queried on-the-fly
and whose sub-results are aggregated to form the final result set. Practically,
the SPARQL standard provides the designers with a built-in function to call an
external endpoint with specific conditions: the SERVICE keyword. This keyword is
supposed to take as arguments a SPARQL endpoint URI5 and a set of conditions
similarly to the where clause.

Consequently, by the mean of SPARQL sub-queries it is possible to refine
the previous method when the designer sets up federated queries. Indeed, each
SERVICE call can be extracted and encapsulated following the steps presented
previously. For example, considering SELECT ?s WHERE { ?s ?p ?o . SERVICE

<URI> { ?s ?t ?u . }}, we can obtain a finer precision computing the follow-
ing two hashing SPARQL queries:
SELECT (MD5(GROUP_CONCAT(CONCAT(

STR(?s),STR(?t),STR(?u));

separator=' \n')) as ?ServiceHash)

WHERE{

SELECT ?s ?t ?u WHERE {

SERVICE <URI> { ?s ?t ?u. }

} ORDER BY ?s ?t ?u

}

SELECT (MD5(GROUP_CONCAT(CONCAT(

STR(?s)); separator=' \n'))

as ?ResultSetHash )

WHERE{

SELECT * WHERE {

SELECT ?s WHERE {

?s ?p ?o. SERVICE <URI>

{ ?s ?t ?u. } } } ORDER BY ?s }
The first query (left-hand side) focuses on computing a hash of the results set

5 According to the SPARQL 1.1 standard, this SPARQL endpoint URI may also be a
variable, e.g. “SERVICE ?url { ... }”, requiring the endpoint to first retrieve the
possible entities for this variable and then call the external endpoints applying the
set of conditions. However, this case is currently out of our scope.



obtained from the external source; and the second one hashes the complete result
set obtained once the local and the external results are joined.

More generally, one needs to generate one dedicated hashing query per SERVICE
call plus a general hashing query for the main/top-level SPARQL query. By us-
ing this strategy, the query designer is then able to create her merkle tree6 of
her different sources’ sub-results. Moreover, this method is fully compliant with
the SPARQL standard as it uses exclusively built-in functions. Finally, this “in-
cremental” approach allows the users to know which source has been updated
in a way that might impact the general query.

3 Automation for complex federated SPARQL queries

The aforedescribed steps to generate the queries that obtain the hashes, splitting
the query into pieces based on SERVICE, are easy to automate and allow users
to know when to relaunch their pipelines. In order to help pipeline designers
in practice, we serve our method at: https://dgraux.github.io/SPARQL-hash/
where our query converters can be used directly by developers to generate queries
computing the hash of their result sets both for “regular” SPARQL queries and
federated ones.

In the case of source federation, as the generation of several hashing queries
(as presented in the previous section) is tedious and prone to committing er-
rors, we also provide a generator dedicated to federated queries. Practically, our
generator takes the SPARQL query Q and returns a new one Q hash which take
care of computing all the necessary hashing sub-queries once run on the design-
ers’ SPARQL endpoint7. Specifically, Q hash’s result is another SPARQL query
Q check which is in charge of running8 the various hashing sub-queries in order
to compare the hashes with the previous ones obtained by Q hash. By construc-
tion, Q hash is supposed to be run only once and Q check should be the one
-once obtained- used regularly to check if Q needs to be relaunched in order to
update the designer’s final result set. Furthermore, Q check is built in a way
which allows the query designers to know why she should update her final result
set; it actually explains which specific source is updated.

As Q check and more Q hash tend to be long, we refer the reader to the exten-
sive set of examples on our website for details. Notwithstanding, for the sake of
clarity, let’s consider the following simplified query (Q): select * where { ...

service uri {...}}. Let’s now name Qserv and Qgene the sub-queries generat-
ing "123" and "abc": the hashes (following the methods proposed in Sections
2.3 & 2.4) for the service part and for Q respectively. Therefore, Q check would
have the following sketch:

select ?res where {

{ Q_serv } # To compute a fresh hash for the service

6 Following recursively the SERVICE calls.
7 i.e. the same endpoint as the one where Q is supposed to be run.
8 Like Q hash, Q check should be run on the endpoint where Q is supposed to be run.

https://dgraux.github.io/SPARQL-hash/


{ Q_gene } # To compute a fresh hash for Q

if (Q_serv="123"){

if (Q_gene="abc") {?res="No update"}

else {?res="Local data has changed"}

} else {

?res="External source has changed"

}

}

As presented above, Q check inspects the possible updates of hash results using
a set of nested conditions. In particular, this set of conditions follows the explo-
ration of a merkle tree starting from the bottom layer. Therefore, by structuring
the query like so, an optimised SPARQL endpoint might be able to properly
order its query plan in order to evaluate sequentially the various sub-queries and
stop as soon as possible, saving computational resources.

4 Conclusions

This article describes how to improve existing Semantic Web data pipelines
with a SPARQL-based method that helps in identifying when query results have
changed. In particular, it sheds lights on a possible strategy when dealing with
complex federated queries. It allows to re-run pipelines only when interesting
parts of the original datasets have been updated. By using SPARQL to compute
the signature of the query results, it avoids large result sets to be sent over
the network. Finally, it also helps the designers identify what are the external
sources that have been updated. We hope this will inspire developers to use the
hash functions provided by the standard.

References

1. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia:
A nucleus for a web of open data. In: The semantic web. Springer (2007)

2. Graux, D., Orlandi, F., O’Sullivan, D.: Hash-ssessing the freshness of SPARQL
pipelines. In: ISWC 2021: Posters, Demos and Industry Tracks (2021)

3. Harris, S., Seaborne, A., Prud’hommeaux, E.: Sparql 1.1 query language. W3C
recommendation 21(10), 778 (2013)

4. Hogan, A.: Canonical forms for isomorphic and equivalent RDF graphs: algorithms
for leaning and labelling blank nodes. ACM Transactions on the Web (TWEB)
11(4), 1–62 (2017)

5. Junior, A.C., Orlandi, F., Graux, D., Hossari, M., O’Sullivan, D., Hartz, C., Dirschl,
C.: Knowledge graph-based legal search over german court cases. In: The Semantic
Web: ESWC 2020 Satellite Events. LNCS, vol. 12124, pp. 293–297. Springer (2020)

6. Kubitza, D.O., Böckmann, M., Graux, D.: SemanGit: A linked dataset from git. In:
International Semantic Web Conference. pp. 215–228. Springer (2019)

7. Manola, F., Miller, E., McBride, B., et al.: RDF primer. W3C recommendation
10(1-107), 6 (2004)

8. Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Com-
munications of the ACM 57(10), 78–85 (2014)


	De-icing Federated SPARQL Pipelines: a method for Assessing the ``Freshness'' of Result Sets

