
How many stars do you see in this constellation?

Fabrizio OrlandiB , Damien GrauxB , and Declan O’Sullivan

ADAPT SFI Centre, Trinity College Dublin, Ireland
{orlandif,grauxd,declan.osullivan}@tcd.ie

Abstract. With the increase of Knowledge Graphs available on the Web
came the need of characterising them, adding for example provenance in-
formation. To facilitate adding statement-level metadata, an RDF syntax
extension has recently been proposed to the Semantic Web community:
RDF*. In this article, we examine the current coverage of RDF* by
SPARQL engines. We identify a few issues arising even when perform-
ing simple operations such as counting the number of statements. We
raise awareness on these issues and derive new research directions for
the community.

1 Introduction

During the past decades, the number of linked datasets has rapidly increased, see
for instance the current state of the Linked Open Data cloud1. These datasets
are structured following the W3C standard Resource Description Framework
(RDF) [8] and share knowledge on various domains, from the generalist ones such
as DBpedia [1] or WikiData [12] to the most specialised ones, e.g. SemanGit [7].

The increasing number of these available sources of information, which can
also be updated on a regular basis, implies that metadata characterising the
datasets themselves is needed to help users find the correct pieces of information.
For instance, provenance [10], versioning [3] and ownership of facts could be
recorded on a statement-level and added to the datasets [2]. Hence, there is a
need for expressing statements about statements, or statement-level metadata.

Technically, there exist several methods to express statements over a set of
RDF triples. One might consider the various reification methods designed by
experts in the community. However, these strategies lead, in practice, to an
extensive amount of RDF triples generated [9], e.g. standard reification requires
the use of four additional triples for each reified statement. In order to help
users generating and maintaining their RDF statements of statements, Hartig
et al. introduced the RDF* syntax [6,5]. This syntactical extension of the RDF
standard has been received with enthusiasm by the Semantic Web community2

and is now implemented by a few SPARQL engines.

1 As of March 2019, the LOD-cloud gathers more than 1 200 datasets sharing more
than 16 000 links. https://lod-cloud.net/

2 The W3C Workshop on Web Standardization for Graph Data (2019) has set a di-
rection to bridge the Semantic Web and Property Graph communities together in-
dicating RDF* as a viable option. https://www.w3.org/Data/events/data-ws-2019/
index.html

https://orcid.org/0000-0001-9561-4635
https://orcid.org/0000-0003-3392-3162
https://orcid.org/0000-0003-1090-3548
https://lod-cloud.net/
https://www.w3.org/Data/events/data-ws-2019/index.html
https://www.w3.org/Data/events/data-ws-2019/index.html

2 F. Orlandi, D. Graux & D. O’Sullivan

Fig. 1. A simple RDF* constellation of triples with nested “stars”.

In this article, we explore the internal representations of RDF* data in-
side three SPARQL engines. Our simple test suite shows that the community
should establish stricter guidelines and standardised methods to deal with RDF*
datasets, as it appears that the considered engines are not treating this extension
in a uniform way.

2 RDF*, Internal representations and Star counting

In 2014, Hartig & Thompson introduced the RDF* extension for RDF [6]. It
allows data providers to shape statements about RDF graphs in an intuitive
manner, while still being compliant with the RDF standard syntax. To do so,
the RDF graph to be characterised should be encapsulated between double an-
gular brackets and can act either as subject or object of another triple. In other
words, RDF* graphs have the following generic structure: (Subj|<<Graph>>)
Pred (Obj|<<Graph>>). Moreover, the RDF* syntax allows data providers to
nest their characterisations. Simultaneously, Hartig & Thompson proposed to
extend the accepted syntax of SPARQL (the RDF associated query language)
to allow users to extract this additional data level at query time.

While, in general, RDF* and SPARQL* syntax and semantics are described
in [5], SPARQL* syntax is based on Pérez et al.’s algebraic SPARQL syntax [11].
A more detailed formalization of SPARQL*, and extension of the full W3C
specification of SPARQL 1.1 [4], is available in [6]. However, as the W3C has not
yet standardised the RDF*/SPARQL* syntax and semantics, a certain degree
of freedom is taken by the community that does not have very strict guidelines
to adhere to. This freedom of choice is especially true regarding the techniques
used by the RDF* stores to internally represent datasets. In this case, a relevant
example is the one regarding “Redundancy in RDF* Graphs” (cf. Section 2.4
in [5]) where implementation techniques are explicitly left free to choose how to
deal with redundancy in order to achieve performance gains.

In order to illustrate this variety of possible representations, let’s consider the
simplest RDF* dataset: << <s> <p> <o> >> <d> <e>; and let’s try to answer
the following question: “once stored, what should SELECT (count(*) as ?c)

WHERE {?s ?p ?o} return?”. One possible solution is to consider the reification
method where actually six triples are to be created. Another one is to use the
singleton property method [9] which would lead to four triples created. Finally,

*** Counting the (RDF-)stars *** 3

a more näıve one could be to answer two, as there are two predicates (<p> and
<d>) in the dataset. Moreover, as the extension allows “stars” to be nested in
one another, we can also consider the graph depicted in Figure 1, nesting two
levels and corresponding to the following statement:

<< << <S> <P> <O> >> <D> <E> >> <T> <U> .

With this statement, we can as well ask the same simple question: “how many
triples?”. In the rest of our analysis, we are going to test such queries with
SPARQL engines claiming to support RDF*/SPARQL*.

3 Comparing SPARQL* engines’ results

Currently, only a few RDF management systems claim to cover the RDF* ex-
tension and natively support SPARQL* queries. Stardog3 and Blazegraph4 are
among them. In addition, as a common basis of comparison, we use the tool
provided by Hartig5 which is built on top of Jena. In order to review their
capabilities, we design the simple dataset which follows. It is composed of 4
statements: 1 classic RDF triple, 2 basic RDF* statements and 1 nested RDF*
statement (as the one presented in Figure 1).

<s1> <p1> <o1> .

<< <s2> <p2> <o2> >> <d2> <e2> .

<< << <s3> <p3> <o3> >> <d3> <e3> >> <t3> <u3> .

<< <s4> <p4> <o4> >> <d4> <e4> .

One star – First, we only load in the systems the first two statements (Lines
1-2). Both Stardog and Blazegraph return that 3 entities were created during
the loading phase. The ExecuteSPARQLStar tool can only query, on-the-fly, data
stored in an RDF* file (e.g. using Turtle*). Then, we ran the following queries:
Q1 : Select * Where{?s ?p ?o}.
Q2 : Select * Where{<<?s ?p ?o>> ?d ?e}.
The obtained results, for both the engines and the Jena-based tool, were:
RQ1: {<s1>,<p1>,<o1>}{<s2>,<p2>,<o2>}{<< <s2><p2><o2> >>,<d2>,<e2>}.
RQ2: {<s2>,<p2>,<o2>,<d2>,<e2>}.
This implies that all systems consider the RDF-Graph of an RDF* statement as
a subject and, in case of Q1, counted 3 triples (which corresponds to the näıve
counting idea we had in the previous section).

Nested star – For the second round of experimentation we loaded all the 4
statements presented above. We used again the same queries Q1, Q2 and added
Q3 : Select * Where{<<<<?s ?p ?o>> ?d ?e>> ?t ?u}.
The results are displayed in Table 1. We observe that both Blazegraph and the

3 Stardog version 7.1.2 https://www.stardog.com/
4 Blazegraph version 2.1.5 https://blazegraph.com/
5 ExecuteSPARQLStar version 0.0.1 https://github.com/RDFstar/RDFstarTools

https://www.stardog.com/
https://blazegraph.com/
https://github.com/RDFstar/RDFstarTools

4 F. Orlandi, D. Graux & D. O’Sullivan

Select * Where ... Stardog Blazegraph ExecuteSPARQLStar

{?s ?p ?o} s1 p1 o1, s2 p2 o2,
s3 p3 o3, s4 p4 o4,
{s2 p2 o2} d2 e2,
{s4 p4 o4} d4 e4,
{s3 d3 e3} t3 u3,
s3 d3 e3

s1 p1 o1, s2 p2 o2,
s3 p3 o3, s4 p4 o4,
{s2 p2 o2} d2 e2,
{s4 p4 o4} d4 e4,
{s3 p3 o3} d3 e3,
{{s3 p3 o3} d3 e3} t3 u3

s1 p1 o1, s2 p2 o2,
s3 p3 o3, s4 p4 o4,
{s2 p2 o2} d2 e2,
{s4 p4 o4} d4 e4,
{s3 p3 o3} d3 e3,
{{s3 p3 o3} d3 e3} t3 u3

{<<?s ?p ?o>> ?d ?e} s2 p2 o2 d2 e2,
s4 p4 o4 d4 e4,
s3 d3 e3 t3 u3

s2 p2 o2 d2 e2,
s4 p4 o4 d4 e4,
s3 p3 o3 d3 e3,
{s3 p3 o3} d3 e3 t3 u3

s2 p2 o2 d2 e2,
s4 p4 o4 d4 e4,
s3 p3 o3 d3 e3,
{s3 p3 o3} d3 e3 t3 u3

{<<<<?s ?p ?o>> ?d ?e>> ?t ?u} No results s3 p3 o3 d3 e3 t3 u3 s3 p3 o3 d3 e3 t3 u3

Table 1. Behaviours with nested RDF* statements.

Jena-based tool present the same behaviour as the one observed in the previous
test. Inversely, Stardog cannot deal correctly with nested RDF* statements. It
is visible that Stardog “flattens” one level of the encapsulation as Q3 does not
offer any result and s3 d3 e3 is present as a result of Q1, instead of the expected
{s3 p3 o3} d3 e3.

Findings – As explained prior, the goal of our study is not to analyse the engines’
performances, but rather to comparatively examine how they internally repre-
sent simple RDF* statements6. Despite the simplicity of the experiments, we
find multiple syntax anomalies: (i) Stardog needs its own syntax based on curly-
brackets (the RDF* angular-brackets often raise some exceptions); (ii) Blaze-
graph cannot deal with spaces at some places and raises errors when “Select
*” is used (all the variables need to be specifically listed); (iii) the ExecuteS-
PARQLStar tool doesn’t return the subject column7 when there is an RDF*
triple at the subject place in the clauses. More importantly, in addition to the
syntactical errors, we discover that the three engines do not have the same in-
ternal representations. Further, it appears that Stardog’s representation leads to
errors, as it is “flattening” the nested statements.

4 Conclusions

Leveraging the simple example of counting the “stars” inside simple nested RDF*
statements, we would like to alert the community on the current divergences that
are appearing in the domain of RDF* storage and management. According to
our observations, the tested versions of the engines diverge when dealing with
nested statements. That is why we would not recommend to use nested RDF*
statements in production systems yet, at least until a form of agreement in
representing them has been reached. Indeed, as RDF* can drive the community
forward and bridge the gap between the Semantic Web and Property Graph
worlds, reaching an early agreement is of paramount importance as compatibility
between engines would allow them to communicate and, in turn, enable features

6 More details are available from: https://github.com/dgraux/RDFStarObservatory
7 Similarly to Blazegraph, instead of using “Select *”, users need to specify all the

variables in the Select clause.

https://github.com/dgraux/RDFStarObservatory

*** Counting the (RDF-)stars *** 5

such as query federation. Our goal is to continue our systematic exploration
of RDF* engines, paying attention to their behaviours and performances when
dealing with more complex SPARQL* queries and with richer datasets.

Acknowledgments

This research was conducted with the financial support of the European Regional
Development Fund and the European Unions Horizon 2020 research and inno-
vation programme under the EDGE Marie Sk lodowska-Curie grant agreement
No. 713567 at the ADAPT SFI Research Centre at Trinity College Dublin. The
ADAPT SFI Centre for Digital Media Technology is funded by Science Foun-
dation Ireland through the SFI Research Centres Programme and is co-funded
under the European Regional Development Fund (ERDF) Grant # 13/RC/2106.

References

1. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia:
A nucleus for a web of open data. In: The semantic web. Springer (2007)

2. Frey, J., Müller, K., Hellmann, S., Rahm, E., Vidal, M.E.: Evaluation of metadata
representations in RDF stores. Semantic Web 10(2), 205–229 (2019)

3. Frommhold, M., Piris, R.N., Arndt, N., Tramp, S., Petersen, N., Martin, M.: To-
wards versioning of arbitrary RDF data. In: Proceedings of the 12th International
Conference on Semantic Systems. pp. 33–40 (2016)

4. Harris, S., Seaborne, A., Prud’hommeaux, E.: Sparql 1.1 query language. W3C
recommendation 21(10), 778 (2013)

5. Hartig, O.: Foundations of RDF* and SPARQL* (an alternative approach to
statement-level metadata in RDF). In: 11th Alberto Mendelzon International
Workshop on Foundations of Data Management (AMW) (2017)

6. Hartig, O., Thompson, B.: Foundations of an alternative approach to reification in
RDF. arXiv preprint arXiv:1406.3399 (2014)

7. Kubitza, D.O., Böckmann, M., Graux, D.: SemanGit: A linked dataset from git.
In: International Semantic Web Conference. pp. 215–228. Springer (2019)

8. Manola, F., Miller, E., McBride, B., et al.: RDF primer. W3C recommendation
10(1-107), 6 (2004)

9. Nguyen, V., Bodenreider, O., Sheth, A.: Don’t like RDF reification? Making state-
ments about statements using singleton property. In: Proceedings of the 23rd in-
ternational conference on World wide web. pp. 759–770 (2014)

10. Orlandi, F., Passant, A.: Modelling provenance of DBpedia resources using
Wikipedia contributions. Journal of Web Semantics 9(2), 149–164 (2011)

11. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM
Transactions on Database Systems (TODS) 34(3), 1–45 (2009)

12. Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Com-
munications of the ACM 57(10), 78–85 (2014)

	How many stars do you see in this constellation?

