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ABSTRACT
Knowledge graphs are dynamic in nature, new facts about an entity
are added or removed over time. Therefore, multiple versions of the
same knowledge graph exist, each of which represents a snapshot
of the knowledge graph at some point in time. Entities within the
knowledge graph undergo evolution as new facts are added or re-
moved. The problem of automatically generating a summary out of
different versions of a knowledge graph is a long-studied problem.
However, most of the existing approaches are limited to a pairwise
version comparison. This limitation makes it difficult to capture a
complete evolution out of several versions of the same knowledge
graph. To overcome this limitation, we envision an approach to
create a summary graph capturing temporal evolution of entities
across different versions of a knowledge graph. The entity summary
graphs may then be used for documentation generation, profiling
or visualization purposes. First, we take different temporal versions
of a knowledge graph and convert them into RDF molecules. Sec-
ondly, we perform Formal Concept Analysis on these molecules
to generate summary information. Finally, we apply a summary
fusion policy in order to generate a compact summary graph which
captures the evolution of entities.
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1 INTRODUCTION
Knowledge graphs evolve over time with the addition of new enti-
ties and relationships, or the modification of its existing ones [4]. It
is often the case that different versions of an RDF graph are main-
tained separately. For example, DBpedia releases a new version of
its datasets on a yearly basis. Typically most applications based on
knowledge graphs are concerned with the latest version available
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at any point in time. These graphs contain the most updated infor-
mation, however, they are missing the knowledge about how these
entities transform over multiple versions. From the perspective of
a single entity, it can often be interesting to observe how it evolves
over time. This information can be new knowledge that can add
value to the existing knowledge graph. In this work, we propose a
technique using RDF molecules and Formal Concept Analysis to
summarize the temporal evolution of knowledge graphs.

Consider an RDF data entity representing the same person in
different temporal versions of a knowledge graph, as depicted in
Figure 1. The updates in the properties of this entity correspond to
real-world changes over time. For example, the person might inter
alia relocate to different cities or change job title. New properties
may also be added to this entity, e.g. when this person becomes a
parent for the first time. If only some versions of this knowledge
graph are considered and others are ignored, the information ob-
tained is valid solely in the context of that time period, and the
knowledge about how this entity evolved over time is lost. For
instance, considering the versions in Figure 1a and Figure 1d (years
2010 and 2016), it can be observed that this person has the same
spouse P . But this observation misses the information that the per-
son had a different spouse Q from 2012 to 2014 (see Figures 1b &
1c).

We motivate our work using this problem and propose a tech-
nique to summarize the evolution of entities in knowledge graphs.
In this technique we identify entities in different versions of a
knowledge graph that correspond to the same real-world object
and apply formal concept analysis to generate a summary of the
evolution of these entities. The generated summary molecule con-
tains a compact representation of all the object and data properties
the molecule was connected to over time, along with the temporal
information indicating the ranges of validity for each property. In
order to ensure compactness, the summary molecule contains each
distinct object or data property only once, as shown in Figure 1e.

2 RELATEDWORK
Knowledge graphs are becoming increasingly dynamic in nature
and approaches have been proposed [9] to (i) detect changes during
their evolution, (ii) represent change information (using vocab-
ularies) and (iii) propagate changes to replicas or federated sys-
tems [2]. Approaches for change detection mainly focus on comput-
ing “deltas” (or changesets1) between two versions of a knowledge

1https://www.w3.org/2009/12/rdf-ws/papers/ws07 (accessed on 22/02/2019)
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(a) 2010 (b) 2012

(c) 2014 (d) 2016 (e) Summary Representation

Figure 1: Visual representation of a person info obtained from four yearly molecules.

graph at different granularity levels [9]: dataset, resource and state-
ment level. The Talis Changeset Vocabulary2 defines a set of terms
for describing changes to resource descriptions. In the context of
this vocabulary, a resource description is the set of triples that
includes a description of a resource. The DELTA-LD framework
detects and classifies the changes between two versions of a linked
dataset and represents them with the DELTA-LD change model [8].
DSNotify [6] is a change-detection system capable of detecting and
fixing broken links between resources in two different versions
of a dataset. In [7], in order to study the dynamics of LOD, the
authors propose a framework for detecting and analysing changes
and the evolution history of LOD datasets. Moreover, changes are
automatically categorised according to their level of complexity and
are represented using an ontology, hence allowing SPARQL to be
used to query data changes. Specific queries need to be constructed
in order to extract information about the history of changes for
a particular class/entity across different versions. In contrast, our
approach allows for automatic extraction and exploration of all
changes of a class/entity over time.

Producing a summary of an entity evolution can be also tackled
as an integration problem. Integration frameworks can be used
to solve the problem of extracting the temporal evolution of an
entity. In this regard, a central part of this work is represented by
the MINTE approach [1]. We adopt the fusion policies for data
integration described by Collarana et al. in order to produce a tem-
poral evolution summary of entities across different versions of a
knowledge graph. Similar to MINTE, ODCleanStore [5] is an ETL
framework for integrating RDF data. It relies on SILK to perform in-
stance matching and provides custom data fusion modules to merge
the data of the discovered matches. The aim of the said integration
frameworks is to map different data sources with possibly varying
schema, i.e., they perform inter-schema mapping. However, even in

2http://vocab.org/changeset/schema (accessed on 22/02/2019)

these cases, creating a summarized view of an entity could only be
supported on a superficial level by processing and filtering query
results. Hence, we identify the need for an approach to automati-
cally produce summaries of entities’ evolution, as described in the
following sections.

3 THE APPROACH
3.1 Preliminaries
Given different versions of a knowledge graph, e.g., DBpedia 2010,
2012, 2014, and 2016, and an entity type, e.g., Person. Our approach
automatically produces a summary of evolution over time of the
entities under the specified type. Each entity summary is composed
of the evolution of properties and relations among these entities.
To better understand our approach, we define the main concepts,
i.e., RDF Molecule, Formal Concept Analysis and Fusion Policies,
respectively.

Definition 3.1 (RDF Molecule [3]). If G is a given RDF Graph, we
define an RDF MoleculeM as a sub-graph of G such that,

M = {t1, . . . , tn },∀(i, j) ∈ {1, . . . ,n}2 (subject(ti ) = subject(tj ))
where t1, . . . , tn denote the triples in M . In other words, an RDF
Molecule M consists of triples which have the same subject. The
RDF molecules are used as unit to produce the entity summary.

Definition 3.2 (Formal Concept Analysis [10]). aims at describing
the relationships between objects and their attributes by consid-
ering binary data tables. In our approach, we apply the algorithm
proposed by V. Vychodil [10], transforming RDF molecules into
the binary data table it requires. Formal concepts are defined as
conceptual clusters found within entity-property data tables. These
data tables have rows corresponding to entities, and columns cor-
responding to the properties of those entities. Formal concepts are
a set of < A,B > pairs where A is the set of entities, B is a set of

http://vocab.org/changeset/schema
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Figure 2: The approach receives a set of knowledge graph versions, an entity type, and a summary policy. The output is the
entity summaries describing the evolution of knowledge among the different versions of the knowledge graph.

properties, and all the entities in A contain all the properties in B.
A is known as extent and B is known as intent.

Definition 3.3 (Fusion Policy [1]). To produce a temporal evolu-
tion summary of entities spread over different versions of a knowl-
edge graph, we resort to the concept of fusion policies defined by
Collarana et al. [1]. A fusion policy is a set of rules operating on
the triple level, which are triggered by a certain combination of
predicates and objects. Fusion policies resort to an ontology O to
resolve possible conflicts and inequalities on the levels of resources,
predicates, objects and literals.

In this paper, we employ RDF molecules, Formal Concept Analy-
sis and Fusion Policies to address the following problem: given a set
of versions of RDF knowledge graphs, build an evolution summary
of specific entities. The following section introduces and describes
the architecture of our approach.

3.2 Architecture
Grounded on the semantic integration technique proposed by Col-
larana et al. [1], we propose a pipeline able to automatically create
summaries of RDF entity evolution. Thus, a solution to summariz-
ing entity temporal evolution out of different versions of an RDF
knowledge graph is provided.

We propose a three-fold approach in order to identify equivalent
entities in different versions of a knowledge graph and summariz-
ing the evolution of those entities, thus providing a solution to the
problem of summarizing entity temporal evolution in RDF knowl-
edge graphs. This approach has three essential components. First,
the pipeline takes input a set of knowledge graphs representing
different temporal versions of the same knowledge graph. These
graphs are then converted into a set of RDF molecules, from which
molecules that represent the same real-world entity are grouped
together. Each group of equivalent molecules are then converted
into anM ×N binary matrix. Second, theM ×N matrix is supplied
to the FCA component which performs formal concept analysis to

summarize the temporal evolution of the molecules. Third, a sum-
mary fusion policy is applied to each output of the FCA component
in order to produce a set of summary molecules. Each summary
molecule represents the temporal evolution of a single entity over
the knowledge graph versions taken as input. Figure 2 depicts the
main components of this architecture.

3.3 Conversion of Knowledge Graphs to
Groups of Equivalent RDF Molecules

The pipeline receives any number of Knowledge Graphs ϕ1(D),
ϕ2(D),. . . ,ϕn (D) as input where 1, 2, . . .n represent the different
temporal versions of the same Knowledge Graph ϕ(D). First each
graph is individually converted into sets of RDF molecules. As de-
fined in Preliminaries (see §3.1), RDF molecules consist of triples
that have the same subject. Thus we obtain RDF molecule sets
S1, S2 . . . Sn which correspond to graphs ϕ1(D),ϕ2(D) . . .ϕn (D)
respectively. The pipeline then identifies equivalent molecules
within S1, S2 . . . Sn . As ϕ1(D),ϕ2(D) . . .ϕn (D) are different tem-
poral versions of the same knowledge graph, it can be inferred
that there exists equivalent molecules M1,M2 . . .Mn such that
M1 ∈ S1,M2 ∈ S2 . . .Mn ∈ Sn and M1,M2 . . .Mn all represent
the same real-world entity. For the sake of simplicity it is assumed
here that equivalent entities retain the same URI. Practically, seman-
tic similarity measures as demonstrated in [1] can also be integrated
with this pipeline to identify equivalent entities in cases where the
URI is different.

The equivalent RDF Molecules are then grouped together and
each group is converted into aM ×N matrix, whereM corresponds
to the number of molecules in the group and N corresponds to the
number of distinct object or data property the molecules all contain.
Each element in the matrix e(i, j→k ) represents whether molecule
Mi contains a predicate j that has an object k . This value can be
either true or false and is represented by a 1 and 0, respectively.
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Figure 3: The ontology used to apply summary fusion policy
for the creation of summary molecules.

Figure 1 presents a scenariowhere Person.v2010, Person.v2012,
Person.v2014 and Person.v2016 all represent the same real world
entity Person from Knowledge Graphs from year 2010, 2012, 2014
and 2016 respectively. In this first step of the pipeline, thesemolecules
would be extracted from their respective knowledge graphs, identi-
fied as equivalent molecules, and then grouped together. This group
of molecules would then be converted into a 4 × 7 matrix, 4 being
the number of molecules in the group and 7 being the total number
of distinct object/data properties in all the molecules. This matrix
is shown in Table 1a. The column headers, i.e. properties for this
matrix are shown separately in Table 1d. Once theM × N matrix
has been created, it is then passed on to the next component in the
pipeline to perform Formal Concept Analysis and summarize the
temporal evolution in equivalent RDF entities.

3.4 Applying Formal Concept Analysis to
Obtain a Summary of Evolution

As first mentioned in Definition 3.2, formal concept analysis studies
binary object-attribute tables to describe the relationship between
objects and their attributes. Our approach first converts knowledge
graphs to RDF molecules. Within a single knowledge graph, an
RDF molecule can be considered as an object while its object or data
properties can be considered as attributes. When RDF molecules
are modeled in this way, we are able to apply the formal concept
analysis algorithm to compute formal concepts. The creation of
these binary matrices is discussed in the previous section.

We apply the algorithm by V. Vychodil [10] on each group of
RDF molecules obtained from the previous step. The algorithm
returns a set of formal concepts < M, P > where M is a set of all
the molecules that have all the properties contained in P . In our
approach the output < M, P > from formal concept analysis gives
us a set of molecules that have the same properties throughout
different knowledge graph versions.

Table 1 demonstrates the input and output of formal concept
analysis when applied to the RDF molecules in our motivation ex-
ample. Table 1a shows the 4 × 7 binary matrix representing the

Algorithm 1: CreateSummary(FCAResult)

1 summary← list() ; // Initialize empty list

2 n← FCAResult.length;
3 for j ←1 to n do
4 (M, P ) ← FCAResult[j];
5 if M .lenдth ≥ 1 and P .lenдth ≥ 0 then
6 summary← summary + (M, P ) ;
7 FCAResult← FCAResult − (M, P ) ;
8 n← FCAResult.length ; // Recompute length

9 m← summary.length;
10 for j ←1 to n do
11 (M, P ) ← FCAResult[j];
12 if M .lenдth1 and P .lenдth ≥ 0 then
13 for k ←1 to m do
14 (X , Y ) ← summary[k ];
15 if M [1] ∈ X then
16 P ← P − Y

17 if P .lenдth ≥ 0 then
18 summary← summary + (M, P ) ;
19 return summary

Figure 4: Algorithm for selecting distinct properties that
form the Summary Molecule

object-attribute table. Table 1b shows the output of the FCA algo-
rithm when supplied with this matrix. It supplies the information of
which properties of the molecule has remained the same over which
years. For example, Table 1b shows us that the entity Person had
the same job (hasJob→ JobX ) and lived in the same city (livesIn
→ CityA) over the years 2010 and 2012.

The output of the FCA algorithm is supplied to the next step in
order to create summary molecules.

3.5 Applying Fusion Policy to Integrate
Summary into Knowledge Graph

To integrate the result obtained from the formal concept analysis
algorithm, we resort to extend the fusion policies defined by Col-
larana et al. [1]. They defined the following: (1) the Union Policy,
which includes all predicates-object pairs, removing the one that
are syntactically the same; (2) the Subproperty Policy, which tracks
if a property of one RDF molecule is an rdfs:subPropertyOf of
a property of another RDF molecule, i.e., {r1,p1,A}, {r2,p1,B} +
O + subPropertyO f (p1, p2) |= {σr (r1, r2),p2,σv (A,B)}. As a result
of applying this policy, the property p1 is replaced with a more
general property p2; and (3) the Authority Graph Policy, which al-
lows for defining one RDF graph as a prevalent source selecting its
properties in case of property conflicts, i.e., properties annotated as
owl:FunctionalProperty, equivalent properties owl:equivalent-
Property, and equivalent classes annotated with owl:equivalent-
Class or owl:sameAs.

For the purpose of creating a compact summary of the temporal
evolution of RDF molecules, we define an additional fusion policy
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P1 P2 P3 P4 P5 P6 P7

M1 1 0 1 0 1 0 0
M2 1 0 1 0 0 1 0
M3 0 1 0 1 0 1 0
M4 0 1 0 1 1 0 1

(a) FCA Input

Molecule Property

M1 P1,P3,P5
M2 P1,P3,P6
M3 P2,P4,P6
M4 P2,P4,P5,P7
M1, M2 P1,P3
M2, M3 P6
M3, M4 P2,P4
M1, M4 P5

(b) FCA Output

Molecule

M1 Person.v2010
M2 Person.v2012
M3 Person.v2014
M4 Person.v2016

(c) Molecules

Property

P1 livesIn→ CityA
P2 livesIn→ CityB
P3 hasJob→ JobX
P4 hasJob→ JobY
P5 isSpouseOf→ P
P6 isSpouseOf→ Q
P7 isFatherOf→ M

(d) Properties

Table 1: Preparing equivalent RDF Molecules for Formal Concept Analysis: Person molecules from 4 different knowledge
graph versions are grouped and compiled into a matrix for performing formal concept analysis. Rows correspond to each
molecule, while columns correspond to distinct properties.

called the Summary Policy. Summary Policy selects distinct proper-
ties from the output of the FCA algorithm, and follows the ontology
shown in Figure 3 to create a temporal summary graph. A visual
representation of the temporal summary graph according to our
motivation example is shown in Figure 1e. For the sake of compact-
ness, the summary graph is designed to have only one occurrence
of each distinct property.

A temporal summary graph is created by first selecting all distinct
properties out of the result obtained from the previous step. This
is done by applying the algorithm shown in Figure 4 on a list of
results like the one shown in Table 1b. The algorithm takes as input
the result R of the FCA algorithm. For every (M, P) ∈ R, |M | = 1, it
returns (M, P ′) such that, ∀(X ,Y ) ∈ R where |X | > 1 and M ∈ X ,
P ′ = P ∩ Y and P ′ , ϕ.

For example, for the row [{M4}, {P2,P4,P5,P7}] in Table 1b, the
above algorithm is applied to obtain [{M4}, {P7}], i.e. [{Person.v2016},
{hasChild→M}]. This can be seen in Figure 1e, where the property
hasChild → M occurs only under the summary component of
2016. Every other property in Person.v2016 occurs also in other
versions of the Person entity. This is represented in the summary
graph under the summary components of (2010,2016) and (2014,
2016). The summary graph allows the possibility to reconstruct the
original versions of the molecules. For example, in order to obtain
the 2010 version of the Person molecule, it is only needed to select
the edges of the summary graph that are annotated with the year
2010, and apply Union Policy.

4 CONCLUSIONS AND FUTUREWORK
In this paper, we envision an approach for creating entity summaries
automatically out of different temporal versions of a knowledge
graph. To do so, the proposed approach utilizes the concepts of RDF
molecules, Formal Concept Analysis, and Fusion Policies. We have

explained the architecture and pipeline where only one parameter is
needed, i.e., the entity type. The entity evolution summaries created
by the approach may serve to create documentation, to display a
visualization of the entity evolution, or to make an analysis of
changes. As future work, we plan to implement and evaluate the
approach considering its scalability and applicability.
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