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Abstract. Context-specific description of entities —expressed in RDF—
poses challenges during data-driven tasks, e.g., data integration, and
context-aware entity matching represents a building-block for these tasks.
However, existing approaches only consider inter-schema mapping of
data sources, and are not able to manage several contexts during entity
matching. We devise COMET, an entity matching technique that relies
on both the knowledge stated in RDF vocabularies and context-based
similarity metrics to match contextually equivalent entities. COMET ex-
ecutes a novel 1-1 perfect matching algorithm for matching contextually
equivalent entities based on the combined scores of semantic similarity
and context similarity. COMET employs the Formal Concept Analysis
algorithm in order to compute the context similarity of RDF entities.
We empirically evaluate the performance of COMET on a testbed from
DBpedia. The experimental results suggest that COMET is able to ac-
curately match equivalent RDF graphs in a context-dependent manner.

Keywords: Data Integration - RDF Knowledge Graphs - RDF Entities.

1 Introduction

The semi-structuredness nature of the RDF data model allows for naturally
representing entities of the same type with different properties, as well as for the
encoding of multiple contexts of an entity within the same graph. This feature of
RDF is of paramount importance for addressing the data complexity challenge
of variety—a dominant dimension of data in the Big Data era [6]. Nevertheless,
enabling diverse representations of the same entity poses new challenges during
the matching of RDF graphs, particularly, because specific contexts need to
be considered for an effective identification of similar entities [2]. To perform a

* This research was supported by the European project QualiChain (number 822404).
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Fig. 1: Motivation Example. Top row shows three entities across two datasets.
The bottom row shows two matching scenarios, the left one not considering con-
text during entity matching, and the right one taking context into consideration.

contextually RDF entity matching, the specific context under which a matching
is being performed must be taken into account.

We motivate our work using an example of a context-based entity matching
scenario using RDF entities representing persons. Arnold Schwarzenegger is a
person with an extensive career in both politics and acting. Consequently, there
is data available regarding both his career in politics and his achievements in
the movie industry. Consider an integration system aiming to match data about
American politics. Dataset D; contains information about Arnold Schwarzeneg-
ger and his political career. In another dataset D5, there exists information about
Arnold’s acting career, e.g., the movies he has acted in and the roles he has por-
trayed. The same dataset Dy also contains information about other celebrities,
like Donald Trump, President of the United States. These entities are presented
in Figure and respectively. In a typical integration scenario where con-
text is not considered, entities are matched to the ones that are most similar to
them. In such a case, Arnold Schwarzenegger’s entity from D; will be matched
with the entity in Dy containing information about his acting career, as shown
in Figure[Id] However, in the context of politics, Arnold’s political career is more
similar to Donald Trump’s than his own career in acting. They are politicians
of almost the same age who are both supporting the Republican party. In a
political context, their careers are far more similar than when Arnold’s post as
the Governor of California is compared with his portrayal of the Terminator in
Terminator 2. Therefore, when context of American politics is considered, the
entity of Arnold S. from D; should be matched with Donald T. entity from Ds.

To support scenarios where the inclusion of context in entity matching makes
results more relevant for real-world scenarios, we present the COntextualized
MoleculE-based matching Technique (COMET). COMET is a context-aware
entity matching method that employs a two-fold approach for both: (1) identify-



Contextualized Molecule-Based Matching Technique 3

ing contextually similar entities, and (2) matching them into a 1-1 set of entities.
We present the results of an empirical evaluation that illustrate the benefits of
the techniques implemented in COMET.

The remainder of the paper is structured as follows: Section [2]summarizes the
related work and compares COMET with the state of the art. Then, we define
the COMET approach in terms of its main characteristics and architecture in
Section [3] A comprehensive evaluation of the COMET approach is reported in
Section 4} Finally, Section [5| summarizes our main conclusions and future work.

2 Related Work

The problem of entity matching between RDF graphs has been extensively
treated by the Semantic Web community. As a result, a vast amount of ap-
proaches and frameworks have been developed. In the task of identifying whether
the given entities refer to the same real-world entity, growing attention in the
relational databases field is given to crowdsourcing mechanisms [I1]. Reporting
impressive results, such approaches, however, might struggle in sophisticated do-
mains with multiple contexts due to a lack of human experts who could reliably
provide necessary example or training data.

Entity matching is particularly important in data integration scenarios and
integration frameworks tackle this problem. Knoblock et al. [7] propose KARMA,
a framework for integrating a variety of data sources including databases, spread-
sheets, XML, JSON, and Web APIs. KARMA implements a hybrid approach
that relies on supervised machine algorithms for identifying mapping rules from
structured sources to ontologies; these mapping rules should solve entity match-
ing problems. Schultz et al. [10] describe the Linked Data Integration Framework
(LDIF). LDIF is oriented to integrate RDF datasets from the Web and provides
a set of independent tools to support interlinking tasks. LDIF provides an ex-
pressive mapping language for translating data from various vocabularies to a
unified ontology. LDIF tackles the problem of identity resolution by defining
linking rules using the SILK tool [5]. Based on the defined rules, SILK identi-
fies owl:sameAs links among entities of two datasets. ODCleanStore [8] relies as
well on SILK to perform instance matching and provides a custom data fusion
modules to merge the data of the discovered matches. Other efforts to produce a
unified view from RDF graphs are often combined with federated SPARQL query
engines, e.g., ANAPSID [I], MULDER [4]. Albeit effective in query planning,
such engines process raw tuples coming from endpoints and therefore employ
only basic entity matching of those raw tuples according to join operators.

The above-mentioned entity matching and integration approaches aim at
mapping different data sources with possibly varying schema, i.e., they perform
inter-schema mapping. Context-based entity matching could only be supported
on a superficial level via filtering query results without applying much of inherent
semantics. Contrary, COMET considers diverse criteria during entity matching,
e.g., entity similarity and contextual knowledge. In consequence, COMET pro-
vides the building blocks for context-based semantic integration mechanisms.
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3 The COMET Approach

Grounded on the entity matching component from the data integration tech-
nique proposed by Collarana et al. [3], we propose COMET, an entity matching
approach to identify and synthesize contextually equivalent RDF entities. Thus,
a solution to the problem of contextually matching entities is provided.

Problem Definition

RDF Molecule [3] —1If &(G) is a given RDF Graph, we define RDF Molecule M
as a subgraph of ¢(G) such that,

M= {t1,...,tn} Vi,je{l,...,n} (subject(ti) = subject(tj))

Where t1,1s,...,t, denote the triples in M. In other words, an RDF Molecule
M consists of triples which have the same subject. That is, it can be repre-
sented by a tuple M = (R, T), where R denotes the URI of the molecule’s
subject, and T denotes a set of property and value pairs p = (prop, val) such
that the triple (R, prop, val) belongs to M. For example, the RDF molecule
for Arnold Schwarzenegger is (dbr:Arnold-Schwarzenegger, { (dbo:occupation,
Politician), ( dbp:title, Governor)}). An RDF Graph @(G) described in terms
of RDF molecules is defined as follows:

S(G) ={M = (R, T)|t = (R, prop,val) € G A (prop,val) € T}

Context — We define a context C' as any Boolean expression which represents
the criteria of a system. Two entities, such as an RDF molecule M; and M, can
be either similar or not similar with respect to a given context. That is, C' is a
Boolean function that takes as input two molecules M7 and M5 and returns true
if they are similar according to system context, and false otherwise. Below is an
example of context C, modeled after the example presented in Figure [I| where
two molecules are similar if they have the same occupation. If P = (p,v) is the
predicate representing the occupation property of a molecule, then context

true, if Pe€ My AP € Ms.

C‘(.Z\fl7 MQ) - .
false, otherwise.

Depending on the requirements of the integration scenario, this context can be

any Boolean expression.

Semantic Similarity Function — Let M; and M, be any two RDF molecules.
Then semantic similarity function Simy is a function that measures the semantic
similarity between these two molecules and returns a value between [0,1]. A 0
expresses that the two molecules are completely dissimilar and 1 expresses that
the molecules are identical. Such a similarity function is defined in GADES [9].
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Contextually Equivalent RDF Molecule — Let &(G) and &(D) be two sets of
RDF molecules. Let Mg and Mp be two RDF molecules from ¢(G) and &(D)
respectively. Then, Mg and Mp are defined as contextually equivalent iff (i)
They are in the same context. That is, C(My, My) = true and, (ii) They have
the highest similarity value, i.e., Sim;(Ma, Mp) = max(Vmeap)Sims(Ma,m))

Let F, be an idealized set of contextually integrated RDF molecules from @(G)
and ¢(D). Let 8¢ be a homomorphism such that ¢ : ¢(G) UP(D) — F,. Then
there is an RDF Molecule My from F. such that 6(Mp) = 6(Mg) = Mp. From
the motivation example, this means that the molecule of Arnold Schwarzenegger,
the politician is contextually equivalent to the molecule of Donald Trump as they
are similar and they satisfy the context condition of having the same occupation.

In this work, we tackle the problem of explicitly modeling the context and
then, matching RDF molecules from RDF graphs that are both highly-similar
and equivalent in terms of this context. This problem is defined as follows: given
RDF graphs ¢(G) and &(D), let Mg and Mp be two RDF molecules such that
Mg € ¢(G) and Mp € &(D). The system is supplied a context parameter C,
which is a boolean function evaluating if two molecules are in the same con-
text. It is also supplied a similarity function Sim¢, which evaluates the semantic
similarity between Mg and Mp.

The problem of creating a contextualized graph @¢ consists of building a ho-
momorphism 0¢ : $(G)UP(D) — F,, such that for every pair of RDF molecules
belonging to @¢ there are none that are contextually equivalent according to sys-
tem context C. If Mg and Mp are contextually equivalent molecules belonging
to F., then 0 (Mg) = 6c(Mp), otherwise ¢ (Mg) # 0c(Mp).

Architecture We propose COMET, an approach to match contextually equiv-
alent RDF graphs according to a given context, thus providing a solution to the
problem of contextually matching RDF graphs. Figure [2] depicts the main com-
ponents of the COMET architecture. COMET follows a two-fold approach to
solve the problem of entity matching in RDF graphs in a context-aware manner:
First, COMET computes the similarity measures across RDF entities to create a
bipartite graph; Finally, COMET executes a context-aware 1-1 perfect matching
algorithm for matching RDF entities based on the combined scores of similarity
and context, by employing Formal Concept Analysis to validate context.

Building a bipartite graph. The COMET pipeline receives two RDF graphs
&(G),P(D) as input, along with context parameter C, and a similarity function
Simy. COMET first constructs a bipartite graph between the sets ¢(G) and
(D). The Dataset Partitioner employs a similarity function Sim; and ontology
O to compute the similarity between RDF molecules in ¢(G) and ¢(D) assigning
the similarity score as edge weight in the bipartite graph. COMET supports
a variety of similarity functions including simple string similarity. However, as
showed in [3], semantic similarity measures are advocated (in the implementation
of this work we particularly use GADES [9]).
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Fig.2: The COMET Architecture. COMET receives datasets G and D, sim-
ilarity function Sim ¢ and context C. Output is a set of matched RDF entities.

After similarity computation of the RDF molecules, the result of the simi-
larity function is tested against a threshold «y to determine entity similarity (the
similarity thresholds minimum acceptable score). Thus, edges are discarded from
the bipartite graph whose weights are lower than ~.

1-1 Context-Aware Perfect Matching Calculator. The main contribution
of the COMET pipeline is a novel 1-1 context-aware perfect matching calcu-
lator, which validates and prunes pairs of RDF molecules that do not comply
with the input context C', making COMET a context-aware approach. For iden-
tifying contextually equivalent RDF entities, the Context Validator component
employs the Formal Concept Analysis (FCA) algorithm. FCAE| is the study of
binary data tables that describe the relationship between objects and their at-
tributes. Applying this context validation step over the RDF molecules ensures
only contextually relevant tuples are kept. In COMET, context is modeled as
any boolean function. Two molecules are matched if they satisfy this condition,
otherwise they are not matched. The algorithm by V. Vychodil [12] is applied
in COMET; it performs formal concept analysis to compute formal concepts
within a set of objects and their attributes. This algorithm is extended in our
approach for validating complex boolean conditions. A typical formal concept
analysis takes as input a binary data table. The rows of this table correspond to
object, while the columns denote if an object contains a certain attribute.

In our approach, instead of using objects and attributes, we replace the
attributes with a boolean condition C. This is the same as the context con-
dition C used in our approach. For example, the context C from the moti-
vating example can be broken down into C' = C; A Cy where C; = ”con-
tains property dbo:occupation”, and Co = "has the same value for property
dbo:occupation”. The execution of the FCA algorithm remains unchanged by
this adaptation since the format of the input to FCA is still a binary matrix.

When applied to RDF molecules, formal concept analysis returns a set of
formal concepts < M,C > where M is a set of all the molecules that contain
all conditions contained in C. Thus, the molecules that do not meet the context
condition are pruned. In Figure [3| an example of context validation is demon-

1 https://en.wikipedia.org/wiki/Formal_concept_analysis


https://en.wikipedia.org/wiki/Formal_concept_analysis

Contextualized Molecule-Based Matching Technique 7

c1 c2
ove i True True o e
9‘ e 4 False False e e
6 True True
9 e Cc1 c2 e 6
2 True True
4 5 6 4 5 6 4 False False 4 5 6
1106|0207 1]|06| 0 |07 5| True | True 1|00 |07
2 (080701 2 (08|07 O c1 2 2 0 (07| 0
3 [09|01|08 3 |09 0 |08 3| e | e 3 (090 |0
4 True True
6 False False

(a) Bipartite (b) Context validation using For- (c¢) Perfect 1-1

graph mal Concept Analysis matches
Fig.3: Context Validation. A 1-1 matching algorithm over a bipartite graph
that validates context of entities using FCA; 1-1 perfect matches are generated.

strated. Edges in a bipartite graph are filtered according to a threshold value
v as detailed in the previous section. Next, the remaining edges are validated
by constructing an FCA matrix according to context condition C'. The FCA
algorithm returns the edge satisfying the context conditions. The edges that do
not satisfy the context condition are discarded.

COMET solves the problem of context-aware entity matching by computing
a 1-1 weighted perfect matching between the sets of RDF molecules. The input
of the 1-1 weighted perfect matching component is the weighted bipartite graph
created on the previous step. Since each weight of an edge between two RDF
molecules corresponds to a combined score of semantic similarity and context
equivalence value, we call this a 1-1 context-aware matching calculator. Finally,
the Hungarian algorithm is utilized to compute the matching.

4 Empirical Evaluation

4.1 Effectiveness Evaluation

We conducted an empirical evaluation to study the effectiveness and perfor-
mance of COMET in solving the entity matching problem among RDF graphs.
We address the following research questions: (RQ1) “Is COMET able to per-
form entity matching with regard to context more accurately than MINTE [3]
entity matching component?”, and (RQ2) “Does the content of the dataset with
respect to the context condition affect the accuracy of COMET?”

Practically, COMET is implemented in Python and hosted in GitHulﬂ along
with the datasets and logs used in this evaluation. For the COMET pipeline we

2 https://github.com/RDF-Molecules/COMET
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Experiment: Effectiveness
Configuration A B C
Datasets Al A2 B1 B2 C1 c2
Molecules 1000 | 1000 | 1000 | 1000 | 1000 1000
Triples  |70,660(70,660(70,776|70,776|71,124| 71,124
Context |C(Mpi1, Mp2) = true,if dbo:occupation match
Table 1: Benchmark Description. Datasets used in the evaluation including:
number of RDF molecules (M), number of triples (T), evaluated contexts (C).

use the semantic similarity measure GADES [9] GADES examines both string
similarity and hierarchy similarity by making use of graph neighbourhoods.

As a baseline, we compare the effectiveness of COMET against the MINTE
pipeline proposed by Collarana et al.[3]. Towards (RQ1) and (RQ2) we de-
sign an experiment to measure the precision, recall and f-measure of COMET
in comparison to MINTE, while supplying both the pipelines with datasets of
different compositions of molecules with respect to context to observe the effect
of contextual content on the effectiveness of COMET.

Although each experiment has different datasets and gold standards, we use
the same metrics for all the experiments: Precision, Recall, and F-meaure. Pre-
cision measures what proportion of the performed integrations are actually cor-
rect. That is, precision is the fraction of RDF molecules that has been identi-
fied as contextually equivalent by COMET (C), which intersects with the Gold
Standard (GS). On the other hand, recall measures the overall proportion of
integrated RDF molecules that were identified correctly. That is, recall is mea-
sured by the fraction of correctly identified similar molecules with respect to the
Gold Standard,i.e., Precision = ‘CPCCTS‘ and Recall = ‘?82‘5‘ F-measure is the
harmonic mean of Precision and Recall.

The datasets contain 1,000 people entities from DBpedia. In order to test
the effect of contextual data content on the accuracy of COMET, three pairs of
datasets (A1, A2), (B1, B2) and (C1, C2) are generated using configurations A,
B and C': In configuration A, every molecule a! in dataset A1 has 2 highly similar
molecules a2 and a8 in dataset A2, such that a2 satisfies context condition, but
a3 does not. That is, C(al,a2) = true and C(al, a3) = false. In configuration
B, every molecule b1 in dataset B1 has 3 highly similar molecules b2, b3 and
b4 in dataset B2, such that b2 and b3 satisfy the context but b4 does not. For
configuration C, every molecule c1 in dataset C1 has 4 highly similar molecules
in dataset C2, two of which satisfy context, and two that do not.

Every pair of datasets are synthesized as follows: First, molecules from the
original set of 1,000 DBpedia person entities are duplicated according to the
configuration condition to create n number of highly similar molecules in the
second dataset. Then predicates inside the similar molecules are randomly edited
and deleted to create some variation of similarity. The predicates are then edited
to ensure that the correct number of similar molecules in the second dataset
satisfy the context according to the original dataset.
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COMET MINTE
Configuration|Precision | Recall| F-Measure| Precision| Recall | F-Measure
A 1.0 1.0 1.0 0.54 0.54 0.54
B 0.708 0.708 0.708 0.449 0.449 0.449
C 0.558 0.558 0.558 0.408 0.408 0.408

Table 2: Effectiveness evaluation of COMET.

Similar to the motivation example shown in Figure [T} the context C used in
this experiment checks if two molecules have the same value for the predicate
dbo:occupation. The Gold Standard contains matches between molecules that
(i) Satisfy the context condition and, (ii) Are highest in similarity among all
other molecules. For every pair of datasets belonging to the three configurations
(i.e., A, B and C), there is a corresponding Gold Standard G 4, Gg and G¢. The
datasets, gold standard and the experiment code are all available on GitHub.

Table |1 describes the dataset used during our evaluations. This experiment
was conducted on MINTE and COMET once for each pair of datasets (A1, A2),
(B1, B2) and (C1, C2), with the context condition requiring that every pair of
matched molecules must have the same value for dbo:occupation property. The
threshold value ~ for this experiment is applied at 97th percentile in every case.
Then, we compare against the Gold Standard G4, G and G¢ for configurations
A, B and C, respectively; Precision and Recall are calculated each time.

4.2 Discussion of Observed Results

Based on the values of Precision, Recall, and F-measure reported in Experiment
1 (Table , we can positively answer (RQ1), i.e., COMET is able to perform
contextual entity matching more effectively than MINTE, and answer (RQ2)
by illustrating how the contextual content of the dataset affects accuracy. In
every case, COMET performs better than MINTE, since MINTE does not take
context into consideration during its 1-1 perfect matching whereas COMET does.
Moreover, a decrease in Precision and Recall of COMET with the increase of
highly similar molecules occurs since COMET has a lesser chance of identifying
the perfect match with a higher number of options to choose from. On the other
hand, in case of configuration A, Precision and Recall is perfect since the dataset
supplies only one highly similar molecule that also meets the context. Thus, the
highest values of precision and recall demonstrate that in an ideal condition with
only one perfect option, COMET will always find the correct match.

5 Conclusions and Future Work

We presented COMET!, an approach to match contextually equivalent RDF enti-
ties from different sources. COMET executes a 1-1 perfect matching where con-
textually equivalent RDF molecules are identified according to a combined score
of semantic and context similarity. COMET utilizes the Formal Concept Analy-
sis algorithm to decide whenever two RDF molecules are contextually equivalent.
The behavior of COMET was empirically studied on two real-world RDF graphs
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under different context configurations. Observed results suggest that COMET is
able to effectively identify and match contextually equivalent entities. COMET
makes use of a very simple definition of context conditions, modeling context as
a boolean function of entities. In future, context can be modeled in a more gen-
eralized way, e.g., a probabilistic function. We plan to evaluate a multi-threading
version of the FCA algorithm that may enable the implementation of this work
on large datasets. Finally, FCA context parameters will be empowered by ma-
terializing implicit facts in RDF knowledge graphs via a reasoner.
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